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Abstract 

Background:  Red deer (Cervus elaphus) are a common wild definitive host for liver fluke (Fasciola hepatica) that have 
been the subject of limited diagnostic surveillance. This study aimed to explore the extent to which coprological 
diagnoses for F. hepatica in red deer in the Scottish Highlands, Scotland, are associated with variability among hosts 
and habitats.

Methods:  Our analyses were based on coproantigen ELISA diagnoses derived from faecal samples that were col‑
lected from carcasses of culled deer on nine hunting estates during two sampling seasons. Sampling locations were 
used as centroids about which circular home ranges were quantified. Data were stratified by season, and associa‑
tions between host, hydrological, land cover and meteorological variables and binary diagnoses during 2013–2014 
(n = 390) were explored by mixed effect logistic regression. The ability of our model to predict diagnoses relative to 
that which would be expected by chance was quantified, and data collected during 2012–2013 (n = 289) were used 
to assess model transferability.

Results:  During 2013–2014, habitat and host characteristics explained 28% of variation in diagnoses, whereby half 
of the explained variation was attributed to differences among estates. The probability of a positive diagnosis was 
positively associated with the length of streams in the immediate surroundings of each sampling location, but no 
non-zero relationships were found for land cover or lifetime average weather variables. Regardless of habitat, the 
probability of a positive diagnosis remained greatest for males, although males were always sampled earlier in the 
year than females. A slight decrease in prediction efficacy occurred when our model was used to predict diagnoses 
for out-of-sample data.

Conclusions:  We are cautious to extrapolate our findings geographically, owing to a large proportion of variation 
attributable to overarching differences among estates. Nevertheless, the temporal transferability of our model is 
encouraging. While we did not identify any non-zero relationship between meteorological variables and probability 
of diagnosis, we attribute this (in part) to limitations of interpolated meteorological data. Further study into non-inde‑
pendent diagnoses within estates and differences among estates in terms of deer management, would improve our 
understanding of F. hepatica prevalence in wild deer.
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Background
Liver fluke (Fasciola hepatica) risk to grazing rumi-
nants in Europe increased during the 1990s [1] and was 
reflected in Great Britain (GB) by an increase in the diag-
nostic rates of liver fluke in sheep and cattle [2, 3]. During 
the same period, F. hepatica occurrence in common wild 
definitive hosts, such as cervids, received only fleeting 
attention, e.g. as part of histopathological surveys of red 
(Cervus elaphus) and sika (Cervus nippon) deer in Scot-
land [4].

Fasciola hepatica has long-recognised detrimental 
effects on health and productivity of sheep and cattle [5, 
6], and a similar effect might be hypothesised for wild 
herbivores. More recently, a link between F. hepatica 
infection, decreased immune response and increased risk 
of infection of cattle by verocytotoxin producing Escheri-
chia coli 0157 has been proposed [7, 8]. In light of pos-
sible links such as this, coupled with (for example) an 
outbreak of E. coli 0157 in autumn 2015 linked to wild 
sourced venison [9], identification of environments in 
which wild deer might acquire F. hepatica infection is of 
interest.

The persistence of F. hepatica in a definitive host popu-
lation is dependent on sufficient moisture and warmth 
(> 10  °C) to facilitate F. hepatica egg development, the 
motility of free-living larval stages and the activity of a 
locally resident intermediate host, e.g. Galba truncatula 
[10, 11]. Where definitive and intermediate hosts are 
resident in a temperate climate, e.g. in a large propor-
tion of GB (England and Wales), the summer risk of F. 
hepatica infection is predictable based on the principle 
that transmission is limited primarily by moisture during 
the summer months (i.e. the balance between rainfall and 
evapotranspiration; [12]). However, the extent to which 
this principle is valid for comparatively drier/wetter or 
warmer/cooler climates, or for animals where infection 
of the host is not interrupted by anthelminthic treat-
ment, is unclear. For example, drier regions can experi-
ence a negative correlation between F. hepatica incidence 
and rainfall (e.g. in Belgium; [13]), owing to an increase 
in fresh vegetation growth away from permanent water 
sources around (and in) which intermediate hosts reside.

Red deer in the Scottish Highlands are exposed to 
a prevailing wet (extreme in GB context) climate with 
regional averages of 1700 mm of rainfall and 207 days 
of rain per year (1981–2010 climate period; [14]). This 
is in excess of the limitations proposed by Ollerenshaw 
[15], beyond which the relationship between weather 
and incidence ceases to be valid. Fasciola hepatica preva-
lence in red deer varies temporally [16] and geographi-
cally throughout the Highlands [17]. While geographical 
variation could be related to F. hepatica development in 
certain areas of the Scottish Highlands being limited by 

temperature [18], the landscape is markedly different 
from the pasture dominated rural areas of England and 
Wales in which temperature-moisture relationships were 
originally validated. As such, the Scottish Highlands are 
topographically diverse and offer a range of microcli-
mates and a patchwork of habitats (dominated by heather 
and blanket bog) that might or might not provide tolera-
ble environments for intermediate hosts, including atypi-
cal hosts such as Radix balthica [19].

The aim of this study was to use coproantigen ELISA 
(cELISA) surveillance data from wild red deer faecal sam-
ples to explore spatial variation in F. hepatica diagnoses 
in the Scottish Highlands in relation to a suite of host, 
hydrological, meteorological and land cover variables at 
the individual level. In so doing, we aim to identify fac-
tors associated with F. hepatica diagnosis in wild red 
deer.

