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Abstract 

Background:  Biting midges of the genus Culicoides vector multiple veterinary pathogens and are difficult to control. 
Endosymbionts particularly Wolbachia pipientis may offer an alternative to control populations of Culicoides and/or 
impact disease transmission in the form of population suppression or replacement strategies.

Methods:  Culicoides sonorensis cell lines were transfected with a Wolbachia infection using a modified shell vial 
technique. Infections were confirmed using PCR and cell localization using fluorescent in situ hybridization (FISH). 
The stability of Wolbachia infections and density was determined by qPCR. qPCR was also used to examine immune 
genes in the IMD, Toll and JACK/STAT pathways to determine if Wolbachia were associated with an immune response 
in infected cells.

Results:  Here we have transfected two Culicoides sonorensis cell lines (W3 and W8) with a Wolbachia infection 
(walbB) from donor Aedes albopictus Aa23 cells. PCR and FISH showed the presence of Wolbachia infections in both C. 
sonorensis cell lines. Infection densities were higher in the W8 cell lines when compared to W3. In stably infected cells, 
genes in the immune Toll, IMD and JAK/STAT pathways were upregulated, along with Attacin and an Attacin-like anti-
microbial peptides.

Conclusions:  The successful introduction of Wolbachia infections in C. sonorensis cell lines and the upregulation of 
immune genes, suggest the utility of using Wolbachia for a population replacement and/or population suppression 
approach to limit the transmission of C. sonorensis vectored diseases. Results support the further investigation of 
Wolbachia induced pathogen inhibitory effects in Wolbachia-infected C. sonorensis cell lines and the introduction of 
Wolbachia into C. sonorensis adults via embryonic microinjection to examine for reproductive phenotypes and host 
fitness effects of a novel Wolbachia infection.
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Background
Culicoides species are small hematophagous insects that 
have been shown to harbor more than 50 different viruses 
of veterinary and medical importance [1]. These viruses 
include orbiviruses, such as African horse sickness virus 
(AHSV), Schmallenberg virus (SBV), bluetongue virus 
(BTV) and epizootic hemorrhagic disease virus (EHDV), 
which significantly impact deer and livestock production 
through loss of profits and trade restrictions [1, 2]. Mul-
tiple outbreaks of blue tongue virus (BTV) of different 

serotypes, topotypes (regional variants of particular 
serotypes) and strains have been recorded in Europe in 
recent decades [3, 4]. One of the largest European out-
breaks to date recorded in the Netherlands, resulted in 
economic damage greater than $150 million dollars [5]. 
The circulation of established and newly established BTV 
serotypes still continues to affect large areas of southern 
and eastern Europe. Currently, there are at least 11 inva-
sive BTV serotypes circulating in the USA [6–10] and the 
number of serotypes in the USA is on the rise, suggest-
ing the epidemiology of BTV is changing and could result 
in extensive disease in USA livestock if the virus were to 
infect naive host populations [11]. Worldwide estimates 
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of direct and indirect losses due to BTV have been esti-
mated to top $3 billion dollars [12].

Culicoides-vectored arborvirus and zoonotic diseases 
have limited methods of treatment and prevention and 
rely on inadequate forms of vector control to combat the 
spread of the disease [2, 13, 14]. Current control meth-
ods for Culicoides are focused on treating livestock with 
topical insecticides at livestock production facilities 
and farms, but are typically met with limited success, 
depending on the Culicoides species targeted [2, 13, 14]. 
Furthermore, little is known about the biology of many 
Culicoides species, specifically immature habitat selec-
tion, making the effective application of insecticides to 
control immatures difficult [13, 15]. Habitat modification 
to remove standing water and removal of manure is often 
used to impact populations of Culicoides near livestock, 
but is limited to use in areas near livestock production. 
The combination of larvicide and adulticidal treatments 
have also demonstrated some success, but the true effi-
ciency of this type of control has not been assessed, 
and this type of treatment typically does not reduce the 
numbers of Culicoides adults, if only treating around a 
farm property [16, 17]. Vaccines are available for a few 
Culicoides-transmitted viruses. Active virus vaccines are 
available for BTV serotypes, but are limited in effective-
ness due to the large number of serotypes and the poten-
tial for genome segment re-assortment of the BTV [18]. 
Inactivated vaccines are currently available for -BTV and 
have been used in Europe. However, inactivated vaccines 
are expensive and not an effective solution when treating 
large amounts of livestock [19, 20]. Therefore, alterna-
tive control measures are needed to supplement the few 
existing control measures for Culicoides species.

