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Thioredoxin peroxidase secreted 
by Echinococcus granulosus (sensu stricto) 
promotes the alternative activation 
of macrophages via PI3K/AKT/mTOR pathway
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Abstract 

Background:  Larvae of Echinococcus granulosus (sensu lato) dwell in host organs for a long time but elicit only a mild 
inflammatory response, which indicates that the resolution of host inflammation is necessary for parasite survival. The 
recruitment of alternatively activated macrophages (AAMs) has been observed in a variety of helminth infections, and 
emerging evidence indicates that AAMs are critical for the resolution of inflammation. However, whether AAMs can 
be induced by E. granulosus (s.l.) infection or thioredoxin peroxidase (TPx), one of the important molecules secreted by 
the parasite, remains unclear.

Methods:  The activation status of peritoneal macrophages (PMs) derived from mice infected with E. granulosus 
(sensu stricto) was analyzed by evaluating the expression of phenotypic markers. PMs were then treated in vivo and in 
vitro with recombinant EgTPx (rEgTPx) and its variant (rvEgTPx) in combination with parasite excretory-secretory (ES) 
products, and the resulting activation of the PMs was evaluated by flow cytometry and real-time PCR. The phospho‑
rylation levels of various molecules in the PI3K/AKT/mTOR pathway after parasite infection and antigen stimulation 
were also detected.

Results:  The expression of AAM-related genes in PMs was preferentially induced after E. granulosus (s.s.) infection, 
and phenotypic differences in cell morphology were detected between PMs isolated from E. granulosus (s.s.)-infected 
mice and control mice. The administration of parasite ES products or rEgTPx induced the recruitment of AAMs to the 
peritoneum and a notable skewing of the ratio of PM subsets, and these effects are consistent with those obtained 
after E. granulosus (s.s.) infection. ES products or rEgTPx also induced PMs toward an AAM phenotype in vitro. Interest‑
ingly, this immunomodulatory property of rEgTPx was dependent on its antioxidant activity. In addition, the PI3K/
AKT/mTOR pathway was activated after parasite infection and antigen stimulation, and the activation of this pathway 
was suppressed by pre-treatment with an AKT/mTOR inhibitor.

Conclusions:  This study demonstrates that E. granulosus (s.s.) infection and ES products, including EgTPx, can induce 
PM recruitment and alternative activation, at least in part, via the PI3K/AKT/mTOR pathway. These results suggest that 
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Background
Cystic echinococcosis (CE), which is caused by Echi-
nococcus granulosus (sensu lato) at the larval stage, is 
regarded as a severe chronic helminthic disease with a 
worldwide distribution [1]. Larvae of E. granulosus (s.l.) 
mainly dwell in the liver and lungs of the intermediate 
host, where they develop into a unilocular, fluid-filled 
cyst containing the larval worms or protoscoleces (PSCs). 
The hydatid cyst can reach several centimeters in diame-
ter and is characterized by mild local inflammation [2, 3]. 
After the hydatid cyst ruptures, the spillage of PSCs into 
the peritoneal cavity (PerC) generates new cysts that usu-
ally cause a secondary CE infection, which is also a life-
threatening form of human CE [4]. Recent studies have 
shown that the intraperitoneal injection of PSCs into 
mice induces a significant cellular inflammatory response 
at the early stage that involves macrophage, eosinophil, 
neutrophil and lymphocyte infiltration [5, 6], whereas at 
the cyst establishment stage, the parasite induces inflam-
matory cell infiltration but generally does not elicit a 
severe inflammatory response [2, 7]. This phenomenon 
indicates that E. granulosus (s.l.) has the ability to skew 
the peritoneal immune response away from a proin-
flammatory response and toward an anti-inflammatory 
response to avoid clearance. However, the mechanism 
through which the parasite modulates the host inflam-
matory response to favor its establishment in the host is 
unclear.