Methods
Study sites, sampling methods and F. hepatica diagnoses
Red deer faecal samples were collected by deer stalkers/
gamekeepers (hunters) on unfenced Scottish Highland 
estates, which are managed largely for red deer stalking  
(hunting): Alladale (AL); Altnaharra (AT); Applecross 
Trust (AP); Ardnamurchan (AR); Badanloch (BA); Ben 
Loyal (BL); Conaglen (CO); North Harris Trust and 
Aline (NA); and Strathconon (ST) (Fig.  1; see “Meth-
ods” section of [17] for an ethics statement regarding 
the sampling of wild red deer for this study). During 
the 2012–2013 and 2013–2014 Scottish red deer stalk-
ing (hunting) seasons (for males: 1st July to 20th Octo-
ber; for females: 21st October to 15th February), hunters 
collected approximately 20  cm3 of faecal pellets from 
the carcasses of 772 red deer and recorded the sex, cull 
date (which was subsequently converted to an integer 
number of days after 1st July for each of 2012–2013 and 
2013–2014 seasons), age category and sampling location 
(from a 500 × 500 m grid). Age category was determined 
(objectively) from tooth eruption for calves and year-
lings and (subjectively) from inspection of tooth wear 
for young, mature and old animals. Across both seasons, 
642 faecal samples were stored frozen at − 20  °C on the 
day of collection until analyses at the end of each season, 
and a further 130 samples, which were collected dur-
ing the 2013–2014 season and stored fresh in refrigera-
tors and chilled larders at AT, BA and BL, were analysed 
no later than one week after the date of collection. A F. 
hepatica coproantigen ELISA (cELISA; BioX Diagnostics, 
Belgium) (see French et  al. [17] for methods) was used 
to detect antigens specific to F. hepatica and each sam-
ple was individually classified as positive (exposed to F. 
hepatica) if its titre exceeded the cELISA manufacturer’s 
cut-off titre, which ranged from 6.55 to 9.32% (ELISA 
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units; EU) of a positive control antigen supplied with the 
kit. For frozen faeces, the sensitivity of the cELISA to 
patent infection (using faecal egg identification to define 
52 known positives) was 79% (95% CI: 73–84%) and for 
fresh faeces (using faecal egg identification to define 
18 known positives) it was 50% (95% CI: 32–78%). The 
specificity of the cELISA to patent infection (using liver 
examination to define 47 known negatives) was 96% (95% 
CI: 95–100%), whereby all faeces were fresh.

In the interests of balancing our statistical analysis, data 
for calves and yearlings were removed from the dataset 
prior to analyses as not all estates had sampled calves and 
yearlings for both sampling seasons, whereas data for 
young, mature and old deer were retained and were con-
sidered representative of a single class of “independent 
deer” (n = 679; see Table 1 for breakdown of sample sizes 
related to sex and each sampling season).

Geographical information systems and explanatory 
variable (covariate) preparation
Daily mean temperature (°C) and rainfall (mm) data 
were obtained for the period 1960–2013 from the UK 
Meteorological Office’s interpolated 5 km square grid 
cell dataset [20]. Owing to the disparity between the 

cross-tabulated format of downloaded meteorologi-
cal data and the format required for analyses in R [21] 
(i.e. columns representing variables, rows representing 
observations), chronological temperature data for 846 
grid cells spanning the study region required re-organ-
isation. Data were re-organised by importing down-
loaded .csv data using the read_csv() function in the 
readr R package [22] and using the melt() function in 
the reshape R package [23]. Next, the subset() function 
in base R, the cast() function in the reshape R pack-
age [23] and the between() function in the data.table R 
package [24] were used to obtain 846 grid cell estimates 
for the (2008–2012 and 2009–2013 meteorological 
periods) mean number of days per year where tem-
perature exceeded 10  °C (“development days”). Rain-
fall data were similarly re-organised to obtain 846 grid 
cell estimates for mean annual rainfall. Topographic 
photogrammetrically derived (5 × 5 m resolution) digi-
tal terrain model (DTM) data were obtained from the 
UK Centre for Environmental Data Analysis [25] and 
were used to generate polyline stream networks based 
on a 4 hectare flow initiation threshold [26] using the 
Hydrology tools in ArcMap 10.4 [27]. Land cover 
shapefile data (Land Cover Scotland 1988; LCS88) were 

Fig. 1  Locations of Scottish Highland hunting estates from which 679 faecal samples were collected from culled wild red deer (Cervus elaphus) 
during August to February 2012–2013 and 2013–2014 for testing by cELISA for Fasciola hepatica antigens. Abbreviations: AL, Alladale; AT, Altnaharra; 
AP, Applecross Trust; AR, Ardnamurchan; BA, Badanloch; BL, Ben Loyal; CO, Conaglen; NA, North Harris Trust and Aline; ST, Strathconon. Box sizes 
illustrate the geographical extent from which samples were collected within each estate. The maps were created using QGIS v2.18.2, R v 3.5.2, 
RStudio v1.1.383 and the rgdal and PBSmapping R packages [33, 34] and were produced in accordance with the Public Sector (Scotland) End User 
License Agreement–1 August 2017–31 July 2018 for the use of Ordnance Survey data through EDINA Digimap (http://digim​ap.edina​.ac.uk/webhe​
lp/os/copyr​ight/licen​ce_agree​ment.htm#5.1.4)

http://digimap.edina.ac.uk/webhelp/os/copyright/licence_agreement.htm#5.1.4
http://digimap.edina.ac.uk/webhelp/os/copyright/licence_agreement.htm#5.1.4
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downloaded from the UK government website [28] and 
converted to raster format using Quantum GIS v2.18.2 
[29].

Covariate data relating to the immediate surround-
ings of each cull location, i.e. 2 km home range radii 
(12.6 km2) buffers created using the gBuffer() function in 
the rgeos R package [30] were paired with sample diag-
noses using R. Home ranges for individuals that had 
been culled within 2 km of the coast were clipped to the 
coastline and were delineated as (relatively) smaller home 
ranges. Hydrological data were extracted using the st_
intersection() function in the sf R package [31], and land 
cover and meteorological data were extracted using the 
extract() function in the raster R package [32]. All spatial 
data were plotted in R using the rgdal and PBSmapping 
R packages [33, 34]. Three land cover covariates (smooth 
grassland, heather moor and blanket bog), which were 
present in delineated home ranges on all nine estates dur-
ing both sampling seasons for both sexes, were quantified 
as the proportion of home range area occupied by each 
cover type (Fig.  2). One hydrological covariate (stream 
length) was quantified as the total length of streams 
within each home range. Two meteorological covariates 

(rainfall total and development days) were quantified as 
the mean annual rainfall and mean annual development 
days experienced across approximate deer lifetimes (i.e. 5 
years: 2008–2012 for deer culled during 2012–2013, and 
2009–2013 for deer culled during 2013–2014).

