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Abstract 

Background:  Visceral leishmaniasis (VL) is a neglected disease that is spread to humans by the bites of infected 
female phlebotomine sand flies. Although this vector-borne disease has been eliminated in most parts of China, it still 
poses a significant public health burden in the Xinjiang Uygur Autonomous Region. Understanding of the spatial epi-
demiology of the disease remains vague in the local community. In the present study, we investigated the spatiotem-
poral distribution of VL in the region in order to assess the potential threat of the disease.

Methods:  Based on comprehensive infection records, the spatiotemporal patterns of new cases of VL in the region 
between 2005 and 2015 were analysed. By combining maps of environmental and socioeconomic correlates, the 
boosted regression tree (BRT) model was adopted to identify the environmental niche of VL.

Results:  The fitted BRT models were used to map potential infection risk zones of VL in the Xinjiang Uygur Autono-
mous Region, revealing that the predicted high infection risk zones were mainly concentrated in central and northern 
Kashgar Prefecture, south of Atushi City bordering Kashgar Prefecture and regions of the northern Bayingolin Mongol 
Autonomous Prefecture. The final result revealed that approximately 16.64 million people inhabited the predicted 
potential infection risk areas in the region.

Conclusions:  Our results provide a better understanding of the potential endemic foci of VL in the Xinjiang Uygur 
Autonomous Region with a 1 km spatial resolution, thereby enhancing our capacity to target the potential risk areas, 
to develop disease control strategies and to allocate medical supplies.
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Background
Visceral leishmaniasis (VL), also known as kala-azar, 
is a vector-borne disease that has a broad distribution 
throughout many temperate, subtropical and tropical 
areas of the world [1, 2]. The disease is most prevalent 

in the Mediterranean basin, Brazil, the northern part of 
the Indian subcontinent and the northeastern countries 
of Africa and is associated with approximately 0.5 mil-
lion new cases and 3.3 million disability-adjusted life 
years, resulting in an estimated mortality of 200,000–
400,000 people per year worldwide [3, 4]. VL is caused 
by the trypanosomatid protozoan parasite Leishma-
nia, which is spread to humans by the bites of infected 
female phlebotomine sand flies [5, 6]. When the dis-
ease occurs during pregnancy and without appropriate 
treatment, it may lead to high-grade anaemia, spon-
taneous loss and congenital leishmaniasis because of 
transplacental transfer of parasites [7]. In terms of 
mortality and morbidity, the fatal parasitic disease was 
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ranked ninth in a global analysis of infectious diseases 
by the World Health Organization [3].

In China, people have been struggling against VL 
for at least 120 years, dating back to the late period of 
the Qing Dynasty [8]. In 1904, the first case of VL was 
formally reported, and additional cases were reported 
during the next decade [8, 9]. Then, the endemic dis-
ease, along with other infectious and parasitic diseases, 
was rampant in the vast rural areas north of the Yang-
tze River, mainly distributed in Anhui, Jiangsu, Henan, 
Shaanxi, Gansu, Shandong, Hebei and Liaoning prov-
inces during the subsequent period from 1920 to 1940 
[10, 11]. In the 1940s, the problem became more seri-
ous due to the continuation of the Second World War 
and the lack of preventive measures [1, 12]. In 1951, a 
detailed survey conducted by the government showed 
that VL had spread far more widely than before in more 
than 660 counties/cities of 16 provinces; it was associ-
ated with at least 530,000 cases, and the incidence rate 
in each county ranged from 10/100,000 to 500/100,000 
[12, 13]. At that time, a national comprehensive con-
trol programme was designed and implemented strin-
gently by the government of the People’s Republic of 
China at all administrative levels to eliminate VL from 
most areas of endemicity, resulting in a steady decline 
in the number of reported cases during the subsequent 
decades [10, 14–16]. Since the late 1980s, national 
programmes for developing western and northwest-
ern China were implemented, which provided suitable 
habitats for the transmission of VL and caused a resur-
gence of the disease in these regions [17]. For instance, 
there were 2629 new cases officially reported in the 
1990s, and approximately 38.8% of them occurred in 
the Xinjiang Uygur Autonomous Region.

The Xinjiang Uygur Autonomous Region is one of the 
VL endemic foci in China due to the unique geographi-
cal and ecological environment [18]. Since 2000, nearly 
100 new cases have been reported each year in the 
region, with an increasing trend year by year [1], which 
revealed that the health burden of VL was underesti-
mated (Fig.  1). Therefore, the objectives of this study 
were to analyse the spatiotemporal dynamic patterns 
of VL cases in Xinjiang from 2005 to 2015, to identify 
the environmental niche of VL, to map the potential 
zones of VL infection risk at high spatial resolution (1 
km) and to provide novel insights into the health bur-
den imposed by VL in the Xinjiang Uygur Autonomous 
Region.