Macrophages play a bridge role between innate and 
adaptive immunity and are thus critical mediators of 
many chronic inflammatory diseases [8]. Peritoneal mac-
rophages (PMs), which are one of the best-studied mac-
rophage populations, play important roles in the control 
of infections and inflammatory pathologies [9], and two 
PM subsets in the mouse PerC were recently classified: 
large peritoneal macrophages (LPMs) and small perito-
neal macrophages (SPMs) [10]. Studies of the functional 
profiles of these PMs have shown that LPMs appear to 
play a role in the maintenance of PerC physiological con-
ditions as alternatively activated macrophages (AAMs), 
whereas SPMs present a pro-inflammatory functional 
profile during inflammatory initiation and control infec-
tions as classically activated macrophages (CAMs) [11]. 
CAMs are characterized by high expression of induc-
ible nitric oxide synthase (iNOS) and TNF-α and exhibit 
microbicidal properties. In contrast, AAMs, which are 

characterized by high expression of mannose receptor 
(also known as CD206), arginase-1 (Arg-1), Ym1, and 
Fizz1, generally exhibit anti-inflammatory properties 
and thus have the ability to suppress Th1-driven inflam-
matory pathology during helminth infections [8, 12, 
13]. In addition, AAMs are critically involved in favor-
ing susceptibility during helminth infection because the 
early removal of these cells leads to Taenia crassiceps 
cysticercosis clearance in vivo [14]. Many studies have 
reported that AAMs are highly activated and recruited 
during infection with a range of different helminths, such 
as Heligmosomoides polygyrus [15], Trichinella spiralis 
[16], Fasciola hepatica [17] and Schistosoma mansoni [18, 
19]. It has been reported that E. granulosus (s.l.) infection 
can effectively inhibit inflammation in a murine colitis 
model by reducing TNF-α production and iNOS induc-
tion by CAMs [20]. However, whether and how AAMs 
are induced after E. granulosus (s.l.) infection remain to 
be clarified.

It has been demonstrated that parasite excretory-
secretory (ES) products or some released parasite sur-
face molecules can directly modulate host immune 
cells to promote parasite survival [21–23]. ES products 
derived from E. granulosus (s.l.) are well known to reg-
ulate T cell responses, dendritic cell maturation and B 
cell subset differentiation [24–29], but their regulation 
of macrophage activation is not well understood. Recent 
studies have shown that E. granulosus (s.l.) laminated 
layer (LL) extracts can induce arginase expression, a hall-
mark of AAMs, to counteract NO production by CAMs 
in mouse PMs in vitro [30]. In addition, LL extracts can 
also increase PSC survival in macrophage-parasite cocul-
tures, which indicates that LL impairs the host protec-
tive inflammatory response by inducing AAM activation. 
Thioredoxin peroxidase (TPx), an antioxidant enzyme, is 
expressed during all developmental stages of E. granu-
losus (s.l.) [31]. A recent proteomic analysis identified 
EgTPx as one of the abundant ES proteins secreted by 
the parasite, and this finding suggests that this protein 
plays an important role in the host-parasite interactions 
[32–35]. In addition, we have shown that the knockdown 
of EgTPx gene expression by RNAi leads to impaired 
growth of E. granulosus (sensu stricto) both in vitro and 
in vivo, which indicates that the EgTPx gene plays an 
important role in parasite survival [36]. Previous studies 
have shown that the 2-Cys peroxiredoxin (Prx) derived 

EgTPx-induced AAMs might play a key role in the resolution of inflammation and thereby favour the establishment of 
hydatid cysts in the host.
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from the flukes S. mansoni and F. hepatica can drive the 
activation of AAMs [13]. However, whether EgTPx is an 
atypical 2-Cys Prx that can induce AAMs to shape the 
immune response of the host to favor hydatid cyst estab-
lishment remains unclear.

In this study, we investigated the activation status of 
PMs in a mouse model infected with E. granulosus (s.s). 
larvae through intraperitoneal inoculation and evalu-
ated the effect of an important recombinant ES product 
(rEgTPx) on PM activation in vivo and in vitro. Because 
the mTOR pathway was recently reported to play a 
critical role in regulating macrophage differentiation in 
response to helminth infection [37, 38], we further inves-
tigated whether this signaling pathway is involved in 
EgTPx-induced PM alternative activation.

Methods
Mice
Pathogen-free female BALB/c mice (6 weeks of age) were 
purchased from Beijing Vital River Laboratory Animal 
Technology Company Limited, housed in specific path-
ogen-free facilities with a 12 h light/dark photocycle and 
provided rodent chow and water ad libitum.