Statistical analyses
All statistical analyses were carried out using R 3.5.2 and 
RStudio v1.1.383 [21, 35] and we followed Zuur & Ieno’s 
[36] protocol for conducting and presenting regression 
type analyses and the worked example of a generalised 
linear mixed effect model of Elston et al. [37].

Owing to marked environmental gradients in rainfall 
[38] that inhibited spatially blocked cross-validation [39], 
we stratified our data by sampling season to obtain a data-
set for model training and validation (n(2013–2014) = 390; 
96 positive cELISA diagnoses, 62 male, 34 female; 294 
negative cELISA diagnoses, 149 male, 145 female) and a 
test dataset to assess the transferability of relationships 
quantified for the training data (n(2012–2013) = 289; 76 posi-
tive cELISA diagnoses, 57 male, 19 female; 213 negative 
cELISA diagnoses, 116 male, 97 female) (i.e. model trans-
ferability to an independent dataset; [40]).

Table 1  Sample sizes and Fasciola hepatica coproantigen ELISA diagnoses for red deer (Cervus elaphus) faecal samples collected from 
nine hunting estates in the Scottish Highlands during two sampling seasons (2012–2013 and 2013–2014)

Abbreviations: F, female deer; M, male deer; NaN, not a number

Key: +, positive cELISA diagnoses; -, negative cELISA diagnoses

Estate Sex 2012–2013 2013–2014

n − + Prevalence n − + Prevalence

Alladale F 23 20 3 13.0 29 27 2 6.9

M 32 25 7 21.9 37 32 5 13.5

Altnaharra F 29 19 10 34.5 29 25 4 13.8

M 31 17 14 45.2 28 12 16 57.1

Applecross F 8 7 1 12.5 16 13 3 18.8

M 32 17 15 46.9 26 12 14 53.8

Ardnamurchan F 5 5 0 0 10 8 2 20.0

M 16 10 6 37.5 25 20 5 20.0

Badanloch F 21 21 0 0 34 33 1 2.9

M 25 21 4 16.0 27 23 4 14.8

Ben Loyal F 22 20 2 9.1 16 14 2 12.5

M 16 12 4 25.0 24 22 2 8.3

Conaglen F 7 4 3 42.9 17 11 6 35.3

M 13 10 3 23.1 17 12 5 29.4

North Harris and Aline F 0 0 0 NaN 11 2 9 81.8

M 6 3 3 50.0 2 2 0 0

Strathconon F 1 1 0 0 17 12 5 29.4

M 2 1 1 50.0 25 14 11 44.0

All F 116 97 19 16.4 179 145 34 19.0

M 173 116 57 32.9 211 149 62 29.4

Total 289 213 76 26.3 390 294 96 24.6
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Owing to the Bernoulli distribution of our diagnostic 
response data and the nested structure of our sampling 
design, we implemented a binomial (logistic) generalised 
linear mixed effect model (GLMM) using the glmer() 
function in the lme4 R package [41]. Here, we assumed 
that conditional on random intercept, Estatei, and eight 
covariates, the presence-absence data, Yij (jth obser-
vation on estate i), were binomially distributed with a 

conditional probability pij, whereby the response Yij was 
1 if faecal sample j on estate i was diagnosed positive and 
was 0 otherwise (Equation 1). The relationship between 
pij and the linear predictor was determined by the logit 
link function, and the random intercept Estatei= 1, … , 9 
was assumed to be normally distributed with mean 0 and 
variance σ 2

Estate (Equation 1).

Fig. 2  Land cover types on nine hunting estates in the Scottish Highlands. The scale-bar at the top left of each map represents a 4 × 1 km2 area. 
Land cover data (LCS88) were obtained from the UK government [28]. The maps were created using QGIS v2.18.2, R v 3.5.2, RStudio v1.1.383 and 
the rgdal and PBSmapping R packages [33, 34] and were produced in accordance with the Public Sector (Scotland) End User License Agreement–1 
August 2017–31 July 2018 for the use of Ordnance Survey data through EDINA Digimap (http://digim​ap.edina​.ac.uk/webhe​lp/os/copyr​ight/licen​
ce_agree​ment.htm#5.1.4). Abbreviations: AL, Alladale; AT, Altnaharra; AP, Applecross Trust; AR, Ardnamurchan; BA, Badanloch; BL, Ben Loyal; CO, 
Conaglen; NA, North Harris Trust and Aline; ST, Strathconon

http://digimap.edina.ac.uk/webhelp/os/copyright/licence_agreement.htm#5.1.4
http://digimap.edina.ac.uk/webhelp/os/copyright/licence_agreement.htm#5.1.4
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Prior to modelling, each continuous fixed effect covari-
ate was mean-centred and scaled to standard deviation 
units using the scale() function in R, and collinearity 
between fixed effect covariates were assessed by Pear-
son’s R and point-biserial correlations using the chart.
Correlation() function in the PerformanceAnalytics R 
package [42]. We acknowledged prior to modelling that 
collinearity would be inherent between sex and sam-
pling date, because the males and females were sampled 
during separate Scottish hunting seasons. This collin-
earity was a cause for concern for two reasons. First, we 
would expect inflated variances for sex and sampling date 
model coefficient estimates. Secondly, we could not be 
sure whether any observed non-zero associations that 
each of these variables might have with F. hepatica diag-
nostic probabilities (for our dataset) would reflect true 
underlying associations in nature had samples for both 
sexes been collected concurrently. Nevertheless, sex (as 
a binary variable defined as: males = 1 and females = 0) 
and sampling date were included in our model owing 
to their assumed meaningful associations with infec-
tion, both in terms of red deer feeding behaviour (i.e. 
chance of encountering F. hepatica metacercariae) and F. 
hepatica’s life-cycle (i.e. seasonal infection/development 
and detectability of excretory-secretory antigens within 
definitive host faeces).