Methods
A boosted regression tree (BRT) modelling technology 
that has been useful for analysing other vector-borne 
diseases such as dengue [19] and yellow fever [20] was 

adopted to produce maps of potential VL infection risk 
in the Xinjiang Uygur Autonomous Region. Compared 
with other machine learning models (i.e. support vec-
tor machines and backward propagation neural net-
works), the BRT model has a better explanatory power 
and ability to handle complex non-linear relationships 
with given environmental and socioeconomic covariates 
[21, 22]. This modelling technology required three key 
information elements: (i) a suite of gridded layers on 
environmental and socioeconomic correlates of VL; (ii) 
a comprehensive dataset of VL occurrence records with 
detailed address information; and (iii) pseudo-absence 
records. A detailed description of the BRT model can be 
found elsewhere [23, 24]. In the present study, all data 
were transformed into the same geographical coordi-
nate system (WGS-84) and the same projected coordi-
nate system (Albers Conical Equal Area) and unified to 
a raster with a 1 × 1 km spatial resolution. In the pro-
cess of data preprocessing and output, Python 2.7.0 
(https​://www.pytho​n.org/) combined with the Geo-
spatial Data Abstraction Library (GDAL) 2.1.0 (http://
www.gdal.org/) and Proj4 5.0.0 (https​://proj4​.org/) were 
employed.

Environmental and socioeconomic correlates
In China, VL is known to have anthroponotic and 
zoonotic transmission cycles, which differ in their trans-
mission characteristics: the former is transmitted from 
humans to vectors to humans, and the latter is trans-
mitted from animals to vectors to humans [2]. For both 
zoonotic VL and anthroponotic VL, phlebotomine sand 
flies as the vector play an important role in the spread of 
the disease. The distribution of the vector is determined 
by various key environmental and socioeconomic cor-
relates; thus, the spatiotemporal patterns of VL are con-
sidered in relation to these covariates. In the present 
study, several related covariates were adopted to map the 
potential transmission risk zones of VL in the Xinjiang 
Uygur Autonomous Region. Detailed information on the 
related covariates is listed in Table 1.

Ecological factors
Vegetation plays an important role in sand fly habitat 
and survival by providing the necessary sugar resource 
and maintaining the necessary moisture profile for both 
immature and adult sand flies [25, 26]. Vegetation can-
opy cover could reduce evaporation, decrease sub-can-
opy wind speed and protect certain areas from direct 
sunlight, providing a comfortable habitat for the sur-
vival of the dipterans [19]. In addition, vegetation is an 
important food for many mammals, serving as a plat-
form for sand flies to feed on passing mammals [27]. In 
the present study, we adopted the NDVI as a potential 
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indicator of vegetation canopy cover at a given loca-
tion. From the GIMMS group (https​://ecoca​st.arc.nasa.
gov/), the advanced very high-resolution radiometer 
(AVHRR) NDVI dataset spanning from 2005 to 2015 
was obtained. Based on the AVHRR NDVI dataset, we 
used the maximum value composition technique and 

the mean method to extract information about the 
average value for each gridded cell.

Previous studies have also illustrated that there is a link 
between VL and land cover [3]. For instance, the infec-
tion rate of VL is often highest among people living at 
the edge of natural foci, i.e. forests and deserts. The land 

Fig. 1  The location of the Xinjiang Uygur Autonomous Region in China. The administrative boundary dataset was downloaded freely from 
Resource and Environment Data Cloud Platform (REDCP) (http://www.resdc​.cn). The figure was generated specifically for this research using 
ArcGIS10.2

Table 1  Environmental and socioeconomic correlates

Factor Parameter Data source

Ecological Normalized difference vegetation index (NDVI) Global Inventory Modelling and Mapping Studies (GIMMS) group

Land cover European Space Agency (ESA)

Climatic Annual cumulative precipitation (mm) China Meteorological Data Service Center (CMDC)

Mean temperature (°C)

Relative humidity (%)

Terrain Elevation (m) Shuttle Radar Topography Mission (SRTM)

Socioeconomic Urban accessibility (hour) European Commission Joint Research Center (ECJRC)

Night-time light Earth Observation Group, National Oceanic and Atmospheric 
Administration (NOAA)

https://ecocast.arc.nasa.gov/
https://ecocast.arc.nasa.gov/
http://www.resdc.cn
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cover map from January to December 2009 with 0.3 × 0.3 
km spatial resolution was downloaded from the website 
(http://due.esrin​.esa.int/) of the Data User Element  of 
ESA, which was processed by ESA and the University of 
Louvain and made available to the public. In this study, 
land cover was adopted as a key explanatory variable in 
the distribution of VL cases.