Parasite isolation and ES products preparation
The PSCs of E. granulosus (s.s.) (genotype G1, a common 
sheep strain) used in this study were obtained from fertile 
sheep liver hydatid cysts collected from a slaughterhouse 
in Urumqi, Xinjiang, China, according to the proto-
cols detailed by Zhang et al. [39]. Briefly, the PSCs were 
removed aseptically from intact cysts, digested with pep-
sin, washed several times in sterile phosphate-buffered 
saline (PBS) containing 100 U/ml penicillin and 100 µg/
ml streptomycin and then maintained in RPMI 1640 cul-
ture medium (Gibco, Auckland, New Zealand) at 37  °C. 
The viability of the PSCs was determined by methylene 
blue exclusion analysis [40]. Only the PSC samples with 
higher than 95% viability were used in the study.

Parasite ES products were prepared following a reli-
able procedure previously described by other researchers 
with some modifications [29, 34]. Freshly isolated PSCs 
were transferred into flasks and cultured at a density of 
10,000 PSCs/ml in 20  ml of sterile PBS supplemented 
with 100 U/ml penicillin and 100 µg/ml streptomycin at 
37 °C in 5% CO2. Forty-eight hours after incubation, the 
entire volume of culture medium containing the parasite 
ES products (20 ml) was collected, concentrated 40-fold 
using Amicon Ultra-15 centrifugal filters (Millipore, Bill-
erica, MA, USA), and filtered through a 0.22  µm filter 
(Millipore, Billerica, MA, USA). The concentration of the 
ES products was measured using a BCA assay (Thermo 
Fisher Scientific, Rockford, IL, USA), and the products 
were stored at − 80 °C until use.

Preparation of a recombinant ES product (rEgTPx) and its 
variant (rvEgTPx)
Total RNA from E. granulosus (s.s.) PSCs was isolated 
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer’s recommended protocol. 
The extracted RNA was treated with RNase-free DNase 
I (Fermentas, Vilnius, Lithuania) to remove potential 
genomic DNA contaminants and then reverse tran-
scribed into cDNA using the PrimeScriptTM RT Rea-
gent Kit (Fermentas, Vilnius, Lithuania). The complete 
open reading frame (ORF) of EgTPx was amplified using 
gene-specific primers containing EcoRI and Not I restric-
tion sites and ligated into the pET-28a vector with an 
N-terminal 6× His-tag (Novagen, Madison, WI, USA). 
The expression construct was transformed into compe-
tent Escherichia coli BL21 (DE3) cells (Tiangen, Beijing, 
China.) and purified using a His-binding resin (Novagen) 
according to the manufacturer’s instructions. A recom-
binant variant of EgTPx (rvEgTPx) was prepared by syn-
thesizing the gene with the reactive Cys48 and Cys169 
residues replaced by Gly residues. Residual bacterial 
endotoxin was removed from the purified recombinant 
proteins by phase separation using Triton X-114. The 
protein purity was analyzed by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), and the 
protein concentrations were measured using a BCA pro-
tein assay kit (Thermo Fisher Scientific).

The specific enzymatic activities of rEgTPx and 
rvEgTPx were determined through metal-catalyzed oxi-
dation (MCO) DNA cleavage protection assays [31]. 
Briefly, purified rEgTPx and rvEgTPx proteins with final 
concentrations ranging from 6.25 to 100  μg/ml were 
incubated in 50 μl reaction mixtures containing 16.5 μM 
FeCl3 and 3.3 mM dithiothreitol (DTT) for 2 h at 37  °C 
and then with pET28a (800 ng) supercoiled plasmid DNA 
for an additional 2.5 h. The degree of DNA degrada-
tion was evaluated by electrophoresis with a 1.0% (w/v) 
agarose gel. The correct folding of rEgTPx and its vari-
ant was confirmed by assessing their migration via SDS-
PAGE under reducing and nonreducing conditions [13].

Animal infection and treatment with parasite antigens
For infection, each mouse was intraperitoneally (i.p.) 
transplanted with 50 E. granulosus (s.s.) microcysts 
(250–300  μm in diameter) cultured in vitro as previ-
ously described [39] or directly inoculated with 200  μl 
of a suspension containing 2000 live PSCs in PBS [29]. 
The control mice were injected with 200 μl of PBS. After 
the experimental period (3 or 6 months post-infection), 
the mice were necropsied, and peritoneal exudate cells 
(PECs) were harvested through three washes of the PerC 
with 5 ml of sterile PBS. For parasite antigen treatment, 
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the mice were administered nine i.p. injections of 5 μg of 
the parasite ES products or purified rEgTPx or rvEgTPx 
on alternate days, and PBS was injected as a negative con-
trol. PECs were harvested 2 days after the final injection.

