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Abstract 

Background:  Triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. 
Rhodnius pallescens is a major vector of Chagas disease in Panama. Understanding the microbial ecology of disease 
vectors is important in the development of vector management strategies that target vector survival and fitness. In 
this study we examined the whole-body microbial composition of R. pallescens from three locations in Panama.

Methods:  We collected 89 R. pallescens specimens using Noireau traps in Attalea butyracea palms. We then extracted 
total DNA from whole-bodies of specimens and amplified bacterial microbiota using 16S rRNA metabarcoding PCR. 
The 16S libraries were sequenced on an Illumina MiSeq and analyzed using QIIME2 software.

Results:  We found Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes to be the most abundant bacterial 
phyla across all samples. Geographical location showed the largest difference in microbial composition with northern 
Veraguas Province having the most diversity and Panama Oeste Province localities being most similar to each other. 
Wolbachia was detected in high abundance (48–72%) at Panama Oeste area localities with a complete absence of 
detection in Veraguas Province. No significant differences in microbial composition were detected between tri-
atomine age class, primary blood meal source, or T. cruzi infection status.

Conclusions:  We found biogeographical regions differ in microbial composition among R. pallescens populations in 
Panama. While overall the microbiota has bacterial taxa consistent with previous studies in triatomine microbial ecol-
ogy, locality differences are an important observation for future studies. Geographical heterogeneity in microbiomes 
of vectors is an important consideration for future developments that leverage microbiomes for disease control.

Keywords:  Triatominae, Triatomine, 16S rRNA, Microbiome, Metabarcoding, Wolbachia, Attalea palms, Trypanosoma, 
Panama, Vector-borne disease
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Background
Insect microbiota are composed of a wide variety of 
microbial species [1, 2] that serve as commensals, 
pathogens, or have mutualistic benefits that impact the 
reproduction, nutrition, and immune systems of the 
insect host [1–4]. The symbiotic relationship between 
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an insect disease vector and its microbiota can have an 
important influence on the competence and transmis-
sion potential of human diseases [4, 5], increasing or 
decreasing pathogen transmission from vector to host 
[6], including in blood-feeding species [3, 7]. Insect 
microbiota research can lead to improved methods 
of vector control [8–13], with substantial research in 
some mosquito species, but limited research in many 
other vector species, often conflicting results, leaves 
many questions unanswered [6]. Vector life stage, dis-
tribution, species, methods/sampling strategies and 
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environment (e.g. habitat type or geographical region) 
may influence vector microbiota [6, 14–25].

In this study, we evaluated patterns of whole-body 
microbiota of a Chagas disease vector. Chagas disease, 
caused by the kinetoplastid protozoan parasite Trypa-
nosoma cruzi, is transmitted between a wide range of 
potential mammalian hosts and humans by hematopha-
gous (blood-feeding) triatomine insect vectors. Despite 
widespread control programmes, Chagas disease 
remains a significant health threat to millions of inhab-
itants in Latin America, particularly those that live in 
poverty [26]. The idea of using bacterial symbionts of 
triatomine bugs to control Chagas disease has long 
been proposed [27]. Recent studies describe micro-
bial community composition within triatomines [23, 
28–33], including R. pallescens from Colombia [22] and 
Panama [34], and a sister species, R. prolixus [35]. Stud-
ies thus far describe triatomine microbiota as having 
low complexity in terms of diversity and species-spe-
cific patterns [23, 29, 30], yet the microbiota for many 
taxa remain to be studied.

Infection of triatomines with trypanosomes has been 
associated with reduction in gut microbial diversity [28, 
35], and blood meal identity may influence composi-
tion of the predominant bacterial taxa [30, 31]. However, 
other important comparisons among triatomines are 
lacking, such as differences between location and habitat 
type. Microbial composition variation between different 
geographical locations has been observed in ticks [15, 18, 
20, 24, 25] and with mixed observations in mosquitoes 
[16, 36]. Habitat has also been shown to be a main driver 
of microbial species composition in mosquitoes [37, 38].