Wolbachia pipientis may offer an alternative environ-
mentally friendly control measure for Culicoides midges 
and the pathogens they vector. Wolbachia is an obli-
gate intracellular bacterium found in > 55% of insects, 
as well as filarial nematodes and terrestrial crustaceans 
[21, 22]. In insects, Wolbachia causes alterations in host 
reproduction, with several phenotypes including femi-
nization, parthenogenesis, male killing and cytoplasmic 
incompatibility (CI) [23]. Recently, Wolbachia has been 
used as a strategy for mosquito suppression and disease 
control and has become a topic of global relevance [24, 
25]. Two Wolbachia-based strategies are currently being 
implemented in the field for mosquito and disease con-
trol. The first is a Wolbachia incompatible insect tech-
nique (IIT) approach based on mass inundative releases 
of incompatible male mosquitoes similar to the Ster-
ile Insect Technique (SIT), with the goal of suppressing 
natural populations through sterile mattings [26, 27]. 
The second is based on the discovery that some Wol-
bachia interfere with viruses and other microbes in the 

same host [28–32]. Particular Wolbachia variants (e.g. 
the wMel strain) can block dengue virus transmission 
without impacting Aedes aegypti fitness [28]. In addition, 
Wolbachia has also been shown to impact chikungunya 
virus, Zika virus and the yellow fever virus in their mos-
quito host [28–32]. Because Wolbachia-infected females 
can mate and produce viable offspring with infected and 
uninfected males alike, and infected males when mated 
with uninfected female produce non-viable offspring, 
the resulting reproductive advantage of Wolbachia 
infected individuals can drive a given disease refractory 
phenotype into a natural population limiting disease 
transmission.

Biological control using Wolbachia has been limited 
to disease vector mosquitoes, presumably because of 
the immediate need for novel tools for hard to control 
mosquito species such as Ae. aegypti and Aedes albop-
ictus, that are primary and secondary vectors of dengue 
and Zika viruses, respectively. The success of the recent 
field applications of Wolbachia control techniques in 
mosquitoes suggests the potential for the transition of 
this technology to other insect disease vectors of human 
and zoological importance. Wolbachia infections have 
recently been confirmed in multiple populations and spe-
cies of Culicoides midges in Europe and Australia [33, 34], 
suggesting that introducing novel Wolbachia infection 
types into uninfected Culicoides species is possible. Fur-
thermore, the existence of natural infections suggests that 
reproductive phenotypes such as cytoplasmic incompat-
ibility could exist in natural populations that harbor Wol-
bachia infections. Here, we demonstrate that Wolbachia 
infections can be introduced into Culicoides sonorensis 
cell lines as an initial step towards the investigation of a 
Wolbachia based control strategy for Culicoides midges. 
Recent studies have suggested that Wolbachia infections 
from a donor host can be pre-adapted to a target host cell 
lines in order to facilitate the adaptation for survival in a 
novel host [35]. The successful transfection of Wolbachia 
in Culicoides sonorensis cell culture may be a precursor 
to the successful germ line transfection of C. sonorensis. 
Furthermore, we use transfected cell lines to investigate 
a host immune response associated with a Wolbachia 
infection, which could suggest a reduced ability of Wol-
bachia infected C. sonorensis to transmit viral pathogens.