In vitro treatment of PMs with parasite antigens
For in vitro experiments, PMs were elicited through the 
i.p. injection of 800  μl of 4% w/v sterile thioglycollate 
medium into mice and the harvesting of PECs four days 
post-injection [12]. For antigen treatment, the purified 
PMs were adjusted to a density of 1 ×  106 cells/ml and 
then cultured with PBS or 10  μg/ml parasite ES prod-
ucts, rEgTPx or rvEgTPx in a six-well plate for 24 h, and 
lipopolysaccharide (LPS; 50 ng/ml, Sigma, St. Louis, MO, 
USA) and IL-4 (20  ng/ml, PeproTech, Rocky Hill, CT, 
USA) were used as the negative and positive controls, 
respectively [19]. The cells were washed with PBS and 
then analyzed by quantitative real-time PCR (qRT-PCR).

To determine whether the PI3K/AKT/mTOR pathway 
is involved in the alternative activation of PMs, the PMs 
were preincubated with the inhibitors LY294002 (an Akt-
specific inhibitor, Selleck Chemicals, Houston, TX, USA) 
and rapamycin (a mTOR inhibitor, Selleck Chemicals) 
for 1 h and then cultured with parasite antigens (50 μg/
ml ES products and 10 μg/ml rEgTPx) for 12 h. After the 
treatments, cell lysates were collected for assessment of 
the Akt and mTOR phosphorylation levels by Western 
blotting.

Flow cytometry analysis
PMs were purified from PECs as described previously 
[12], and the PEC purity was analyzed by fluorescence-
activated cell sorting (FACS) staining using the mac-
rophage markers F4/80 and CD11b. For cell morphology 
analysis, adherent macrophages from uninfected and E. 
granulosus (s.s.)-infected mice were imaged using an 
inverted microscope (Leica, Wetzlar, Germany). For 
FACS analysis, the PECs were adjusted to a density of 
1 ×  106 cells/ml, incubated with anti-CD16/CD32 anti-
bodies (BioLegend, San Diego, CA, USA) for 20  min 
at 4  °C in the dark and then stained with the following 
fluorescently labeled antibodies specific for cell surface 
markers for 25  min: anti-CD45; anti-NK1.1; anti-CD3; 
anti-CD19; anti-F4/80; anti-CD11b, anti-CD80; anti-
CD86; and anti-MHC II (BioLegend). For detection of the 
CAM and AAM phenotypes, the PECs were stained with 
anti-CD45, anti-NK1.1, anti-CD3, anti-CD19, anti-F4/80, 
and anti-CD11b antibodies at 4  °C for 30  min, washed 
and then fixed in Cytofix/Cytoperm (BD Biosciences, 
Franklin Lakes, NJ, USA) according to the manufac-
turer’s instructions for staining with anti-CD206 (AAM 
marker) and anti-iNOS (CAM marker) antibodies. All 
samples were run on an LSRFortessa flow cytometer (BD 

Immunocytometry Systems, San Jose, CA, USA), and the 
data were analyzed using FlowJo software (version V10; 
TreeStar Inc., Ashland, OR, USA). Corresponding fluo-
rochrome-labeled IgG isotype control antibodies were 
used in parallel. The percentage of cells that were stained 
positive for each surface protein was determined by com-
paring the test samples with the isotype control-stained 
samples. Information on the antibodies utilized in this 
assay is shown in Additional file 1: Table S1.

Western blot analysis
The cells were lysed in RIPA buffer containing a phos-
phatase and protease inhibitor cocktail (EMD Millipore, 
Temecula, CA, USA). Thirty micrograms of protein was 
separated by 10% SDS-PAGE, transferred to polyvi-
nylidene fluoride (PVDF) membranes (Millipore Corp., 
MA, USA), and incubated with rabbit anti-phospho-
mTOR (1:1000), anti-mTOR (1:1000), anti-phospho-
AKT (1:1000), anti-AKT (1:1000), anti-PI3K (1:1000), or 
anti-β-actin (1:1000) antibodies overnight at 4  °C. The 
membranes were then incubated with alkaline phos-
phatase-conjugated anti-rabbit IgG antibodies (1:2000; 
Cell Signaling Technology, Danvers, MA, USA) for 1  h 
and visualized using a BCIP/NBT kit (Invitrogen, Carls-
bad, CA, USA).