There are more than 150 species of triatomines, with 
different distributions, habitat requirements and life 
histories that can impact microbiota, or microbiota that 
can affect vectorial capacity. This complexity requires 
extensive research into different triatomine microbi-
omes. Currently, we still lack basic microbial community 
composition descriptions for many triatomine species 
and these large gaps in our knowledge make informed 
research for vector biocontrol difficult. Therefore, 
advancing research in triatomine microbiota is crucial for 
gaining a better understanding of T. cruzi infection, tri-
atomine vector capacity, and developmental biology.

Rhodnius pallescens is the main vector Trypanosoma 
cruzi and T. rangeli in Panama [39] where they are widely 
distributed throughout Panama and into the neighboring 
countries of Costa Rica and Colombia. Rhodnius palle-
scens is commonly found and associated with Attalea 
butyracea palms [40, 41] that are common and widely 
distributed across many different habitats in Panama [40, 
41]. The sylvatic behavior has complicated control efforts 
[42]. New endemic regions are still being described 

[43–45] and a darker chromatic variation of R. pallescens 
associated with distinct genetic groups of T. cruzi and T. 
rangeli has also been found recently in Santa Fe District, 
Panama [44].

Here, we describe the whole-body bacterial micro-
biota of wild-caught R. pallescens from three separate 
geographical locations in Panama. We used the entire 
triatomine body to encompass all potential microbial 
taxa relevant to R. pallescens that could affect their fit-
ness and survival as a benchmark for future studies of 
localized anatomy microbiota. We hypothesize that both 
habitat type and geographical location will be associ-
ated with differences in whole-body microbiota compo-
sition similar to previous findings in other vectors [15, 
16, 18, 20, 24, 25, 37, 38]. We further hypothesize that 
complex environments, such as forest patches, will be 
associated with a more diverse microbiota composition 
in insects in more homogenous environments (i.e. cattle 
pastures), as previous studies in insects show that envi-
ronmental diversity leads to increased microbial diversity 
[46–48]. We used Illumina 16S rRNA amplicon sequenc-
ing to characterize and evaluate the bacterial microbiota 
of R. pallescens between different locations and habi-
tats, comparing infection status, age class, and primary 
blood-meal source to evaluate a range of variables that 
may be associated with whole-body bacterial community 
composition.

Methods
Sample collection and DNA extraction
All R. pallescens evaluated specimens (n = 89) were col-
lected in Panama, Central America using Noireau traps 
[49] in Attalea butyracea palms (the main habitat of this 
species) and placed directly in 95% molecular grade etha-
nol before use. We sampled from a total of 8 palms, in 
three habitats (pasture, peridomestic and peridomestic-
forest), from three geographic locations in lowland moist 
tropical forest (Las Pavas and Trinidad de las Minas) and 
moist tropical forest (Santa Fe and Veraguas) (Fig.  1). 
We consider peridomestic to be home yards or areas 
within 100 m of a dwelling and peridomestic-forest to 
be patches of regenerated forest within a peridomestic 
landscape matrix. Samples from Las Pavas, La Chor-
rera District (9.104167° N, 79.885833° W) (n = 27 from 
two habitats) and Trinidad de las Minas, Capira District 
(8.775556° N, 79.995833° W) (n = 32, from one habitat) 
were from a previous study examining blood meals [50]. 
We further collected 30 samples from four sites compris-
ing three habitats located in Santa Fe District, Veraguas 
(8.509232° N, 81.077800° W) from 8–11 July 2017. The 
Santa Fe region has recently been described as a new 
endemic focus for Chagas disease in Panama, where a 
dark morph of R. pallescens predominates [43, 44]. All 
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specimens were nymphs, primarily N3 and below (92%, 
95% CI: 84.4–96.39%), with the exception of one male 
from Trinidad de las Minas (Additional file 1: Table S1). 
DNA was extracted from whole specimens following 
Kieran et  al. [50]. Briefly, samples were macerated and 
digested overnight in digest buffer with proteinase K 
and extracted with phenol-chloroform-isoamyl alcohol. 
Extractions were reconstituted in TLE buffer (10 mM 
Tris, pH 8; 0.1 mM EDTA), and impurities were removed 
with Sera-Mag SpeedBeads™ (Thermo Fisher Scientific, 
Waltham, MA, USA; [51]) with a final reconstitution in 
30 µl TLE.