Climatic factors
Several studies have revealed that temperature, precipita-
tion and humidity have strong effects on the ecology of 
vectors and reservoir hosts by influencing their survival, 
population sizes and distribution [26, 27]. Temperature has 
often been identified as an important factor influencing 
sand fly metabolism, developmental times and fecundity 
[28, 29]. For example, all female Phlebotomus papatasi die 
before laying eggs at 15 °C, while the lifespan of the adult 
increases with decreasing temperature within a range of 
18–32 °C [30]. Moreover, studies have shown that temper-
ature could also influence the development of several spe-
cies of Leishmania in the natural vectors [29]. Precipitation 
and humidity have been shown to play a prominent role in 
shaping the distribution of VL by influencing the breeding 
and resting of the vector [31]. For instance, ecotopes occu-
pied by immature phlebotomines are usually organically 
rich, moist areas (i.e. the rainforest floor).

From the website of the CMDC (http://data.cma.cn), 
the dataset (V3.0) of daily values of climate data from 
Chinese surface stations was downloaded. Based on the 
point-level meteorological dataset, ANUSPLIN-SPLINA 
software was employed to produce a series of meteoro-
logical raster layers. Then average values of three mete-
orological factors were calculated for each gridded cell 
during the period from 2005 to 2015, including mean 
annual temperature, mean annual relative humidity and 
annual cumulative precipitation.

Terrain factor
Previous studies have illustrated that there is a link between 
terrain and several vector-borne diseases [20, 32]. A con-
trolled trial conducted by Hlavacova et  al. [29] suggested 
that Leishmania infantum and L. braziliensis could spread 
to higher altitudes than L. peruviana could. Although the 
relationship has not been understood, we assumed that 
topography may restrict the vector to certain geographical 
areas. In this study, an elevation dataset generated by the 
SRTM was used as a good measure for topography, which 
was downloaded from the website of the CGIAR Consor-
tium for Spatial Information (http://srtm.csi.cgiar​.org) [33].

Socioeconomic factors
There is a strong but complex association between VL 
and socioeconomic covariates [2, 34, 35]. On the one 

hand, a local study conducted by Boelaert et al. [36] illus-
trated that low-income populations are most vulner-
able to VL, as poor housing conditions and unhealthy 
habitats increase sand fly breeding and resting sites. On 
the other hand, poverty is linked with poor nutrition, 
which compromises the immunity of poor populations 
and increases the risk that VL infection will progress to 
the clinically manifested disease [3, 37]. In the present 
study, night-time light satellite imagery with a 1 km spa-
tial resolution was adopted to represent the geographic 
variation of poverty due to a good positive linear cor-
relation between the two [38]. The stable light layers of 
night-time light satellite imagery spanning from 2005 to 
2013 were downloaded from the NOAA Earth Observa-
tion Group (https​://ngdc.noaa.gov/). Based on the 9 years 
of the night-time light dataset, the mean across all years 
for each gridded cell in the Xinjiang Uygur Autonomous 
Region was computed.

VL are often associated with population movements. 
For example, the introduction of nonimmune people 
into areas with existing endemic foci may result in new 
infection cases [3]. Several studies on other vector-
borne diseases (i.e. scrub typhus, zika and dengue) also 
revealed that human movement aided disease transmis-
sion through a series of cascading effects, particularity in 
highly accessible regions towards which people tend to 
gravitate [19, 21, 39]. In this study, an urban accessibil-
ity dataset estimating the travel time to the nearest city 
with a population of 50,000 people or more was adopted 
as an approximate measure index to account for patterns 
of human movement. The approximately 1 × 1 km grid-
ded dataset was obtained from the website of the ECJRC 
(http://forob​s.jrc.ec.europ​a.eu/).

Occurrence and pseudo‑absence records
The known comprehensive human infection cases of VL 
in the Xinjiang Uygur Autonomous Region spanning 
2005–2017 were obtained from the Chinese Center for 
Disease Control and Prevention (CDC) (http://www.
china​cdc.cn/). It should be noted that clinically diag-
nosed and laboratory-confirmed human infection cases 
reported during 2005–2015 were adopted in the model-
ling process, and suspected cases of VL were not used in 
the present study due to their own uncertainty. The geo-
position information on these cases is at least accurate at 
the township level, and most can be detailed at the vil-
lage level. By combining Google Earth (http://earth​.googl​
e.com/) with the geopositioning information of the cases, 
VL occurrences were manually geopositioned to the 
point level with coordinates and checked to ensure that 
the coordinates were plausible. Then, these point-level 
occurrence records were rasterized to grid cells with a 1 
km spatial resolution to match the spatial resolution of 

http://due.esrin.esa.int/
http://data.cma.cn
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related environmental and socioeconomic covariates. In 
total, 603 grid units derived from the point-level occur-
rence records were obtained, which were labelled as 
high-risk samples, representing related environmental 
and socioeconomic conditions suitable for the transmis-
sion of VL.