qRT‑PCR analysis
Total RNA from PMs was isolated and reverse tran-
scribed into cDNA as described above. qRT-PCR was 
conducted using the SYBR Green PCR premix (TaKaRa, 
Dalian, China) and run on a qRT-PCR instrument (iQ5 
Bio-Rad, Hercules, CA, USA) as described previously 
[41]. The reaction conditions were as follows: stage 1, 
95 °C for 30 s; stage 2, 40 cycles of 95 °C for 5 s and 60 °C 
for 30 s; and stage 3, melting curve analysis. The relative 
expression of the target genes was determined by the 
comparative quantification cycle (Cq) normalized against 
the housekeeping gene (GAPDH) using the 2−ΔΔCq 
method [29, 42]. The sequences of all primers used in this 
analysis are shown in Table 1.

Statistical analysis
The results are presented as the mean ± standard error 
of the mean (SEM) and were analyzed using GraphPad 
Prism software (GraphPad Software, Inc., USA). The sta-
tistical significance was assessed by one-way ANOVA 
with Tukey’s multiple comparison test, and Student’s 
t-test was used for the comparisons of only two groups. 
Differences were considered significant at *P  <  0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001.
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Results
Echinococcus granulosus (s.s.) infection induces PMs 
to differentiate into an alternatively activated phenotype
To determine whether E. granulosus (s.s.) infection 
induces the alternative activation of PMs, PMs were col-
lected by adherence from mice 6 months after infection 
with E. granulosus (s.s.) microcysts. The expression of 
the genes encoding Ym1, Fizz1 and Arg1 (AAM marker) 
and iNOS (CAM marker) in PMs was examined. We 
found that E. granulosus (s.s.) infection increased the 
recruitment of PECs to the PerC (t(8) =  2.65, P =  0.03) 
(Fig.  1a). PMs isolated from the PerC of infected mice 
(Eg-Mφ) showed higher expression levels of Ym1, Fizz1 
and Arg1 than PMs isolated from control mice treated 
with PBS (PBS-Mφ). Very low levels of iNOS expression 
were detected (Fig.  1b). In addition, the morphology of 
the Eg-Mφ differed from that of the PBS-Mφ. The Eg-Mφ 
were tightly adherent with spread-out processes, whereas 
the PBS-Mφ were less adherent and showed a more 
rounded shape, which might indicate a distinct func-
tional role for Eg-Mφ (Fig. 1c).

rEgTPx induces PMs to differentiate into an alternatively 
activated phenotype in vivo
To evaluate the effects of the important ES prod-
uct EgTPx on the activation of PMs and to determine 
whether the antioxidant activity of EgTPx is involved 
in PM activation, we first constructed rEgTPx and then 
created an inactive recombinant variant (rvEgTPx) by 
replacing Cys48 and Cys169 with Gly residues (Addi-
tional file  2: Figure S1a). At a relatively high concentra-
tion, rEgTPx prevented the processing of plasmid DNA 
from a supercoiled form to a nicked form in an MCO sys-
tem. However, rvEgTPx did not protect against this type 
of damage (Additional file  2: Figure S1b). In addition, 
rvEgTPx did not form disulfide linkages and thus mainly 
remained in its monomeric form under nonreducing 
conditions (Additional file  2: Figure S1c), which further 
confirmed that the variant was constructed successfully.

Mice were then administered nine intraperitoneal 
injections of rEgTPx, rvEgTPx or native parasite ES 
products and were also intraperitoneally injected 
with PSCs for 3  months in parallel with the antigen 