To validate our model, we used the DHARMa R pack-
age [43] to simulate scaled (standardised) model residu-
als using the simulateResiduals() function, which we then 
visually inspected versus fitted values, versus each fixed 
effect covariate, versus time and in space. Our model was 
deemed valid if standardised residuals were uniformly 
distributed showing no trends versus fitted values, and 
if plotting residuals against time and in two-dimensional 
space revealed no clear trends or clusters, respectively.

We assessed model prediction efficacy using block 
cross-validation [39]. Here, we used the roc() and auc() 
functions in the pROC R package [44] to calculate the 
area under the receiver operating characteristic curve 
(AUC). Using the AUC, we inferred the model’s ability 
to correctly assign high probabilities to positive cELISA 
diagnoses and low probabilities to negative diagnoses 
for the training and testing datasets. Here, we used the 
definitions provided by Swets [45] to define models of 
low accuracy (AUC 0.50–0.70) and useful accuracy (AUC 

(1)

Yij ∼ Bin
(

1, pij
)

E
(

Yij
)

= pij
logit

(

pij
)

= α + β1 × sexij + β2 × DateCulledij + β3
×StreamLengthij + β4 × BlanketBogij + β5
×HeatherMoorij + β6 × SmoothGrasslandij + β7
×RainfallTotalij + β8 × DevelopmentDaysij + Estatei

Estate ∼ N
(

0, σ 2
Estate

)

0.70–0.90). We also applied Swets’ [45] interpretation 
that the AUC corresponds to the percentage of the time 
that, for a given randomly selected positive and a ran-
domly selected negative diagnosis, our model predicts 
a higher probability for the positively diagnosed sample 
(bearing in mind that an AUC of 0.50 would be calculated 
for a model that is no better than would be expected by 
chance). We also estimated the sensitivity and specific-
ity of the model, whereby we used a predicted probability 
threshold of 0.50 to signify positive predictions.

Consistent with the logistic and random intercept form 
of our model, we estimated effective sample size, Neff, 
(Equation 2), and with it, our model’s inclination towards 
over parameterization and therefore overfitting [46]. This 
calculation required: (i) an estimate of random intercept 
variance, σ 2

Estate , to calculate the (induced) intra-class 
correlation coefficient, ICC [47] (i.e. a quantification of 
non-independence of events within sampling estates, or 
“compound symmetry”; Equation  3); (ii) the number of 
random effect levels in our training data, N, (here, N = 9 
estates); and (iii) the number of events per estate, n (here, 
n = 10.7; i.e. assuming 96 positive diagnoses are spread 
evenly across all nine estates). In advance of model fit-
ting, we calculated an ICC of no greater than 0.021 would 
correspond with a large enough effective sample size to 
satisfy the recommended minimum of ten events per 
variable that would mitigate risk of overfitting a logistic 
regression type model [48]. Following model training, 
we used the icc() function in the sjstats R package [49] 
to corroborate our ICC (as calculated using Equation 3). 
While our modelling approach ensured that parameter  
estimates provided by glmer() in lme4 defaulted to 
Laplace approximation and thus provided a point esti-
mate of σ 2

Estate , we obtained a 95% confidence interval 
for σ 2

Estate by using the confint.merMod() method in the 
lme4 R package [41], whereby we used profile intervals to 
propagate uncertainty for the ICC. Note that increasing  
quadrature points using glmer(nAGQ = 50) did not 
change model coefficient estimates.

To help us to evaluate model transferability (i.e. to give 
context to any differences between the prediction efficacy 
of the model that occurred between training (2013–2014) 
and test (2012–2013) data), we estimated the influence of 
data on model parameter estimates attributable to each 
individual observation and to observations grouped by 

(2)Neff =
(N × n)

(1+ (n− 1)ICC)

(3)ICC =
σ 2
Estate

(

σ 2
Estate +

(

π2

3

))
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estate. Here, we used the influence() and cooks.distance() 
functions in the influence.ME R package [50] to calcu-
late the Cook’s distance summary statistic. The strongest 
influence attributable to data related to individual obser-
vations or random effect levels was identified by the largest 
Cook’s distances.

The variability in the data captured by our model was 
estimated using marginal and conditional R2 [51] using 
the rsquared() function in the piecewiseSEM R package 
[52]. With the exception of the categorical variable, sex 
(for which an odds ratio was calculated by exponentiating  
its model coefficient estimate), strengths and directions 
of relationships between fixed effect covariates and prob-
ability of F. hepatica diagnosis (i.e. effect sizes) were 
inferred from the magnitudes and directions of model 
parameter estimates. Moreover, non-zero relationships 
between diagnostic probabilities and each fixed effect 
covariate 

(

xk=1,...,8

)

 (estimated using the “profile” confint.
merMod() method in the lme4 R package [41]) and their 
respective 95% confidence intervals for each sex were 
illustrated using logistic regression (Equation  4) and an 
adapted version of the logi.hist.plot function in the pop-
bio R package [53].

Results
Descriptive analysis of spatial aggregation in F. hepatica 
diagnosis
Positive F. hepatica cELISA diagnoses generally displayed 
a random spatial distribution relative to negative diagno-
ses (Fig. 3).

Fasciola hepatica diagnosis in relation to habitat and host 
variation
Data exploration and model validation
A full list of explanatory variables and their ranges for 
males and females for each sampling season is presented 
in Table 2. Only one correlation between two fixed effect 
covariates exceeded the |R| > 0.70 stipulated by Dormann 
et al. [54] as a warning as to when multicollinearity might 
affect the stability of regression parameter estimates; 
unsurprisingly, this was the point-biserial correlation 
(|R| = 0.81; 95% CI: 0.77–0.84) between sex and cull date.