BRT modelling technology requires both occur-
rence and pseudo-absence records to identify the real-
ized niche of diseases. The latter have previously been 
shown to have a great effect on model accuracy [19, 
40], but there is no general consensus on how to gener-
ate pseudo-absence records. Compared with occurrence 
records, pseudo-absence records were used to provide a 
sample set of conditions in places where VL cases were 
not observed during the period from 2005 to 2015. In 
this study, 603 grid units where VL was not present were 
randomly selected as pseudo-absence records from the 
counties where cases of VL infection were reported dur-
ing the period from 2005 to 2015, which were labelled as 
low-risk samples.

Modelling approach
Version 3.3.3 of the 64-bit version of R was employed to 
build the model and assess the prediction performance. 
In the R statistical programming environment, the exten-
sion packages included dismo and gbm packages [41, 
42]. Based on occurrence and pseudo-absence records, 
the BRT modelling procedure was used to fit VL along 
with a range of environmental and socioeconomic vari-
ables. To improve the performance of BRT modelling 
technology, we repeated the process of randomly select-
ing pseudo-absence data 300 times. During each random 
process of selecting pseudo-absence data, we divided all 
risk samples into training and validation samples, and the 
former and latter accounted for 75% (n = 905) and 25% 
(n = 301) of the total samples (n = 1206), respectively. 
According to the suggestion of Messina et  al. [43], the 
main tuning parameters were set (tree.complexity = 4; 
learning.rate = 0.005; bag.fraction = 0.75; step.size = 10; 
cv.folds = 10; max.trees = 10000), and the other tuning 
parameters of the algorithm were held at their default 
values. In the process of training the model, a ten-fold 
cross-validation method was applied to prevent over-
fitting. An ensemble of 300 BRT models was fitted, and 
we performed analyses for the predictive performance of 
BRT models using the area under curve (AUC) statistic. 
Relative contribution (RC) indicator was used to reflect 
the contribution of each predictor.

Results
Spatiotemporal patterns
Figure  2 depicts the spatiotemporal patterns of clini-
cal diagnoses and laboratory-confirmed cases of VL 

infection during the period from 2005 to 2015. According 
to the statistics, the number of VL infection cases occur-
ring in 2005 was 154, mainly concentrated in the Kashgar 
Prefecture and Aksu Prefecture. In 2006, the number of 
new cases officially reported decreased slightly, with 128 
cases. There was a significant increase in the number of 
new cases in the Xinjiang Uygur Autonomous Region, 
increasing from 131 in 2007 to 340 in 2008. During the 
period from 2009 to 2013, the number of new VL infec-
tion cases showed a gradual decline, with 296, 150, 61, 
43 and 23 cases, sequentially. In the next two years, the 
number of new VL cases rebounded rapidly and reached 
a new high value of 397 in 2015. Overall, the new VL 
infection cases reported from 2005 to 2015 have obvi-
ous spatial clustering, and most cases are concentrated 
in Kashgar Prefecture, Aksu Prefecture and Bayingolin 
Mongol Autonomous Prefecture (Fig.  2). In addition, 
sporadic VL cases occurred occasionally in the rest of the 
regions of the Xinjiang Uygur Autonomous Region.

Environmental niche
Figure 3 identifies the environmental niche of VL in the 
Xinjiang Uygur Autonomous Region, which is derived 
from all 300 BRT ensembles. The black lines represent 
the mean effect curves over all 300 BRT ensembles, and 
the shaded areas envelope the mined relationships to 
each predictor from all BRT ensembles within the 95% 
confidence interval (Fig.  3). Examination of the mar-
ginal effect curves reveals that land cover is the most 
important predictor contributing to the occurrence map, 
accounting for 35.30% (SE: 12.32%) of variation explained 
by the ensemble BRT models. The names of the land 
cover types are described in Additional file  1: Table  S1. 
The socioeconomic correlates, namely, urban accessibil-
ity and nighttime light, are also the important predictors 
contributing to the ensemble BRT models, accounting 
for 34.16% (SE: 12.26%) and 9.83% (SE: 3.33%), respec-
tively. The other main predictors are mean temperature 
(RC: 8.51%, SE: 2.01%, positive association), NDVI (RC: 
4.47%, SE: 1.68%, positive association), relative humid-
ity (RC: 3.46%, SE: 1.41%, complex association), annual 
cumulative precipitation (RC: 2.33%, SE: 1.02%, complex 
association) and elevation (RC: 1.94%, SE: 0.94%, positive 
association).