Table 1  Sequences of the qRT-PCR primers

Gene GenBank ID Forward primer Reverse primer

iNOS NM_010927.3 TTC​ACC​CAG​TTG​TGC​ATC​GAC​CTA​ TCC​ATG​GTC​ACC​TCC​AAC​ACA​AGA​

TNF-α NM_013693.3 AAG​CCT​GTA​GCC​CAC​GTC​GTA​ AGG​TAC​AAC​CCA​TCG​GCT​GG

IL-10 NM_010548.2 GCC​AGA​GCC​ACA​TGC​TCC​TA GAT​AAG​GCT​TGG​CAA​CCC​AAG​TAA​

Ym1 NM_009892.3 TCT​CTA​CTC​CTC​AGA​ACC​GTC​AGA​ GAT​GTT​TGT​CCT​TAG​GAG​GGC​TTC​

Fizz1 NM_181596.4 TAC​TTG​CAA​CTG​CCT​GTG​CTT​ACT​ TAT​CAA​AGC​TGG​GTT​CTC​CAC​CTC​

Arg1 NM_007482.3 CTC​CAA​GCC​AAA​GTC​CTT​AGAG​ AGG​AGC​TGT​CAT​TAG​GGA​CATC​

GAPDH NM_001289726.1 CAT​GGC​CTT​CCG​TGT​TCC​TA CCT​GCT​TCA​CCA​CCT​TCT​TGAT​

Fig. 1  E. granulosus (s.s.) infection induces an alternatively activated phenotype in macrophages and different cell morphologies. a Total counts of 
peritoneal exudate cells (PECs) isolated from E. granulosus-infected or control mice. b Expression levels of phenotypic markers (Ym1, Arg1, Fizz1 and 
iNOS) in adherent PECs isolated from control mice and infected mice analyzed by RT-PCR. c Morphological observation of adherent PECs isolated 
from control mice and infected mice. The data are shown as the mean ± SEM (n = 5). Abbreviations: Con, control; E. g., E. granulosus (s.s.). *P < 0.05. 
Scale-bars: c, 200 µm for 100×; 100 µm for 200×
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treatments. PECs were harvested and examined by RT-
PCR and FACS. Similar to the results obtained with E. 
granulosus (s.s.) infection, PMs isolated from ES- and 
rEgTPx-treated mice also showed higher expression 
levels of AAM-related genes (Ym1, Fizz1 and Arg1) 
than these cells from the control mice (Additional 
file 2: Figure S1d). We identified the CD11bhighF4/80high 
LPM and CD11blowF4/80low SPM populations in the 
PECs after excluding cell aggregates and other peri-
toneal immune cells using an antibody cocktail that 
recognizes CD3, NK1.1 and CD19 (Additional file  3: 
Figure S2). The percentages of LPMs and SPMs were 
significantly decreased (F(3, 16) = 100.4, P < 0.0001) and 
increased (F(3, 16)  =  164.5, P  <  0.0001) in the ES and 
rEgTPx treatment groups and the E. granulosus (s.s.) 
infection group compared with the rvEgTPx and PBS 
control groups (Figs.  2a, b, 3a, b). We subsequently 
examined the expression of CAM (iNOS) and AAM 
(CD206) markers in these PM subsets, and the results 
showed that compared with the administration of PBS, 
the delivery of ES products and rEgTPx or infection 

with PSCs significantly increased the percentage of 
CD206+ macrophages in both the LPM (F(3 16) = 41.22, 
P  <  0.0001) and SPM (F(3, 16)  =  251.7, P  <  0.0001) 
subsets and reduced the percentage of iNOS+ mac-
rophages in the SPM subset (F(3, 16) = 8.9, P = 0.0008) 
(Figs. 2c, 3c and Additional file 4: Figure S3). Interest-
ingly, lack of EgTPx enzymatic activity (rvEgTPx deliv-
ery) had no effect on the ability to skew PMs toward the 
AAM phenotype. In addition, we found that the mean 
fluorescence intensity (MFI) of CD80 in the LPMs from 
ES- and rEgTPx-injected and PSC-infected mice was 
significantly increased (F(3, 16) = 10.99, P = 0.0004), but 
no differences in the MFIs of CD86 and MHC II were 
detected. In contrast, the MFIs of MHC II were sig-
nificantly increased (F(3, 16) =  3.19, P =  0.0486) in the 
SPMs from rEgTPx-injected and PSC-infected mice. 
The MFI of FSC-A in both the LPMs (F(3, 16) =  16.03, 
P < 0.0001) and SPMs (F(3, 16) = 11.72, P = 0.0003) from 
ES- and rEgTPx-injected and PSC-infected mice was 
higher than that in the same cell populations from con-
trol mice (Figs. 2c, 3c).