Model validation revealed no strong non-linearity 
(Additional file  1: Figure S1), residual temporal auto-
correlation (Additional file  2: Figure S2), nor residual 
spatial autocorrelation (Moran’s I: Expected = −0.0026, 
Observed = 0.041, P = 0.22) (Additional file 3: Figure S3). 
Our assumption of linear relationships between model 
covariates and the logit link transformed expectation of 

(4)p =
eα+βk xk±1.96(σEstate)

1+eα+βk xk±1.96(σEstate)

the response were validated by residual plots, though we 
noted a possible borderline non-linear relationship for 
smooth grassland (Additional file 1: Figure S1).

Model parameter estimates, prediction efficacy, variance 
and transferability
The total variation in diagnostic probabilities explained 
by the combination of random and fixed effects was 28% 
(conditional R2). Only 13% (marginal R2) of the variation 
was explained by fixed effects alone and only one habi-
tat related fixed effect parameter estimate was non-zero 
(Table  3). Here, a strong positive association occurred 
for stream length (Fig. 4). We found no non-zero associa-
tions between diagnosis and land cover or meteorological 
variables.

Of the collinear host-related variables (sex and date 
culled), the model portioned the strongest non-zero 
effect size to sex. Here, males were more likely to be diag-
nosed positive, which equated to an odds ratio relative to 
females of 5.12 (95% CI: 1.83–15.22) (Table 3). The model 
also assigned a further (but weaker) non-zero parameter 
estimate to a positive association with the number of 
days into the hunting season.

In terms of model prediction efficacy, AUC for the 
training data indicated useful accuracy (0.78; 95% boot-
strap CI: 0.73–0.83). Using the training data and a cut-off 
probability of > 0.50 as an indicator of positive diagnosis 
(as predicted by the model), we calculated model sensi-
tivity of 0.23 (95% bootstrap CI: 0.15–0.32) and specific-
ity of 0.96 (95% bootstrap CI: 0.94–0.98).

In terms of model transferability, we considered effec-
tive sample size and influential points/groups in the train-
ing data in relation to model prediction efficacy using the 
test data. First, the random effect variance, σ 2

Estate , for 
the model 0.70 (95% CI: 0.36–1.70) corresponded to an 
(induced) intraclass correlation coefficient (ICC) of 0.18 
(95% CI: 0.099–0.34), which exceeded our threshold of 
0.021 for mitigating against model over parameterization 
and served as a warning of a possibly insufficient effec-
tive sample size for our number of fixed effect covariates. 
Secondly, we found the strongest influence (inferred from 
Cook’s distance, D) on model parameter estimates at the 
group level for NA estate (Cook’s D = 0.58) and the indi-
vidual level for a positively diagnosed sample collected 
from a female at AR (Cook’s D = 0.085). Our assessment 
of model transferability using the test data revealed a 
reduction in prediction efficacy inferred to AUC (0.71; 
95% bootstrap CI: 0.64–0.77) compared to our assess-
ment using the training data. Estimates for model sensi-
tivity 0.24 (95% bootstrap CI: 0.14–0.34) and specificity 
0.92 (95% bootstrap CI: 0.88–0.95) using the test data 
were marginally  lower and higher, respectively, than esti-
mates using the training data.
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Discussion
This study explored the associations between habitat and 
host related variables and F. hepatica diagnosis in wild 
red deer in the Scottish Highlands during two sampling 
years, 2012–2013 and 2013–2014. In terms of habitat var-
iation, we revealed that cELISA based estimates of expo-
sure are most strongly (and positively) associated with 
home range stream length. Contrary to our expectations, 
diagnosis did not vary with the annual number of days 
during which the temperature threshold for F. hepatica 
development was exceeded, nor did diagnosis associ-
ate with variation in annual rainfall. Inherent collinear-
ity between sex and sampling date inflated the variance 
of our model coefficient estimates for these variables, 
yet we found a strong association between diagnosis and 

sex (i.e. samples from males had greater odds of being 
diagnosed positive than did females, regardless of habi-
tat variation), and a weak positive association between 
diagnosis and sampling date. Both of these relationships 
should however be interpreted with caution, owing to 
temporally separated hunting seasons for males and 
females. Our model explained just over one quarter of 
the variation in the probability of F. hepatica diagnosis; 
wherein more than half of the explained variation was 
attributable to unquantified overarching variation among 
estates (e.g. factors such as hunting biases), and the other 
just less than half was attributable to individual-level host 
and home range habitat variation. Our model was use-
ful for predicting diagnoses for 2013–2014, though we 
observed a slight reduction in model prediction efficacy 

Fig. 3  Spatial distribution of Fasciola hepatica coproantigen ELISA diagnoses for 679 wild red deer (Cervus elaphus) faeces samples collected within 
nine Scottish Highland hunting estates during 2012–2014. Filled circles represent positive diagnoses. Random noise has been added to the x-y 
coordinates for each data point to aid illustration of diagnoses where more than one sample was collected at a single location. Scale-bars illustrate 
4 × 1 km areas for each estate. Abbreviations: AL, Alladale; AT, Altnaharra; AP, Applecross Trust; AR, Ardnamurchan; BA, Badanloch; BL, Ben Loyal; CO, 
Conaglen; NA, North Harris Trust and Aline; ST, Strathconon
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when using held-out 2012–2013 data, which highlighted 
the moderate but nonetheless useful transferability of our 
findings.

Fasciola hepatica diagnoses in relation to habitat and host 
variation
The relationship between stream length and F. hepatica 
diagnosis might reflect a greater availability of tolerable 
habitat for an intermediate host; even though the streams 
themselves are not necessarily occupied by those inter-
mediate hosts. Surveys of macro invertebrates in Scottish 
Highland running freshwaters reveal that G. truncatula is 

typically absent from streams; i.e. it was found in just one 
river in our study region between 2005 and 2007 [55, 56]. 
Notwithstanding possible systematic reasons for this lack 
of detection (i.e. related to kick sampling methods), it is 
more plausible that G. truncatula simply occurs in habi-
tats close to streams rather than in the streams them-
selves [57]. Indeed, a range of permanent and temporary 
small water bodies are tolerable for G. trunctula [58].