DNA amplification and sequencing
We amplified bacterial 16S rRNA DNA using the S-D-
Bact-0341-b-S-17 (5′-CCT ACG GGN GGC WGC 
AG-3′) forward and S-D-Bact-0785-a-A-21 (5′-GAC 
TAC HVG GGT ATC TAA TCC-3′) reverse primer pair 
[52] to which we added modifications following previous 
studies [50, 53, 54]. We added Illumina TruSeq sequences 

to the 5′-end of the forward (Read 1) and reverse (Read 
2) primer creating fusion primers. We synthesized 8 for-
ward and 12 reverse fusion primers, each with a unique 
variable length (5–8 bp) index sequence between the 16S 
and TruSeq sequences. We then performed two rounds 
of PCR. For the first-round we performed replicate PCRs 
using 12.5 μl reactions of KAPA HiFi HotStart Kits (Kapa 
Biosystems, Wilmington, MA, USA) consisting of 2.5 μl 
of 5× buffer, 0.375 μl of 10 mM dNTPs, 0.25 μl hot start 
Taq, 5.4 μl molecular grade water, 1 μl of 5 μM forward 
primer, 1 μl of 5 μM reverse primer, and 2 μl of DNA. The 
ranges of DNA sample concentrations were from 10 ng/
μl to 60 ng/μl. Each DNA sample had a unique primer-
index combination with the following thermocycler con-
ditions: 98 °C for 3 min, followed by 30 cycles at 95 °C for 
30 s, 63 °C for 1 min, 72 °C for 1 min and a final extension 
at 72 °C for 5 min. Amplification success was verified on a 
1.5% agarose gel.

Amplicons were pooled in equal concentrations and 
cleaned using a 1:1 ratio of SPRI-beads and reconstituted 

Fig. 1  Map of Panama showing the locations of the three collection sites
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in 25 μl TLE. The second-round PCR primers consisted 
of Illumina TruSeqHT compatible 8 nt indexed prim-
ers [55]. We used 25 μl reaction of KAPA HiFi HotStart 
Kits using 5  μl of 5× Buffer, 0.75  μl of 10 mM dNTPs, 
0.5  μl HotStart, 3.75  μl molecular grade water, 2.5  μl of 
5  μM forward primer, 2.5  μl 5  μM reverse primer, and 
10  μl of 16S amplicon pool. We performed two repli-
cate PCRs with the following thermocycler conditions: 
98  °C for 2 min, followed by 10 cycles at 98  °C for 30 s, 
60 °C for 30 s, 72 °C for 30 s and a final extension at 72 °C 
for 5 min. Library product was cleaned with Sera-Mag 
SpeedBeads™ (1:1 ratio) and pooled with other uniquely 
indexed samples prior to sequencing.

For blood-meal source data, we used previous data 
from Kieran et al. [50] and for newly collected samples, 
we amplified 12S rRNA gene following Kieran et al. [50]. 
All libraries were sent to the Georgia Genomics and Bio-
informatics Core (http://dna.uga.edu) for sequencing on 
an Illumina MiSeq using a v3 PE300 kit (Illumina, San 
Diego, CA, USA). We also screened for the presence of 
T. cruzi and T. rangeli amplifying telomeric kinetoplastid 
DNA with Tc189 and Tr primers [56]. Samples were also 
verified for T. cruzi using 121/122 primers targeting the 
kinetoplastid minicircle [57]. Amplification success was 
verified on a 1.5% agarose gel.