Potential infection risk zones
According to the explored environmental niches among 
predictors and VL occurrence, the fitted ensemble BRT 
models were employed to estimate potential infection 
risk zones in the Xinjiang Uygur Autonomous Region. 
The map shows that the predicted highest infection risk 
areas are mainly concentrated in several regions, includ-
ing central and northern Kashgar Prefecture, south of 
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Atushi City bordering Kashgar Prefecture and regions 
of the northern Bayingolin Mongol Autonomous Pre-
fecture (Fig. 4). The boundaries of the main administra-
tive districts are shown in Additional file  1: Figure S1. 
The predicted risk for VL infection is also high in some 
regions of Hotan Prefecture, extending from northwest 
regions (central Pishan County, southern Moyu County 
and northern Hotan County) to central regions (southern 

Lop County, central Qira County and central Yutian 
County). In Aksu Prefecture, the zones predicted to have 
higher infection risk present two spatial clusters, located 
in the midwestern and eastern parts of the region. The 
predicted risk level is also high in Urumqi city and its 
surrounding areas (Changji Hui Autonomous Prefecture 
and Turpan Prefecture). For the northern part of Xinji-
ang, the distribution of the predicted infection risk areas 

Fig. 2  The geographical distribution of VL cases in the Xinjiang Uygur Autonomous Region from 2005 to 2015. The VL infection cases were 
obtained from CDC, and all the data analyzed in this study were de-identified to protect patient confidentiality. The provincial-level and county-level 
administrative boundary dataset were downloaded freely from REDCP. The figure was generated specifically for this research using ArcGIS10.2
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is relatively fragmented. Overall, the fitted ensemble BRT 
models obtained high predictive accuracy within the Xin-
jiang Uygur Autonomous Region (training data 10-fold 
cross-validation AUC: 0.976, SE: 0.006; validation data 
AUC: 0.976, SE: 0.005).

Discussion
By combining maps of environmental and socioeco-
nomic correlates with comprehensive infection records, 
this study estimated potential infection risk zones of VL 
at 1 × 1 km spatial resolution grids in the Xinjiang Uygur 
Autonomous Region. The final predicted map revealed 
that the potential high infection risk zones were mainly 
concentrated in central and northern Kashgar Prefecture, 
south of Atushi City bordering Kashgar Prefecture and 
regions of the northern Bayingolin Mongol Autonomous 
Prefecture. Based on the standard deviation values cal-
culated for each grid across the model ensemble, we also 
quantified the model uncertainty in spatial predictions 
of VL infection risk, as shown in Additional file 1: Figure 
S2. The uncertainty map illustrates that there is low pre-
diction uncertainty in the Xinjiang Uygur Autonomous 
Region.

To convert the continuous VL infection risk map into 
a binary surface (i.e. high or low risk), the threshold 
value of 0.5 was used in the present research. Based on 
the Gridded Population of the World Version 4 popula-
tion density for the year 2015 [44], we also estimated 
that approximately 16.64 million people inhabited the 
predicted potential infection risk areas in the Xinjiang 

Uygur Autonomous Region. Additional file  1: Table  S2 
illustrates the top six prefecture-level administrative 
units contributing to these populations in the predicted 
high-risk zones. For example, Kashgar  Prefecture has the 
most people living in areas that are suitable for VL trans-
mission at 3.95 million people, followed by Urumqi city 
(3.69 million people), Ili  Kazakh  Autonomous  Prefec-
ture (1.94 million people) and Aksu  Prefecture (1.73 mil-
lion people), which provides an important reference for 
further calculations of the public health burden imposed 
by VL. It is also important to recognize that the prob-
ability that people are infected with VL is different even 
in the most receptive environments due to differences 
between individuals, such as living habits and immunity 
[45, 46]. In the predicted high-risk zones, it is necessary 
to encourage people to use insecticide-treated bed nets 
to avoid contact with phlebotomine sand flies.

There are several published studies on risk mapping for 
VL. Pigott et al. [27] combined evidence consensus maps 
with a statistical modelling framework to generate the 
first distribution map of VL on a global scale. Rajabi et al. 
[47, 48] employed several spatial modelling techniques 
to map the potential risk areas of VL in the countries of 
southern Caucasus. Iliopoulou et  al. [49] used a spatial 
regression model to produce a risk map for VL in the 
Attica region, Greece. The purpose of the above studies 
was to generate a risk map for VL in the study area based 
on explanatory variables and modelling techniques. The 
first three studies showed relative risk levels by values 
between 0–1, while the last study used predictive number 

Fig. 3  Marginal effect curves of each predictor over all 300 BRT ensembles
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of human cases as a measure of risk for VL. Compared 
with the modelling techniques adopted in these stud-
ies, the BRT modelling framework adopted in this study 
could explore the complex relationships between VL and 
related covariates and avoid over-fitting. For instance, 
the probability of occurrence is positively correlated 
with mean temperature and NDVI. However, it should 
be noted that this study has some limitations. Although 
some factors (i.e. stray dog population and vector distri-
bution) were shown to be associated with VL in previous 
studies, these factors were not used in the present study 
due to the availability of data. In addition, a sample set 
of places where VL was not observed during 2005–2015 
was used to generate pseudo-absence data due to the dif-
ficulties of estimating real absence records. In the future 
investigations, we will increase the collection of relevant 
data and generate pseudo-absence data based on some 
other metric.