The lack of association between mean annual rainfall 
and/or number of development days, and, probability of 
F. hepatica diagnosis, might be a consequence of the large 
uncertainties that accompany interpolations of meteoro-
logical data across topographically diverse regions. In a 
UK context, grid data is spatially interpolated from station 
data using a linear relationship between altitude and tem-
perature [59, 60]. However, the 5 × 5 km grid used is likely 
to be of insufficient scale to resolve differences in weather 
experienced by deer within a single estate which may only 
span a maximum of around 15 km (at its greatest extent). 
Of course, meteorological suitability for F. hepatica and 
its intermediate snail hosts does not necessarily directly 
imply infection of definitive hosts. Fasciola hepatica must 
first be present, either endemically or introduced (perhaps 
through livestock imports, as has occurred in historically 
F. hepatica-free areas in the south east of GB; [61]). Addi-
tionally, one must consider the tolerability of land cover for 
intermediate hosts. In this regard, G. truncatula is appar-
ently unable to tolerate blanket bog environments (e.g. 
in Orkney; [10]), which cover large areas of the Scottish 
Highlands. We note that average annual rainfall total and 
mean temperature are associated with F. hepatica related 
condemnation of cattle liver at slaughter in Scotland [62], 
but that the distribution of sampled farms in the Scottish 
Highlands is concentrated at the coastlines; hence, the 
rainfall experience by cattle is unlikely to be as great as 
experienced by the deer in our study, which occupy higher 
ground primarily inland from the coast.

Table 2  Summary of host and habitat characteristics for wild red deer (Cervus elaphus) from estimated 2 km radius home ranges in the 
Scottish Highlands. Units in which ranges are expressed are indicated in parentheses in the explanatory variables column

Abbreviations: F, female deer; M, male deer

Notes: Annual development days were defined as the total number of days per year with mean air temperature exceeding 10°C. Mean annual rainfall total and mean 
annual development days were calculated using data from the 5 years immediately preceding each sampling season

Explanatory variable 2012–2013 2013–2014

M (n = 173) F (n = 116) M (n = 211) F (n = 179)

Days into season (days) 33–112 114–230 39–112 113–228

Stream length (km) 24.7–62.6 22.2–64.9 24.1–64.5 20.8–65.2

Blanket bog (%) 0–86.8 0–72.4 0–90.5 0–81.4

Heather moor (%) 13.2–99.9 18.6–94.5 8.2–97.6 10–99.7

Smooth grassland (%) 0–42.5 0–40.2 0–39.3 0–50.6

Mean annual rainfall total (mm) 1053–3363 1005–3715 1002–3564 1013–3658

Mean annual development days (days) 35.5–163.9 35.5–157.3 40–157.7 37–156.9

Table 3  Fixed effect parameter estimates for a binomial (logit 
link) generalised linear mixed effect model describing the 
probability of positive Fasciola hepatica coproantigen ELISA 
diagnosis for faecal samples of wild Scottish red deer (Cervus 
elaphus) (n = 390) in relation to host and habitat within 2  km 
radius estimated home range

Notes: Habitat data in terms of home range percentage land cover [28], 
meteorology [20] and topographically derived stream length [25, 26] were 
mean-centred and scaled to standard deviation units prior to logistic regression 
against binary cELISA diagnoses. Values in parentheses represent 95% (profile) 
confidence intervals. Annual development days were defined as the total 
number of days per year with mean air temperature exceeding 10 °C. Mean 
annual rainfall total and mean annual development days were calculated using 
data from the 5 years immediately preceding sampling season 2013–2014

Fixed effect parameter Estimate (95% CI)

(Intercept) − 2.12 (− 3.076 to − 1.198)

Sex 1.634 (0.603–2.722)

Days into season 0.521 (0.016–1.037)

Stream length 0.349 (0.047–0.658)

Mean annual rainfall total 0.148 (− 0.421 to 0.683)

Mean annual development days 0.266 (− 0.179 to 0.708)

Blanket bog 0.115 (− 0.437 to 0.665)

Heather moor 0.223 (− 0.193 to 0.653)

Smooth grassland 0.223 (− 0.082 to 0.527)
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The lack of relationship between F. hepatica diagno-
sis and the presence of smooth grassland (or indeed any 
other land cover) within the deer home ranges here, 
might be an indication that G. truncatula has a wide 
tolerance for other habitats (e.g. in terms of soil pH; as 
also noted in Orkney; [10]). Alternatively, G. trunca-
tula might not be the only important intermediate host, 
and intermediate hosts that are more tolerant of upland 
environments may occupy a more prominent role in the 
F. hepatica life-cycle in the Scottish Highlands than is 
typical in lowland habitats. This latter hypothesis is sup-
ported by 19 records of a less common host, R. balthica 
[19, 63, 64], identified during kick sampling of streams in 
peatland and heather dominated habitats [55, 56].

While we could not disentangle associations between 
sex and sampling date, their relatively strong explanatory 
contribution (here mostly weighted to a large effect size 
for sex; when compared to those estimated for land cover 
and meteorological variables) alluded to at least one or 
the other’s substantial association with F. hepatica diag-
noses. Where these effects have been disentangled using 
year-round coprological surveys of male and female wild 

Scottish red deer [16], male biased F. hepatica diagno-
sis has not been observed, whereas seasonal variation in 
prevalence and intensity of F. hepatica diagnoses appears 
strong. In this case, significantly lower prevalence and 
intensity of infection (faecal egg counts) occurred in adults 
of both sexes during winter (i.e. our female sampling sea-
son) [16]. The fact that any temporal signature is detect-
able despite the lack of anthelmintic treatment of wild 
deer begs further questions. For example, to what extent 
are diagnoses during a given hunting season a reflection of 
infection in the previous year, as opposed to lifetime bur-
den? Or, do our observations reflect temporal changes in 
F. hepatica coproantigen detectability, perhaps related to 
physiological changes such as fatty liver, which occurs in 
males following the breeding season [65]? If, conversely, 
our coefficient estimates reflect a true underlying male 
biased parasitism, this would reflect observations in other 
wild ungulates (e.g. lungworm (Protostrongylidae) in red 
deer [66] and chamois (Rupicapra rupicapra rupicapra) 
[67]).