Data processing and analysis
We demultiplexed the amplicon indices using Mr. 
Demuxy 1.2.0 (https​://pypi.org/proje​ct/Mr_Demux​y/) 
and resulting fastq files were imported into Geneious 
10.0.1 [58]; (https​://www.genei​ous.com) where we 
trimmed primers, paired and merged the reads using 
FLASH [59]. Subsequent data were exported as fastq 
files for importation into Qiime2 [60]. The quality of 
the sequences was checked and filtered using QIIME2 
v. 2018.8 plugin DADA2 [61] and chimeric sequences 
were removed. The remaining forward sequences were 
truncated to a final length of 292 bp and the reverse 
sequences were truncated to a final length of 240 bp. 
Amplicon sequence variants (ASV) were analyzed using 
the q2-diversity Qiime2 plugin to calculate multiple 
alpha diversity metrics, including Shannonʼs index H’, 
Simpsonʼs index Ds, Chao1, Faith’s phylogenetic diversity, 
and observed-ASV’s.

The Qiime2 plugin q2-phylogeny was used to complete 
a multiple sequence alignment to reconstruct rooted 
and unrooted phylogenetic trees from the filtered align-
ment based on maximum-likelihood approximation with 
FastTree 2 [62]. Alpha and beta diversity metrics were 
assigned using the q2-diversity Qiime2 plugin. An alpha 
rarefaction was used to evaluate sampling depth, and the 
data was rarefied at 1000 sequences per sample, removing 
two samples and retaining 87 samples for final analyses.

The Qiime2 plugin q2-feature-classifier was used to 
align the sequences against the Greengenes 13.8 database 
[63]. OTUs were identified from phyla down to the genus 
level, we removed archaea, chloroplasts, mitochondria, 
not available (NAs), and uncharacterized taxa at the 
kingdom level.

Alpha diversity (species diversity) was calculated using 
Shannonʼs (species richness), Simpson’s (evenness or rel-
ative abundance), and Chao1 (estimate of diversity from 
abundance) diversity metrics. To compare alpha diversi-
ties from individuals across location, habitat type, and 
infection status, a one‐way analysis of variance (ANOVA) 
and post‐hoc Tukeyʼs honest significant difference (HSD) 
tests for multiple comparisons were performed to evalu-
ate differences in taxonomic abundance and alpha diver-
sities. A P-value less than 0.05 was considered statistically 
significant.

Beta diversity (compositional variation) was calculated 
for the whole-body microbiota comparison between tri-
atomines across location, habitat type, and infection sta-
tus using Bray-Curtis dissimilarity. Bray-Curtis is based 
on shared OTU counts between individuals. Finally, we 
used non-metric multidimensional scaling (nMDS) [64] 
to visualize differences between the microbial communi-
ties, and a permutational MANOVA for hypothesis test-
ing [65]. All diversity analyses and visualizations were 
conducted using qiime2 artifact outputs in R (v. 3.5.1) 
and with the packages phyloseq [66], vegan [67], dplyr 
[68], ggplot2 [69] and metacoder [70]. To further assess 
our findings of a location effect we removed older age 
classes (N4, N5, Adult) and repeated the analysis (n = 80).