The multi-year mean values of related factors reflect-
ing relatively stable environmental and socioeconomic 
conditions were adopted as input features for the ensem-
ble BRT models. Therefore, the final predicted map rep-
resents the long-term average risk of VL infection in 
the Xinjiang Uygur Autonomous Region. The distribu-
tion of VL cases reported from 2016 to 2017 is shown in 
Additional file 1: Figure S3 shows. In 2016, 187 VL cases 
occurred in the predicted high-risk areas, and only 6 VL 
cases occurred in the predicted low-risk areas. In 2017, 
42 VL cases occurred in the Xinjiang Uygur Autono-
mous Region, and only 1 VL case occurred in the pre-
dicted low-risk areas. It is important noted the global 
temperature is rising continuously with greenhouse gas 
emissions, and some changes may occur in related envi-
ronmental and socioeconomic factors. In future research, 
we will combine a regional atmospheric circulation 
model with BRT modelling technology to recompute the 

Fig. 4  The geographical distribution of the predicted potential VL infection risk zones, with the risk level ranging from 0 (grey) to 1 (red). The figure 
was generated by calculating the mean prediction across all 300 BRT ensembles for each gridded cell, which was produced specifically for this 
research using ArcGIS10.2
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potential endemic foci for the years 2030 and 2050 in the 
Xinjiang Uygur Autonomous Region under specific cli-
mate warming scenarios.

Conclusions
Our findings show that land cover, urban accessibility, 
night-time light, mean temperature and NDVI are the 
important predictors contributing to the occurrence 
map. Approximately 16.64 million people inhabited the 
predicted potential infection risk zones in the Xinjiang 
Uygur Autonomous Region. The medical resources of the 
region are relatively scarce. This study provides a better 
understanding of the potential endemic foci of VL in the 
Xinjiang Uygur Autonomous Region with a 1 km spatial 
resolution, thereby enhancing our capacity to target the 
potential risk areas, to develop disease control strategies 
and to allocate medical supplies.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1307​1-019-3778-z.

Additional file 1: Table S1. Land cover types. Table S2. Population living 
in areas with high predicted VL risk within each prefecture-level admin-
istrative unit and the top six regions contributing to these populations 
at risk. Figure S1. The predicted potential VL infection risk zones and the 
boundaries of the main administrative districts. Figure S2. Uncertainty in 
the model of predicted VL infection risk. Figure S3. The distribution of VL 
cases reported from 2016 (a) to 2017 (b).

Abbreviations
VL: visceral leishmaniasis; BRT: boosted regression tree; REDCP: Resource and 
Environment Data Coud Platform; GDAL: geospatial data abstraction library; 
NDVI: normalized difference vegetation index; GIMMS: global inventory 
modelling and mapping studies; ESA: European Space Agency; CMDC: China 
Meteorological Data Service Center; SRTM: Shuttle Radar Topography Mission; 
ECJRC: European Commission Joint Research Center; NOAA: National Oceanic 
and Atmospheric Administration; AVHRR: advanced very high-resolution radi-
ometer; CDC: Chinese Center for Disease Control and Prevention; AUC​: area 
under curve; RC: relative contribution; SE: standard error.

Acknowledgments
We thank Qiaoling Zhu for providing valuable suggestions and myriad 
research staff who participated in compiling the most comprehensive occur-
rence dataset of visceral leishmaniasis.

Authors’ contributions
FYD and DJ contributed to the study design. CJZ and FYD collected the data. 
FYD, CJZ, DJ and QW analyzed the data, which were interpreted by all authors. 
FYD and QW wrote the manuscript. JYF, MMH, TM and SC gave some useful 
comments and suggestions to this work. FYD, CJZ and DJ revised the manu-
script. All authors reviewed the manuscript. All authors read and approved the 
final manuscript.

Funding
This research is supported and funded by the Strategic Priority Research 
Program of the Chinese Academy of Sciences (XDA19040305) and the Ministry 
of Science and Technology of China (2016YFC1201300).

Availability of data and materials
All relevant data are contained within the paper and its additional file.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 State Key Laboratory of Resources and Environmental Information System, 
Institute of Geographical Sciences and Natural Resources Research, Chinese 
Academy of Sciences, Beijing 100101, China. 2 College of Resources and Envi-
ronment, University of Chinese Academy of Sciences, Beijing 100049, China. 
3 National Institute for Viral Disease Control and Prevention, Chinese Center 
for Disease Control and Prevention (China CDC), Beijing 102206, China. 4 Key 
Laboratory of Carrying Capacity Assessment for Resource and Environment, 
Ministry of Land & Resources, Beijing 100101, China. 

Received: 15 May 2019   Accepted: 30 October 2019

References
	1.	 Lun ZR, Wu MS, Chen YF, Wang JY, Zhou XN, Liao LF, et al. Visceral leish-

maniasis in China: an endemic disease under control. Clin Microbiol Rev. 
2015;28:987–1004.