Variance explained and transferability of findings
We were aware that the explanatory power of regression 
type analyses inevitably increases with the addition of 
variables, so we had to ensure we did not overparameter-
ize and thus overfit our model. Various methods to assess 
the transferability of model findings related to F. hepatica 
exposure in livestock and environmental variability have 
been explored. For example, using linear regression and 
a range of explanatory environmental variables, Howell 
et  al. [8] used comparisons of R2 between training and 
test data to assess transferability, whereby their fitted 
model explained 37% of differences in F. hepatica expo-
sure among farms in England and Wales, which notably 
increased to 49% using held-out test data. In Northern 
Ireland, transferability of findings has been assessed by 
constructing multiple models and comparing their coef-
ficient estimates, i.e. identifying the most parsimonious 
model for each year within their study (based on lowest 
value of the Akaike’s information criterion). There, Byrne 
et al. [68] noted that separate models for 2011, 2012 and 
2013 data that described variance in a binary response 
variable (F. hepatica severity based on cattle herd level 
prevalence) inconsistently retained long-term weather 
variables. In the present study, the transferability of our 
model was encouraging owing to only a slight reduction 
in point estimates of prediction efficacy for our model 
when applied to held-out data from 2012–2013. Never-
theless, this demonstrates that our estimate of explained 
variance (R2 of 28%) might be marginally over-optimistic.

The amount of variance attributable to unmeasured 
differences among estates warrants further attention; in 
this regard, a range of finer scale habitat covariates might 

Fig. 4  Visual representation of a generalised linear mixed effect 
model parameter estimate describing probability of positive 
Fasciola hepatica coproantigen ELISA diagnosis in wild red deer 
(Cervus elaphus) in relation to stream length. Model covariates 
were mean-centred and scaled to standard deviation units prior to 
modelling, but axes labels are back-transformed to aid interpretation. 
This plot illustrates the probability of a positive diagnosis for a sample 
collected from a deer with a home range stream length exceeding 
(x > 0), or less than (x < 0), a deer that occupies “average habitat” 
(x = 0). Relationships for males (dashed) and females (solid) are 
illustrated with thick lines; thin lines indicate 95% (Wald) confidence 
intervals calculated using the random effect standard deviation. 
Histograms at the top (upside down filled) and bottom (unfilled) of 
the plot illustrate the number of deer for which faecal samples were 
allocated a positive and negative cELISA diagnosis, respectively
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improve the explanatory power of these models. However, it 
is perhaps management related factors (such as supplemen-
tary feeding, which is practiced widely in the Scottish High-
lands [69]), that could influence (amongst other factors) 
deer habitat use and spatial aggregation [70] and might thus 
facilitate the greatest gains in model performance. Unfenced 
livestock, which are also present in some Scottish Highland 
hunting estates, are also feasible contributors to F. hepatica 
infection risk for wild deer (and vice versa).

Estate scale non‑independence in diagnoses
Any spatial (e.g. Fig.  3) and temporal dependencies in the 
raw data were accounted for by our model specification. 
However, in terms of spatial dependency, our (induced) 
intraclass compound symmetry correlation structure 
demonstrated that diagnoses within sites were not neces-
sarily independent from each other. While a compound 
symmetry structure implies that spatial dependencies act 
equally as strongly over short distances as they do over 
tens of kilometres (e.g. between two animals on opposite 
extremities of the same hunting estate), this is a simplified 
picture. Because of a lack of significant Moran’s I or spatial 
patterns in residuals, we did not attempt to explicitly quan-
tify distances over which underlying epidemiological neigh-
bourhood scale processes act (i.e. between animals with 
overlapping home ranges). However, should future surveil-
lance data be of sufficiently high resolution, it might be pos-
sible to gain an insight into such processes, as advocated in 
terms of spatial [13] and temporal dependencies in F. hepat-
ica infection and indeed for parasitology in general [71].

Limitations
Ideally, our surveillance data would have mirrored a fully-
crossed (full-factorial) randomized block experimental 
design insofar as all values for host and environmental 
explanatory variables would have been replicated on all 
sampled hunting estates [72]. However, differences in 
management practices meant that some estates (for exam-
ple) culled females until late December, while others con-
tinued culling until mid-February. Furthermore, we did 
not include finer scale habitat information, such as Juncus 
spp. infested grassland, which is present in LCS88 and is a 
useful indicator of G. truncatula presence [73], because it 
was not present on all estates. While our random intercept 
approach went some way to dealing with our partially-
crossed design, it left considerable room for influential 
estates, i.e. estates for which exclusive combinations of 
explanatory and response variable values were present. For 
example, NA estate had the greatest influence on the date 
culled parameter because more than half of the diagnoses 
were positive and samples at NA were collected an aver-
age of 20 days later than the next latest sampling estate, 
CO. Similarly, a positively diagnosed sample at AR had 

the greatest influence on the smooth grassland parameter 
(albeit ultimately a zero-effect parameter) owing to the 
large proportion of smooth grassland in its home range.

The effective sample size of our model training data 
must be considered in relation to two aspects of statistical 
power. First, for an exploratory study such as ours, power 
to detect a hypothesised effect size for an explanatory vari-
able is calculated from the combined influence of the mag-
nitude of effect size, the number of samples per hunting 
estate, the number of estates, and the properties of the var-
iable of interest (e.g. bounded land cover proportion; con-
tinuous stream length). Here, our study detected a positive 
association between F. hepatica diagnosis and the length of 
stream within red deer home range. Were this effect size 
to be arbitrarily classified as “medium” (for example, owing 
to a coefficient estimate of ~0.4 standard deviation units), 
it is important to note that the size of this effect might be 
overestimated (positively biased) if the power of the design 
to identify such effects is low (e.g. as demonstrated by sim-
ulation studies [74]). Regardless, the confidence intervals 
(Table 3 and Fig. 4), serve as a warning as to the precision 
of this effect size estimate.