Results
16S rRNA sequences and classification of entire microbiota 
community
We obtained a total of 4,995,733 16S rRNA V3–V4 region 
sequences from 101 samples, including the negative con-
trols of molecular grade water and positive controls of E. 
coli. After quality filtering and the exclusion of 14 sam-
ples due to low read numbers, the number of sequences 
obtained per sample ranged from 1000 to 34,792 reads, 
with a mean frequency of 9811.63. The total number of 
OTUs within the 87 final samples was 4033, with the top 
4 phyla consisting of Proteobacteria (60.67%), Actino-
bacteria (16.93%), Bacteroidetes (9.55%) and Firmicutes 
(4.11%) out of the total phyla present in the dataset. Rho-
dnius pallescens, in Las Pavas and Trinidad de las Minas 
respectively, is primarily composed of Proteobacteria 
(71.63% and 76.11%, respectively), Actinobacteria (6.13% 
and 15.88%, respectively), and Bacteroidetes (13.98% and 
2.66%, respectively) (Fig.  2, Additional file  2: Table  S2, 
Additional file  3: Figure S1). This contrasts with speci-
mens from northern Veraguas with the most abundant 
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phylum shifting from Proteobacteria (26.43%) to Act-
inobacteria (27.56%) and introducing more Firmicutes 
(11.48%). At the family-level (Fig.  3, Additional file  3: 
Figure S1), the top 3 taxa overall were Anaplasmata-
ceae (45.76%), Pseudonocardiaceae (6.04%), Moraxel-
laceae (2.77%), although these relative proportions differ 
by location (Additional file 4: Table S3, Additional file 3: 
Figure S1). Most notably, as seen in Fig. 3, Anaplasmata-
ceae was the dominant family throughout samples from 
Las Pavas (48.30%) and Trinidad de las Minas (72.51%) 
(Fig. 4, Additional file 5: Table S4, Additional file 3: Figure 
S1) but is not present within samples collected in north-
ern Veraguas. The high abundance of Anaplasmataceae 
was due to a single genus, Wolbachia spp., comprising 
greater than 70% and 42% of the composition in more 
than half the specimens from Trinidad de las Minas 
and Las Pavas, respectively (Additional file 6: Table S5). 
No differences in microbial composition were detected 
between triatomine age class (Shannon, F(5, 85) = 1.07, 
P > 0.09) or primary blood-meal source (Shannon, F(9, 

77) = 1.07, P > 0.38).

Infection rates
Trypanosma cruzi and T. rangeli were detected in sam-
pled vectors at all locations (Additional file 1: Table S1). 
Rates of positive T. cruzi infection were 7.41% (2/27, 
95% CI: 0.96–24.47%) at Las Pavas (n palms = 2), 75% 
(24/32, 95% CI: 57.67–86.97%) at Trinidad de las Minas 
(n palms = 2), and 46.67% (14/30, 95% CI: 30.23–63.46%) 
at Santa Fe District, Veraguas (n palms = 4). When exam-
ining T. cruzi infection by habitat we find rates of 12.5% 
(1/8, 95% CI: 0.11–49.2%) in Las Pavas pasture compared 
to 50% (8/16, 95% CI: 28–72%) in Veraguas pasture. In 
peridomestic areas, rates varied from 5.26% (1/19, 95% 
CI: < 0.01–26.48%) in Las Pavas and 42.85% (3/7, 95% CI: 
15.75–75.02%) in Veraguas. Peridomestic-forest habitat 
in Veraguas had an infection rate of 42.85% (3/7, 95% CI: 
15.75–75.02%).

For T. rangeli, positive detection rates were 66.67% 
(18/27, 95% CI: 47.71–81.47%) in Las Pavas, 78.13% 
(25/32, 95% CI: 60.96–89.27%) in Trinidad de las Minas, 
and 30% (9/30, 95% CI: 16.52–48.02) in Veraguas. There 
were low rates of T. rangeli infection in both Las Pavas 
(0%) and Veraguas (6.25%, 1/16, 95% CI: < 0.01–30.31%) 
pastures, while peridomestic areas were high (94.74%, 
18/19, 95% CI: 73.52– > 99.99%) to moderate (28.57%, 
2/7, 95% CI: 7.56–64.76%) at each respective location. 
Veraguas peridomestic-forest infection rate was 85.7% 
(6/7, 95% CI: 46.65–99.47).