Methods
Cell culture
Aa23 Ae. albopictus cell lines were cultured in 75 cm2 cell 
culture flasks (TPP™, Techno Plastic Products, Trasa-
dingen, Switzerland) in Schneider’s insect medium (SM) 
(MilliporeSigma, St. Louis, MO, USA) supplemented 
with 10% fetal bovine serum (FBS) (Table  1) [36]. W8 
and W3 C. sonorensis cells were cultured in 25 cm2 cell 
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culture flasks (TPP™, Techno Plastic Products) in SM 
(24.5 g/l) supplemented with 0.4 g/l sodium bicarbonate, 
0.0585 g/l l-glutatmine, 0.006 g/l reduced glutathione, 
0.03 g/l l-Asparagine, 18 µl of 10 mg/l Bovine insulin and 
5% FBS (Table 1). All cell cultures were incubated at 28 °C 
with a CO2 concentration of 0.2%.

Wolbachia isolation and transfection experiments
The walbB infection was isolated from the Aa23 cells 
grown to > 95% confluency. Extracellular Wolbachia 
was isolated using a modified procedure as previously 
described [37]. The adherent cells were scraped, and the 
cell culture was centrifuged at 2500× g at 4 °C for 10 
min. The supernatant was removed, and the pellet was 
re-suspended in 6–8 ml of a SM + 10% FBS solution. 
Next, 3 mm glass beads were added to the solution up 
to the three ml mark in a 15-ml centrifuge tube and vor-
texed at high speed for 5 min, followed by centrifugation 
at 2500× g at 4 °C for 10 min. The supernatant was then 
passed through a 5-μm syringe filter and the resulting 
solution was split into 1.5 ml centrifuge tubes (approxi-
mately 1 ml per tube) and subjected to sucrose gradient 
centrifugation (200 mM sucrose solution) at 17,000× g 
for 10 min at 4 °C. The resulting pellet was re-suspended 
in SM with 10% FBS and passed through a 2.7-μm syringe 
filter to collect extracellular Wolbachia. To examine for 
contamination of extracts with Aa23 cells, environmental 
bacteria, and/or fungi, a portion of the extract was added 
to Schneider’s media with 10% FBS in a 25-cm2 flask and 
incubated at 28 °C with a CO2 concentration of 0.2%.

Infection of W8 and W3 cell lines was carried out using 
a modified shell vial technique [36]. Briefly, shell vials 
(29 × 80 mm) were seeded with W8 or W3 cells at 90% 
confluency and allowed to adhere to vial surface for two 
hours. Isolated extracellular Wolbachia was applied to 
W8 or W3 cells. The shell vial was centrifuged at 2500× 
g for 40 min at 20 °C and the cells transferred to a 25-cm2 
flask with 5 ml of fresh media. In an attempt to increase 
Wolbachia infection rates, a second shell vial experiment 
was performed on the previously transfected W8-w and 
W3-w cells (2×) (Fig.  1a). One day after infection, the 
cells were transferred into a 25-cm2 flask containing 5 ml 
of fresh medium. W3-w and W8-w cells were passaged 
every 6–8 days at a ratio of 1:4 (cell culture: new media).

PCR testing of Wolbachia infections
To confirm the Wolbachia infection was successfully 
isolated from the Aa23 cells in passage 1 and to con-
firm establishment in W3-w and W8-w cell lines, DNA 
was isolated from passage 1, 6 and 14 of 2× Wolbachia 
infected W3-w, W8-w and uninfected W3 and W8 and 
Aa23 cells using a Qiagen DNeasy Blood and Tissue Kit 
(Qiagen, Hilden, Germany). For detection of Wolbachia, 
a PCR assay that amplified a 438 bp 16S rRNA gene frag-
ment was used with the specific primer set wspecF and 
wspecR [38] (Additional file  1: Table  S1). For all RXNs, 
1 µl of isolated DNA was amplified in 25 mM KCL, 25 
mM Tris–HCL (pH 9.0), 20 mM (NH4)2SO4, and 0.025% 
Triton X-100, 0.25 mM MgCl2, 0.25 mM dNTPs, 0.5 mM 
primers, and 1 U of Taq DNA polymerase in a total vol-
ume of 25 µl. The PCR amplification protocol was 10 min 
at 95  °C, 35 cycles of 30 s at 95 °C, 30 s at 54 °C and 1 
min at 72 °C, followed by a 10 min extension step at 72 
°C using a T100 Thermocycler (Bio-Rad, Hercules, CA, 
USA). A volume of 5–10 µl of each amplicon was sepa-
rated on 1.5% agarose gel, stained with GelRed (Biotium, 
Hayward, CA, USA) and visualized under ultraviolet 
illumination.