	2.	 Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, et al. Visceral 
leishmaniasis: what are the needs for diagnosis, treatment and control? 
Nat Rev Microbiol. 2007;5:873–82.

	3.	 WHO. Control of the leishmaniases: report of a meeting of the WHO 
expert committee on the control of leishmaniases. Geneva: World Health 
Organization; 2010.

	4.	 Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishma-
niasis worldwide and global estimates of its incidence. PLoS ONE. 
2012;7:e35671.

	5.	 Medley GF, Hollingsworth TD, Olliaro PL, Adams ER. Health-seeking 
behaviour, diagnostics and transmission dynamics in the control of 
visceral leishmaniasis in the Indian subcontinent. Nature. 2015;528:102–8.

	6.	 Doehl JSP, Bright Z, Dey S, Davies H, Magson J, Brown N, et al. Skin para-
site landscape determines host infectiousness in visceral leishmaniasis. 
Nat Commun. 2017;8:57.

	7.	 Pagliano P, Carannante N, Rossi M, Gramiccia M, Gradoni L, Faella FS, et al. 
Visceral leishmaniasis in pregnancy: a case series and a systematic review 
of the literature. J Antimicrob Chemother. 2005;55:229–33.

	8.	 Wang CT, Wu CC. Kala-azar. Beijing: People’s Health Publisher; 1959.
	9.	 Cochran S. Distribution of kala-azar in China and Korea. China Med J. 

1914;28:274–6.
	10.	 Wang C. Leishmaniasis in China: epidemiology and control program. 

Amsterdam: Elsevier Biomedical Press; 1985. p. 469–78.
	11.	 Young CW. Kala-Azar in China. China Med J. 1923;37:797.
	12.	 Wang Z, Xiong G, Guan L. Epidemiology and prevention of kala-azar in 

China. Chinese J Epidemiol. 2000;21:51.
	13.	 Geng G. Epidemiology, vol. 2. Beijing: Peopleʼs Medical Publishing House; 

1996.
	14.	 Guan L, Shen W. Recent advances in visceral leishmaniasis in China. 

Southeast Asian J Trop Med Public Health. 1991;22:291–8.
	15.	 Xu ZB. Present situation of visceral leishmaniasis in China. Parasitol Today. 

1989;5:224–8.
	16.	 Fu Q, Li SZ, Wu WP, Hou YY, Zhang S, Feng Y, et al. Endemic characteris-

tics of infantile visceral leishmaniasis in the Peopleʼs Republic of China. 
Parasit Vectors. 2013;6:143.

	17.	 Li YF, Zhong WX, Zhao GH, Wang HF. Prevalence and control of kala-azar 
in China. J Pathog Biol. 2011;6:629–31.

	18.	 Wang LY, Wu WP, Fu Q, Guan YY, Han S, Niu YL, et al. Spatial analysis of vis-
ceral leishmaniasis in the oases of the plains of Kashi Prefecture, Xinjiang 
Uygur Autonomous Region, China. Parasit Vectors. 2016;9:148.

	19.	 Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The 
global distribution and burden of dengue. Nature. 2013;496:504–7.

https://doi.org/10.1186/s13071-019-3778-z
https://doi.org/10.1186/s13071-019-3778-z


Page 10 of 10Ding et al. Parasites Vectors          (2019) 12:528 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	20.	 Shearer FM, Longbottom J, Browne AJ, Pigott DM, Brady OJ, Kraemer 
MUG, et al. Existing and potential infection risk zones of yellow fever 
worldwide: a modelling analysis. Lancet Glob Health. 2018;6:e270–8.

	21.	 Jiang D, Hao M, Ding F, Fu J, Li M. Mapping the transmission risk of Zika 
virus using machine learning models. Acta Trop. 2018;185:391–9.

	22.	 Ding F, Fu J, Jiang D, Hao M, Lin G. Mapping the spatial distribution of 
Aedes aegypti and Aedes albopictus. Acta Trop. 2018;178:155–62.

	23.	 Friedman JH. Greedy function approximation: a gradient boosting 
machine. Ann Stat. 2001;29:1189–232.

	24.	 Deʼath G. Boosted trees for ecological modeling and prediction. Ecology. 
2007;88:243–51.

	25.	 Feliciangeli MD. Natural breeding places of phlebotomine sandflies. Med 
Vet Entomol. 2004;18:71–80.

	26.	 Ready PD. Biology of phlebotomine sand flies as vectors of disease 
agents. Annu Rev Entomol. 2013;58:227–50.

	27.	 Pigott DM, Bhatt S, Golding N, Duda KA, Battle KE, Brady OJ, et al. Global 
distribution maps of the leishmaniases. Elife. 2014;3:e02851.

	28.	 Benkova I, Volf P. Effect of temperature on metabolism of Phlebotomus 
papatasi (Diptera: Psychodidae). J Med Entomol. 2007;44:150–4.