There was an overall rate of coinfections of both tryp-
anosomes of 31.46% (28/89, 95% CI: 22.72–41.73%). 
Coinfections were less abundant at the lower infection 

sites of Las Pavas (3.7%, 95% CI: < 0.01–19.8%) and Ver-
aguas (13.33%, 95% CI: 4.7–30.3%) compared to Trini-
dad de las Minas which had a higher coinfection rate 
(71.88%, 95% CI: 54.46–84.6%). At the habitat level, 
coinfection rates varied from non-existent (0%) in pas-
tures, to low (5.26%, 1/19, 95% CI: < 0.01–26.48%) and 
moderate (28.57%, 2/7, 95% CI: 7.56–64.76) in perido-
mestic areas for Las Pavas and Veraguas, respectively. 
Coinfection rate for peridomestic-forest was the same 
as peridomestic areas in Veraguas.

Location, habitat type, and infection status on microbial 
composition
Alpha diversity
Alpha richness between locations (Additional file  7: 
Figure S2) was significantly different using three differ-
ent diversity metrics (ANOVA, F(2, 85) = 12.16, P < 0.001; 
Shannon’s index H’ ANOVA, F(2, 85) = 11.7, P < 0.001; 
Chao1 ANOVA, F(2, 85) = 12.04, P < 0.001) even when 
older aged individuals were removed (ANOVA, F(2, 

77) = 10.89, P < 0.001; Shannon’s index H’ ANOVA, F(2, 

77) = 11.38, P < 0.001; Chao1 ANOVA, F(2, 77) = 10.78, 
P < 0.001). Individuals from Veraguas had significantly 
greater alpha richness when compared to individuals 
from Trinidad de las Minas (Chao1, Shannon, Tuk-
eyHSD, P < 0.0001; Simpson, Tukey HSD P = 0.008) 
and Las Pavas (TukeyHSD, P < 0.0004, Chao1, Tuk-
eyHSD, P = 0.0004; Shannon, TukeyHSD, P = 0.0096). 
These results remained the same for all metrics when 
older age classes were removed (P < 0.001 for Trinidad 
de las Minas; P < 0.0093 for Las Pavas). Alpha richness 
across habitat type (Additional file 8: Figure S3) showed 
significance for one metric (Shannon, TukeyHSD, 
F(2, 85) = 4.72, P = 0.011; older classes removed F(2, 

77) = 2.24, P = 0.006) between peridomestic and peri-
domestic-forest types (P = 0.009; older classes removed 
P = 0.004). This trend holds when examining habitat 
across the Veraguas site (P = 0.001). Trypanosoma cruzi 
infection status (Additional file 9: Figure S4), however, 
was not significantly different (Simpson, F(2, 78) = 3.54, 
P > 0.063).

Beta diversity
All PERMANOVA results are reported using Bray-Curtis 
dissimilarity indices. The community differences (beta 
diversity) of triatomine microbiota showed significant 
differences at pasture sites across Trinidad de las Minas 
and Veraguas (PERMANOVA, F(1, 20) = 5.61, P = 0.001; 
Additional file  10: Figure S5) and at peridomestic sites 
across all three locations (PERMANOVA, F(2, 61) = 12.09, 
P = 0.001; Additional file 11: Figure S6). Community dif-
ferences across the three habitat types also showed some 
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significant differences within Veraguas (PERMANOVA, 
F(2, 25) = 1.41, P = 0.001; Additional file 12: Figure S7) and 
Las Pavas (PERMANOVA, F(1, 25) = 3.96, P = 0.001; Addi-
tional file  13: Figure S8). There was no observed differ-
ence between pasture habitat composition between sites 
(PERMANOVA, F(1, 22) = 1.88, P = 0.818). When examin-
ing T. cruzi infection status, the only significant differ-
ences in microbial composition between T. cruzi-positive 
and negative samples were observed at Las Pavas (PER-
MANOVA, F(2, 24) = 1.31, P = 0.029; Additional file  14: 
Figure S9); however, positive infection was extremely 
low (2/27). Microbial composition and T. cruzi infection 
status was also significant between peridomestic habi-
tats among all locations (PERMANOVA, F(1, 56) = 2.21, 
P = 0.01, Additional file  15: Figure S10). Sites at Trini-
dad de las Minas (PERMANOVA, F(2, 29) = 1.59, P = 0.65; 
Additional file  16: Figure S11) and Veraguas (PER-
MANOVA, F(2, 25) = 1.29, P = 0.76; Additional file  17: 
Figure S12) did not show significant compositional differ-
ence between infected and non-infected samples. Results 
with the removal of older age classes were not substan-
tially different. The lack of effect of older nymphal stages 
is further supported by multivariate PCA in Additional 
file 18: Figure S13.