Fluorescence in situ hybridization
Fluorescence in situ hybridization (FISH) was per-
formed on the W8-w and W3-w and W8 and W3 cell 
lines to confirm the presence and absence of Wolbachia, 
respectively. For the FISH procedures, W8-w and W3-w 
cells were at passage 4 post-Wolbachia infection. Cells 
were grown to 90% confluency at 28 °C and 300 µl of the 
cells were added to an 8-well Nunc® Lab-Tek® Chamber 
slide system (Thermo Fisher Scientific, Waltham, MA, 
USA). The cells were incubated in the chambered wells 
overnight for ~ 15 h at 28 °C. Cells were fixed in 4% for-
maldehyde (in 1× PBS) for 40 min at room temperature 
(RT) and followed by two washes with 1× PBS-T. Next, 
the cells were pre-hybridized for ~ 2 h at RT. The pre-
hybridization buffer consisted of 50% deionized forma-
mide, 20% 20× sodium saline citrate (SSC) solution, 
1% 50× Denhardt’s Reagent, 10% 1 mol dithriothreitol 
(DTT), 0.25 mg/ml t-RNA and 0.25 mg/ml poly(A). The 
pre-hybridization step was followed by an overnight 

Table 1  Mosquito and midge cell lines used in the transfection experiments

Cell line Host Natural infection status Transfected Wolbachia 
type

Reference

Aa23 Aedes albopictus walbB N/A Dobson et al. [36]

W8—(CuVa-W8a) Culicoides sonorensis Uninfected walbB McHolland & Mecham [38]

W3—(CuVa-W3) Culicoides sonorensis Uninfected walbB McHolland & Mecham [38]
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hybridization (~ 18 h) at 37 °C in a moist environment 
with gentle shaking. The hybridization buffer consisted 
of pre-hybridization buffer supplemented with 200 mg/
ml dextran sulfate, 250 mg/l salmon sperm DNA and 
Wolbachia specific probes (5′-/56-FAM/ AAT CCG 
GCC GAR CCG ACC C-3′); 5′-/56-FAM/ CTT CTG 
TGA GTA CCG TCA TTA TC-3′) [37]. After hybridi-
zation, the cells were washed with denatured SSC solu-
tion in the following order: wash buffer 1 (1× SSC 
augmented with 10 mmol/l DTT) at room temperature 
with gentle shaking, wash buffer 1 at 55 °C with gen-
tle shaking, and two washes at 55 °C with wash buffer 2 
(0.5× SSC augmented with 10 mmol/l DTT) with gen-
tle shaking. Following the wash steps, cells were stained 
with DAPI at room temperature for 5 min followed by 
three 5-min washes with 1× PBS. The cells were then 
observed using a Nikon (Melville, NY, USA) A1 HD25/
A1R HD25 confocal microscope with high-definition 
resonant scanner at a magnification of 20× and 60×. 
All images were processed using ImageJ and Adobe 
Photoshop (Adobe Systems, San Jose, CA, USA).