	29.	 Hlavacova J, Votypka J, Volf P. The effect of temperature on Leishmania 
(Kinetoplastida: Trypanosomatidae) development in sand flies. J Med 
Entomol. 2013;50:955–8.

	30.	 Kasap OE, Alten B. Comparative demography of the sand fly Phlebotomus 
papatasi (Diptera: Psychodidae) at constant temperatures. J Vector Ecol. 
2006;31:378–85.

	31.	 Malaviya P, Picado A, Singh SP, Hasker E, Singh RP, Boelaert M, et al. Vis-
ceral leishmaniasis in Muzaffarpur District, Bihar, India from 1990 to 2008. 
PLoS One. 2011;6:e14751.

	32.	 Bergquist NR. Vector-borne parasitic diseases: new trends in data collec-
tion and risk assessment. Acta Trop. 2001;79:13–20.

	33.	 Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, et al. The shuttle 
radar topography mission. Rev Geophys. 2008;45:361.

	34.	 Hasker E, Singh SP, Malaviya P, Picado A, Gidwani K, Singh RP, et al. Visceral 
leishmaniasis in rural Bihar, India. Emerg Infect Dis. 2012;18:1662–4.

	35.	 Harhay MO, Olliaro PL, Costa DL, Costa CH. Urban parasitology: visceral 
leishmaniasis in Brazil. Trends Parasitol. 2011;27:403–9.

	36.	 Boelaert M, Meheus F, Sanchez A, Singh SP, Vanlerberghe V, Picado A, et al. 
The poorest of the poor: a poverty appraisal of households affected by 
visceral leishmaniasis in Bihar, India. Trop Med Int Health. 2009;14:639–44.

	37.	 Alvar J, Yactayo S, Bern C. Leishmaniasis and poverty. Trends Parasitol. 
2006;22:552–7.

	38.	 Wang W, Cheng H, Zhang L. Poverty assessment using DMSP/OLS night-
time light satellite imagery at a provincial scale in China. Adv Space Res. 
2012;49:1253–64.

	39.	 Aung AK, Spelman DW, Murray RJ, Graves S. Rickettsial infections in 
Southeast Asia: implications for local populace and febrile returned 
travelers. Am J Trop Med Hyg. 2014;91:451–60.

	40.	 Chefaoui RM, Lobo JM. Assessing the effects of pseudo-absences on pre-
dictive distribution model performance. Ecol Modell. 2008;210:478–86.

	41.	 Hijmans RJ, Phillips S, Leathwick J, Elith J. Package ‘dismo’. Circles. 
2017;9:1–68.

	42.	 Ridgeway G. Generalized boosted models: a guide to the gbm package. 
Update. 2007;1.

	43.	 Messina JP, Kraemer MU, Brady OJ, Pigott DM, Shearer FM, Weiss DJ, 
et al. Mapping global environmental suitability for Zika virus. Elife. 
2016;5:e15272.

	44.	 Center for International Earth Science Information Network. Gridded 
Population of the World, Version 4 (GPWv4): population density, Revi-
sion 10. New York: NASA Socioeconomic Data and Applications Center 
(SEDAC); 2017.

	45.	 Caryn B, Hightower AW, Rajib C, Mustakim A, Josef A, Yukiko W, et al. Risk 
factors for kala-azar in Bangladesh. Emerg Infect Dis. 2005;11:655–62.

	46.	 Marques L, Rocha I, Reis I, Cunha G, Oliveira E, Pfeilsticker T, et al. 
Leishmania infantum: illness, transmission profile and risk factors for 
asymptomatic infection in an endemic metropolis in Brazil. Parasitology. 
2016;144:1–11.

	47.	 Rajabi M, Pilesjö P, Bazmani A, Mansourian A. Identification of visceral 
leishmaniasis-susceptible areas using spatial modelling in southern 
Caucasus. Zoonoses Public Health. 2017;64:e5–22.

	48.	 Rajabi M, Mansourian A, Pilesjö P, Bazmani A. Environmental modelling of 
visceral leishmaniasis by susceptibility-mapping using neural networks: a 
case study in north-western Iran. Geospat Health. 2014;9:179–91.

	49.	 Iliopoulou P, Tsatsaris A, Katsios I, Panagiotopoulou A, Romaliades S, Papa-
dopoulos B, et al. Risk mapping of visceral leishmaniasis: a spatial regres-
sion model for Attica Region, Greece. Trop Med Infect Dis. 2018;3:E83.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Risk factors and predicted distribution of visceral leishmaniasis in the Xinjiang Uygur Autonomous Region, China, 2005–2015
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Environmental and socioeconomic correlates
	Ecological factors
	Climatic factors
	Terrain factor
	Socioeconomic factors

	Occurrence and pseudo-absence records
	Modelling approach

	Results
	Spatiotemporal patterns
	Environmental niche
	Potential infection risk zones

	Discussion
	Conclusions
	Acknowledgments
	References