Discussion
Here, we characterized the bacterial microbiota of 87 
wild individuals of the Chagas disease vector Rhod-
nius pallescens from three populations in Panama. We 
explored comparisons in composition between loca-
tion, microhabitat, nymphal stage, T. cruzi infection, and 
blood-meal status. Overall, the microbiota of R. palle-
scens exhibited relatively low complexity in its bacterial 
composition which is consistent with other triatomine 
studies [23, 29, 30]. Proteobacteria has also been found to 
be the most abundant phylum in other vector species [1, 
71–75] including the triatomines R. neglectus, R. prolixus, 
Triatoma vitticeps, T. infestans, T. brasiliensis, T. pseu-
domaculata, Dipetalogaster maximus and Panstrongylus 
megistus [29, 30, 73], while a predominance of Actino-
bacteria has been found previously in R. pallescens [22], 
both consistent with our findings.

Common bacterial genera found in other triatomines 
include Burkholderia, Dietzia, Gordonia, Williamsia [22, 
30, 73], Actinomycetospora, Arsenophonus, Corynebac-
terium, Rhodococcus, Staphylococcus [23, 30, 31], and 
Enterococcus, Enterobacteriaceae, Bacillus [23, 33]. Of 
these only Actinomycetospora was one of the top 20 
genera found across all studied sites (Additional file  5: 
Table S4). Enterobacteriaceae and Bacillus were found at 
all sites, but at much lower abundance (0.34–6.03% and 
0.21–0.76%, respectively) than found by Waltmann et al. 

(36.7% and 2%, respectively) [33]; however, the present 
study differs in that we analyzed wild and not labora-
tory-reared samples. Dietzia and Gordonia were each in 
the top 20 taxa for Las Pavas and Trinidad de las Minas 
(Additional file 5: Table S4). Arsenophonus was detected 
with a very low abundance in only a single specimen 
from northern Veraguas Province. All other taxa were 
found across all sites, but at lower abundance (Additional 
file 19: Table S6) than in other studies.

High levels of Proteobacteria observed in specimens 
from Panama Oeste Province localities are due to the 
very high levels of Wolbachia sp. Specimens from north-
ern Veraguas Province, interestingly, did not have any 
Wolbachia present. It has been estimated that Wolbachia 
infects 52% of all aquatic insect species [76] and can 
infect a high proportion of the number of individuals in a 
species [77]. However, while many arthropod species may 
be infected with Wolbachia, a majority of the individu-
als within a species may not be. In a comparative study, 
Sazama et al. [76] found that less than half of the individ-
uals were infected in most (69%) Wolbachia-infected spe-
cies. Wolbachia has been found previously in Rhodnius 
sp. [29, 34] and is common in hematophagous insects 
[78], but has not been found in other triatomines [29, 31, 
73]. In triatomines [29] and sandflies [74, 79, 80], the role 
of Wolbachia remains unknown. In mosquitoes, Wol-
bachia can affect reproduction and insecticide resistance 
among others [7], thus creating opportunities for vector 
biocontrol. However, without further knowledge of the 
role of Wolbachia in triatomines, identifying microbes 
that can serve as effective control agents for triatomines 
requires further research. To this end, we need more 
characterized microbiomes under multiple environmen-
tal conditions, and functional analysis of microbial taxa.