Wolbachia quantification
qPCR was used to quantify the density of Wolbachia in 
W8-w and W3-w infected cell lines. DNA was extracted 
from Wolbachia infected cells using Qiagen DNeasy 
Kit. Wolbachia density was determined by amplifying a 
fragment of the Wolbachia wsp gene (Additional file  1: 
Table  S1) [39–42] using Platinum SYBR Green qPCR 
SuperMix-UDG (Thermo Fisher Scientific) on a Applied 
Biosystems 7300 real time PCR system (Applied Biosys-
tems, Beverly, MA, USA) and completed in duplicate or 
triplicate. The relative abundance of Wolbachia in W8-w 
and W3-w cell lines were normalized to the single copy 
elongation factor 1b gene (Additional file 1: Table S1).

Immune response experiments
Qiagen RNeasy Mini Kit was used to isolate RNA for 
quantification of host cell gene expression (Qiagen). Iso-
lated RNA from W8-w cells was treated with DNase and 
cDNA synthesized using an NEVB LunaScript RT super-
Mix kit (New England Biolabs, Ipswich, MA, USA) fol-
lowing the manufacturerʼs guidelines. To determine the 

Fig. 1  a Wolbachia transfection procedure using Wolbachia isolated from Ae. albopictus Aa23 donor cells to transfect W8 and W3 C. sonorensis 
cell lines. 1× and 2× refer to the two rounds of the transfection procedure to generate Wolbachia infected W8-w and W3-w cell lines. b PCR 
confirmation of Wolbachia infections in Aa23, W8-w, W3-w transfected cell lines and absence of infections in W8 and W3 cell lines at passages 1, 6, 
and 14. c Wolbachia density as determined by qPCR of W3-w and W8-w cell lines for 16 passages. Data are represented as the mean ± standard error 
(SEM)
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response of the immune pathways to the walbB infection 
in W8-w cell lines, qPCR was used to determine host 
gene expression of immune genes involved in the IMD, 
Toll and Jak/Stat pathways and anti-microbial peptides 
previously identified in C. sonorensis (Additional file  1: 
Table  S1). All reactions were performed by amplifying 
the target immune genes using Platinum SYBR Green 
qPCR SuperMix-UDG, completed in triplicate and nor-
malized to the elongation factor 1b gene using the 2–∆∆ct 
method.

Statistics
JMP software (SAS, Cary, NC, USA) was used for sta-
tistical analysis. Statistical significance of immune gene 
expression levels of Wolbachia infected and uninfected 
Culicoides cells was determined by t-tests, with a signifi-
cance level of P < 0.05.

Results
Establishment and Wolbachia density in Culicoides cells
Prior to Wolbachia transfection procedures, W8 and W3 
cell lines were confirmed for absence of a natural Wol-
bachia infection (Fig. 1a, b). Successful Wolbachia isola-
tion from Aa23 cells was confirmed by a positive PCR in 
passage one post transfection (Fig.  1b). After two Wol-
bachia transfection procedures, W8-w and W3-w cell 
lines tested positive for Wolbachia infections using PCR 
at passages 4 and 16 (Fig.  1b). No contamination was 

observed in W8-w and W3-w cell lines post-transfection 
or in control flasks containing Wolbachia extract and cell 
culture media.

To investigate the infection dynamics of W8-w and 
W3-w cell lines, qPCR was used to determine Wol-
bachia density using isolated DNA samples from eight 
passages of W3-w and W8-w cell lines. W8-w consist-
ently maintained a higher density Wolbachia infection 
than W3-w (Fig. 1c), but there was no evidence for Wol-
bachia infection loss in either cell lines, and infections 
appeared to be maintained at a relative density of approx-
imately 0.77 ± 0.26 (mean ± standard deviation, SD) and 
0.24 ± 0.12 (mean ± SD) for the W8-w and W3-w cell 
lines, respectively (Fig. 1c). After transfection with walbB, 
W8-w and W3-w cells were able to be cryogenically fro-
zen in SM with 10% FBS and 10% DMSO. Cells were able 
to be re-established and harbor similar densities of Wol-
bachia infections compared to unfrozen original cell lines 
for both W3 and W8 cell lines.