The second aspect of statistical power to consider is the 
possibility of Type II error, i.e. does percentage of smooth 
grassland occupying home ranges of red deer really not 
associate with the probability of F. hepatica diagnosis, 
or did our design have insufficient power to detect an 
effect? Relative to stream length, it appears likely that 
any underlying association between F. hepatica diagnosis 
and smooth grassland is small. To provide an indication 
of possible Type II error, we retrospectively estimated the 
power of our analysis (using the simr R package [75]) to 
detect a defined small effect size (0.2 SD) for grassland. 
The resulting estimate of 32% power based on 250 simu-
lations is undesirable, but nevertheless must be consid-
ered in the context of the aim of the study. Our study was 
exploratory and dependent on sample collections from 
wild deer, rather than based on controlled field manipu-
lation whereby a design could test for particular sizes of 
effects (e.g. small, ≤ 0.2 SD), though tools and guidance 
for a priori simulation based power analysis for GLMMs 
have become available since study [75, 76]); thus, while 
our results should be considered inconclusive with 
regards to a possible small association between smooth 
grassland percentage and F. hepatica diagnosis, we can 
nevertheless have confidence that had there been a larger 
effect (e.g. 0.5 SD, again tested using the simr R package 
[75]), we had 93% power to detect it.

Our delineated home ranges, while roughly reflecting 
those for male red deer inhabiting the south west Scot-
tish Highlands (4–30  km2) [77], were nevertheless esti-
mates and home ranges may not be consistent across all 
our study sites. For example, home range estimates for 
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Scottish island (or coastal) dwelling female red deer may 
be relatively smaller (at mean ± SD; 1.3 ± 1.6 km2) than our 
estimates [78]. In addition, our data collection spanned 
only seven months of each sampling year and it is unclear 
whether cull locations accurately represent the centroid of 
each individual’s annual home range. This is because red 
deer have different winter and summer ranges depend-
ing on (for example) sex and broad-scale habitat type [79]. 
While more precise knowledge of habitat use by indi-
vidual deer might have improved our model performance 
(i.e. prediction efficacy and transferability), it is neverthe-
less worth noting that Scottish red deer are less selective 
in terms of grazing patch sizes than other herbivores such 
as sheep, which tend to prefer smaller patches [80]; thus, 
proportions of immediate surrounding land cover (as 
quantified herein) might indeed usefully describe variation 
in wild red deer habitat related to (for example) a greater 
probability of encountering infective metacercariae.

The consequences of over- or underestimating red deer 
home ranges in this study might introduce bias to param-
eter estimates. For example, if female ranges were over-
estimated, we would in turn be overestimating the length 
of stream in their habitat. As such, fewer samples from 
females than males were diagnosed positive; therefore, it 
is possible that a portion of the negative diagnoses clus-
tered with relatively long home range stream lengths (e.g. 
in Fig. 4) were derived from female samples (see similar 
ranges for both sexes in Table  2) and may therefore be 
deflating the effect size. This is just one example, but it is 
important to be aware of the consequences of inaccurate 
home range estimates in exploratory studies of this type.

Finally, we note that owing to the sensitivity of the 
cELISA, a portion of positive infections will have been 
missed and this is likely to have diluted the strength of 
effects identified by our model.

Conclusions
The probability of F. hepatica diagnosis in Scottish 
Highland deer is ostensibly associated with variation 
between the sexes and/or the date on which samples 
are collected, and the length of streams in an individu-
al’s home range. The association between stream length 
and diagnosis might be related to the suitability of habi-
tat for intermediate snail hosts (with stream length per-
haps acting as a useful proxy related to the likelihood 
of exposure and thus infection). However, the prevail-
ing importance of various possible intermediate host 
species requires further investigation. Greater odds of 
positive diagnosis in males relative to females reflects 
observations in other ungulates; and, whilst sex was 
inherently correlated with sampling date (thus inflat-
ing the variances associated with our model coeffi-
cient estimates for these two variables), this served to 

demonstrate that the association between at least one 
of these variables and diagnosis of F. hepatica is strong. 
While we did not identify any non-zero relationship 
between meteorological variables and probability of 
diagnosis, we attribute this (in part) to uncertainty in 
the modelling of climate data in topographically diverse 
regions. The statistical power of the model was prob-
ably limited by a deflated effective sample size and 
as such we advocate a wider geographical sampling 
protocol (no more samples per site, but more sites). 
More than half of the explained variation in diagnosis 
probability was attributable to unquantified overarch-
ing differences among sampling sites, which highlights 
significant gaps in basic data (i.e. regarding habitat and 
deer management), and in our understanding. Exten-
sions to explore neighbourhood-scale processes affect-
ing F. hepatica transmission could be applied to this 
study, such as intensive sampling in areas with low F. 
hepatica prevalence. We would then advocate a simi-
lar approach to that taken here, in which confidence in 
the transferability of findings should be mediated by an 
evaluation of any explanatory model in terms of predic-
tion efficacy and transferability.
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Additional file 1: Figure S1. Standardized residuals vs predictors. This 
figure revealed no strong evidence of non-linear relationships between 
predictors and response (probability of diagnosis). The plot was produced 
using the plotResiduals() function in the DHARMa R package [43].

Additional file 2: Residuals vs time (mean-centred and standard devia‑
tion scaled days after 1st July 2012) (left), autocorrelation function (ACF) 
for diagnostic data vs time lags of up to 25 days for model residuals (right). 
The dashed lines in the ACF plot illustrate the magnitude of the autocor‑
relation function beyond which autocorrelation is statistically significant. 
Therefore, this figure reveals borderline residual temporal autocorrelation 
at 1- and 8-days lag; neither of which we consider to be of concern. The 
figure was produced using the testTemporalAutocorrelation() function in 
the DHARMa R package [43] and the acf() function in the ncf R package 
[81].

Additional file 3: Figure S3. Spatially plotted residuals. This figure 
revealed no evidence of residual spatial autocorrelation and was created 
using an adaptation of the testSpatialAutocorrelation() function in the 
DHARMa R package [43]. The colour scale illustrates the magnitude of 
scaled simulated uniform residuals.
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