In our study, geographical location was associated 
with differences between microbial communities of R. 
pallescens. This observation is most evident between 
the two most disparate geographical locations (north-
ern Veraguas vs Panama Oeste localities). This observa-
tion may be the result of quite different environments 
between these locations. Veraguas Province is located in 
the highlands of the western isthmus of Panama where 
the climate is cooler (mean temperature of 21  °C) and 
more humid with mountainous topography. In the two 
Panama Oeste area locations (Las Pavas and Trinidad de 
las Minas) the topography is flatter with warmer tem-
peratures (mean 27 °C). Of particular interest is that the 
evaluated specimens from Santa Fe District in northern 
Veraguas correspond with a darker chromatic variation 
of R. pallescens infected by specific genetic groups of T. 
rangeli and T. cruzi [44]. Although the genetic charac-
teristics of this population have not been studied, the 
reported phenotypic differences and the differences 
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found in their microbial composition could be explained 
by the presence of this dark chromatic variant in this geo-
graphical region. However, it is not known if this dark 
variant represents a separate geographical population, a 
new subspecies, or a new distinct species of R. pallescens.

Geographical differences in microbiota have been 
observed in ticks [15, 18, 20, 24, 25], but not in mos-
quitoes where species-specific microbiota is thought to 
be stable [36]. One study in triatomines did not observe 
any difference in the microbiota between three distant 
locations in the southern USA for Triatoma protracta 
[23], which is a trend that has been confirmed [81] and 
opposed [82] in other hemipterans. As in other insect 
species, taxonomic clade-wide stability of microbiota 
composition with regard to one environmental variable 
or another does not appear to be consistent. Generaliza-
tions about geographical variation in insect microbiomes 
will have to remain at the species level for now. However, 
this is still very much an open question in triatomine 
microbiota research.

Contrary to our expectations, there was no significant 
difference in bacterial community composition between 
T. cruzi-infected and uninfected individuals. This con-
trasts with previous studies that have found significant 
differences between microbiomes of T. cruzi-positive 
and negative individuals [23, 30]. However, our small 
sample size, limited number of palms sampled (n = 8) 
with skewed infection ratios, and a skewed abundance 
of younger stage nymphs (N1–N3), may confound true 
observable differences. Furthermore, detectable lev-
els of differences may be localized to a portion of the 
triatomine gut where T. cruzi develops; this deserves 
further study and experimental controls. A similar situ-
ation may occur during infection with T. rangeli, which 
can colonize not only the insect intestine but also the 
hemocoel and salivary glands [83]. We also did not find 
any significant difference in the microbiota as a result 
of the dominant blood-meal source found, as previously 
observed [31]. This could be due to the complexity of 
variables that influence the microbiota. While blood-
meal source potentially has an effect on the bacterial 
composition in the gut, these samples often have mixed 
blood-meal sources with differing abundance (Addi-
tional file  1: Table  S1; [50]), making discrete differ-
ences difficult to observe. Habitat associated microbial 
composition was found to be different between peri-
domestic and peridomestic-forest; however, this obser-
vation represents a few peridomestic-forest samples 
from northern Veraguas only and likely is an artifact 
of location difference. Similarly, microbial composition 
between age classes showed no differences, but because 
this dataset is highly skewed toward a couple of nym-
phal classes, distinctions are impossible to detect. This 

study examined the whole-body microbiota, which may 
obscure anatomically localized differences observed in 
other studies and, on the whole, result in a more com-
prehensive measure of microbial composition where 
local environment has a bigger impact.

Conclusions
In conclusion, we examined the whole-body microbiota 
of Rhodnius pallescens, which can serve as a benchmark 
for future comparative studies examining the microbiota 
of specific organs or anatomical regions. Interestingly, 
the largest difference in R. pallescens microbial commu-
nity composition was between geographical locations. 
While we did not find any definitive differences in rela-
tion to other variables (e.g. habitat type, age class, blood-
meal source, infection status) these remain important 
aspects of vector biology that require further study. The 
effects of geographical environmental diversity can be 
minimized through the use of more comparative studies 
using laboratory-reared insects and controlled studies to 
tease apart more complex variables such as blood-meal 
sources and infection status.
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