Localization of walbB in Culicoides cells by FISH
Wolbachia specific fluorescently labeled oligonucleo-
tides were used to target the Wolbachia wsp gene in the 
Culicoides cells. No fluorescent signal was observed in 
the uninfected Culicoides sonorensis (Fig. 2). Fluorescent 
microscopy observations showed the presence of Wol-
bachia in the cytoplasm of the W8-w and W3-w cell lines. 
However, the limited level of hybridization suggested a 

Fig. 2  Fluorescent in situ hybridization of uninfected (a, b) and Wolbachia-infected W8-w cells (c, d) at 60× and 20× magnifications, respectively. 
FISH of uninfected (e, f) and Wolbachia-infected W3-w cells (g, h) at 60× and 20× magnifications, respectively. Cell nuclei are shown in blue and 
Wolbachia specific probes are shown in green. White arrows indicate the presence of Wolbachia in cells
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low level of infection in the W3-w cell lines, while FISH 
in the w8-w cell line suggested a higher density infection 
compared to W3-w (Fig. 2).

Wolbachia effects on immune gene expression 
in Wolbachia infected Culicoides cells
After the establishment of a Wolbachia infection in the 
W3-w and W8-w cell lines at passage 5, we examined 
the gene expression of immune response in only the 
W8-w cell line due to the higher density of the walbB 
infection. To examine for an interaction of walbB and 
the host cell immune response, we performed qPCR on 
selected genes in the JAK-STAT, IMD and Toll path-
ways. In addition, we examined the expression of other 
immune-related genes including antimicrobial peptides 

(AMPs). W8-w infected cells had a significant increase 
in immune gene expression for STAT (t-test; t = 4.14, 
df = 3, P = 0.01), PIAS (t-test; t = 3.18, df = 3, P = 0.02), 
Caspar (t-test; t = 3.22, df = 3, P = 0.04), Relish (t-test; 
t = 2.02, df = 3, P = 0.05), Dorsal (t-test; t = 3.01, df = 3, 
P = 0.02), Cactus (t-test; t = 3.04, df = 3, P = 0.03), 
Attacin (t-test; t = 3.16, df = 3, P = 0.03) and Attacin-
like genes (t-test; t = 2.81, df = 3, P = 0.05) when com-
pared to W8 uninfected cells (Fig. 3). Cercropin (t-test; 
t = 0.05, df = 3, P = 0.48), Defensin (t-test; t = 0.66, 
df = 4, P = 0.27) and Defensin-like (t-test, t = 2.32, 
df = 4, P = 0.06) showed no significant difference in 
immune gene expression when compared to the unin-
fected W8 cells (Fig. 3).

Fig. 3  Immune response after establishment of the walbB Wolbachia infection in the W8-w cell line, Toll pathway regulators Dorsal (a) and Cactus 
(b), JAK/Stat pathway regulators STAT (c), PIAS (d), anti-microbial peptides (AMP) Attacin (e), Attacin-like (f), Cercropin (g), Defensin-like (h), Defensin 
(i) and IMD pathway regulators Caspar (j) and Relish (k). Data are represented as the mean ± standard error (SEM) of two or three biological 
replicates. *P < 0.05, **P < 0.01, n.s., not significant (P > 0.05)
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Discussion
The generation of cell lines with novel Wolbachia infec-
tions is a logical first step towards investigating whether 
an infection can be established in a novel insect host. 
Transfer of Wolbachia to novel hosts is time consum-
ing and difficult using microinjection techniques to 
introduce Wolbachia infections into insect embryos, 
and more often than not, attempts are met with lim-
ited success. Wolbachia establishment in cell lines has 
also been shown as a way to pre-adapt a Wolbachia 
infection to a novel host potentially leading to a more 
successful transfection [35, 38]. The generation of two 
novel Wolbachia-infected C. sonorensis cell lines (W8-
w and W3-w) is a notable advancement towards gener-
ating novel Wolbachia infections in adult midges.

The observed Wolbachia infection densities in the 
W8-w and W3-w cell lines are lower than previously 
reported for Drosophila, mosquito and sand fly host 
cells [35, 43, 44]. While higher Wolbachia infection 
densities have been reported to result in pathogen 
blocking and cytoplasmic incompatibility [41, 45, 46], 
other studies have suggested that low level infections 
can also result in cytoplasmic incompatibility (CI) 
and possibly pathogen blocking [47, 48]. Few stud-
ies have examined for Wolbachia infections in native 
Culicoides spp. populations, and those that have, dem-
onstrated that Culicoides species have low density 
Wolbachia infections in vivo and a low prevalence in 
natural populations [33, 34]. Detection of Wolbachia 
infections in Culicoides spp. collected in Australia was 
accomplished by using qPCR over less sensitive con-
ventional PCR [33]. Wolbachia infections have also 
been noted in Culicoides spp. collected in Spain, albeit 
at a low prevalence in populations, which could again 
be associated with a low Wolbachia density in adult 
host midges and a low detection level [34]. Hence, 
the low densities of Wolbachia observed in the W8-w 
and W3-w cell lines may be common to Culicoides. 
This observed result could be a function of the abil-
ity of Wolbachia to upregulate the immune system in 
its Culicoides host and inhibiting Wolbachia infection 
proliferation, or could be the result of environmental 
parameters such as temperature [49–51], host age [50, 
52], sex [52] or Wolbachia strain [53], which have been 
demonstrated to impact Wolbachia density in its insect 
host. It is currently unclear why the W8-w cell line is 
able to maintain a higher Wolbachia density than the 
W3-w cell line, but this observation could be related to 
predominant cell morphology and type of each culture. 
The W3 cell line is predominantly, epithelial-like cells 
that are firmly adherent [38]. The W8 cell line contains 
predominantly fusiform or stellate shaped cells, which 

are lightly adherent [38]. Previous studies have shown 
Wolbachia can infect multiple cell and tissue types at 
different rates and densities [54].

The W8-w and W3-w cell lines were infected with a 
walbB infection from donor Aa23 Ae. albopictus cells. 
The walbB infection type was an optimal candidate for 
C. sonorensis cell line transfection because: (i) the walbB 
infection has been shown to fall within the same B-clade 
as other Wolbachia infections reported in multiple Culi-
coides spp. collected in native populations in Spain [34], 
suggesting a higher likelihood for a successful transfec-
tion; and (ii) the wAlbB infection has shown parasite 
and virus inhibitory effects in multiple insect vectors of 
disease. In Anopheles stephensi, walbB has been demon-
strated to reduce Plasmodium parasite development [55, 
56]. Also, walbB has been demonstrated to suppress filar-
ial worm loads and provide resistance to dengue virus 
transmission in Aedes polynesiensis [57].

While parasite and pathogen inhibitory effects have 
been reported in multiple Wolbachia insect systems, the 
mechanism of pathogen inhibition in Wolbachia infected 
insect hosts is not well understood [58–60]. Currently, 
there are two hypotheses proposed to understand Wol-
bachia induced pathogen inhibition. The first is that 
Wolbachia primes the host immune system, so when the 
pathogen enters the insect host, invasion is inhibited. 
Second, Wolbachia is hypothesized to be competing for 
metabolic components such as amino acids and choles-
terol with the host insect and the pathogen [61, 62]. For 
example, Wolbachia replication is known to be depend-
ent upon host cell cholesterol production and requires 
cholesterol-rich host membranes to form the vacuole 
surrounding each bacterium, which is hypothesized to 
lead to competition for cholesterol between Wolbachia 
and pathogens [61, 63]. To test the first hypothesis, we 
examined the expression of immune related genes in 
the IMD, Toll and JAk/STAT pathways in the W8-w cell 
line. Unfortunately, knowledge of immune pathways in 
C. sonorensis is limited, but several immune genes have 
been identified and characterized in a previous study 
[64]. Furthermore, the availability of the C. sonorensis 
annotated genome (GenBank: GCA_900258525) allowed 
for the identification of genes in Toll, JAK/STAT and 
IMD pathways [65]. The upregulation of Dorsal, Cactus, 
STAT, PIAS, Caspar, RELISH, Attacin, and an Attacin-
like anti-microbial peptides suggest that Wolbachia can 
affect the C. sonorensis immune system pathways in dif-
ferent cascades. Perhaps, this priming of the immune 
system could have an effect on orbivirus proliferation in 
its Culicoides host. Previous transcriptome studies have 
demonstrated 165 genes, including genes in the Toll 
and IMD pathways and AMPs that were differentially 
expressed between vector competent or refractory C. 
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sonorensis when challenged with a BTV infection [65]. 
Future studies could include the inoculation of W8-w and 
W3-w cell lines with the orbiviruses BTV, AHSV, SBV, 
and/or EHDV and determining whether a novel Wol-
bachia infection can induce virus inhibitory effect in C. 
sonorensis cells. Both the W3 and W8 cell lines have pre-
viously been shown to be susceptible to BTV and EHDV 
infection [38]. If pathogen viral inhibition is observed, 
additional gene families other than traditional gene path-
ways could also be investigated for their functional role in 
potential pathogen blocking [66].

Here we have only examined the effect of one Wol-
bachia infection type on C. sonorensis cells. Future stud-
ies could also include the transfection of W8 and W3 
cell lines with alternative Wolbachia infections such as 
wMel, which has also been demonstrated to provide 
virus inhibitory phenotypes in mosquitoes [46, 67]. It is 
also important to note that while the data presented sug-
gest an upregulation in the immune system and a poten-
tial pathogen blocking effect, there is the possibility that 
a Wolbachia and Culicoides host association facilitates 
a pathogen infection in Culicoides spp. Previous stud-
ies have demonstrated an increase in the ability of Culex 
tarsalis to transmit West Nile virus when infected with 
Wolbachia and an enhanced flavivirus infection rate in 
Ae. aegypti [68, 69].

The W8-w and W3-w cell lines will continue to be 
passaged and maintained, with the goal of adapting the 
walbB infection to C. sonorensis. Subsequently, the walbB 
Culicoides adapted infection can be extracted from the 
W8-w or W3-w cell line and used for future microin-
jection experiments with the goal of generating a walbB 
germ line infection in C. sonorensis adults. If a stable 
germ line maternally inherited Wolbachia infection can 
be attained in C. sonorensis adults, further work would be 
needed to ascertain whether novel Wolbachia infections 
have an effect on C. sonorensis fitness, any reproduc-
tive phenotypes such as CI associated with Wolbachia 
infections, or any orbiviruses inhibitory effects. Further 
investigation is also needed to develop microinjection 
protocols for introducing Wolbachia infections into C. 
sonorensis embryos. This future work would open up 
exciting possibilities to investigate whether Wolbachia-
based approaches could be used as an additional tool to 
control C. sonorensis and other Culicoides species and 
as an additional tool to limit transmission of veterinary 
important orbiviruses.

Conclusions
Here, we were able to establish a Wolbachia infection in 
C. sonorensis cells (W8 and W3 cell lines) and that the 
W8 Wolbachia infected cell line demonstrated an upreg-
ulation of the Toll, IMD, JACK/STAT pathways and the 

production of anti-microbial peptides. The results sug-
gest the potential utility of Wolbachia-based approaches 
for vector control strategies and to limit disease trans-
mission by C. sonorensis and other Culicoides species of 
veterinary importance. Further investigation is needed 
to introduce germline infections into C. sonorensis and 
examine for Wolbachia induced reproductive phenotypes 
and pathogen inhibitory effects.
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