Fig. 2  Parasite antigen treatment skewed the PM subsets and induced an alternatively activated phenotype in PMs in vivo. a Representative FACS 
plots of LPMs and SPMs. b Percentages of CD11bhighF4/80high LPMs and CD11bintF4/80int SPMs in the peritoneal exudates from mice belonging 
to the different groups. c Percentages of iNOS+ macrophages (CAMs) and CD206+ macrophages (AAMs) in LPMs and SPMs and the expression 
patterns of cell surface markers (CD80, CD86, and MHCII) in LPMs and SPMs after parasite antigen treatment. The sizes of LPMs and SPMs were 
determined using the FSC-A parameter. The data are depicted as the mean fluorescence intensities (MFIs) for each surface marker. The data are 
shown as the mean ± SEM (n = 5). *P < 0.05, **P < 0.01, ***P < 0.001
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rEgTPx induces PMs to differentiate into an alternatively 
activated phenotype in vitro
To evaluate the effects of rEgTPx on macrophage phe-
notypes in vitro, thioglycollate-elicited PMs were puri-
fied and treated with ES products, rEgTPx, rvEgTPx, 
LPS (negative control) or IL-4 (positive control), and 
the expression of CAM and AAM markers in these 
PMs were then determined by qRT-PCR. The results 
showed that compared with the PBS control treatment, 
the ES product and rEgTPx treatments significantly 

upregulated the expression of Ym1 (F(5, 12)  =  38.92, 
P < 0.0001), Fizz1 (F(5, 12) = 22.74, P < 0.0001), Arg1 (F(5, 

12) = 9.50, P = 0.0001) and the level of the anti-inflam-
matory cytokine IL-10 (F(5, 12)  =  15.56, P  <  0.0001). 
However, the expression of iNOS and TNF-α was 
detectable but relatively weak. In addition, treatment 
with rvEgTPx also increased the expression of Ym1, 
Fizz1, and Arg1, but the detected levels were lower 
relative to those observed after treatment with the 
ES product or rEgTPx (Fig.  4). These results suggest 

Fig. 3  E. granulosus (s.s.) infection skewed the PM subsets and induced an alternatively activated phenotype in PMs. a Representative FACS plots of 
LPMs and SPMs. b Percentages of CD11bhighF4/80high LPMs and CD11bintF4/80int SPMs in the peritoneal exudates from infected mice and control 
mice. c Percentages of iNOS+ macrophages (CAMs) and CD206+ macrophages (AAMs) in LPMs and SPMs and the expression patterns of cell surface 
markers (CD80, CD86, and MHCII) in LPMs and SPMs after E. granulosus (s.s.) infection. The sizes of LPMs and SPMs were determined using the FSC-A 
parameter. The data are depicted as the mean fluorescence intensities (MFIs) for each surface marker and are shown as the mean ± SEM (n = 5). 
*P < 0.05, **P < 0.01, ***P < 0.001. Abbreviation: E. g., E. granulosus (s.s.)
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that ES and rEgTPx can preferentially induce an anti-
inflammatory AAM phenotype in vitro.

rEgTPx induces AAMs by activating the PI3K/AKT/mTOR 
signaling pathway
To determine whether the PI3K/AKT/mTOR signal-
ing pathway is involved in the parasite antigen-induced 
alternative activation of macrophages, the phosphoryl-
ation status of mTOR pathway components in PMs iso-
lated from the parasite-infected and antigen-injected 
mice described above was assessed through a West-
ern blot analysis. The ES product and rEgTPx injec-
tions induced higher phosphorylation levels of mTOR 
(F(5, 24) =  36.02, P  <  0.0001) and Akt (F(5, 24) =  36.21, 
P < 0.0001) in the PMs compared with those obtained 
after PBS injection, and these results were consistent 
with those observed after E. granulosus (s.s.) infection. 
Similarly, the expression of PI3K and AKT was also 

upregulated. However, the phosphorylation levels of 
mTOR and AKT in the PMs derived from the rvEgTPx-
injected mice were similar to those in the PMs derived 
from the PBS control mice, and the expression of PI3K 
was also similar (Fig. 5a, b, Additional file 5: Figure S4).

We used various inhibitors in this study to further 
identify the importance of this pathway in the parasite 
antigen-induced alternative activation of macrophages. 
We found that LY294002 (an AKT-specific inhibi-
tor) and rapamycin (an mTOR inhibitor) significantly 
attenuated the phosphorylation of AKT (F(6, 14) = 456.4, 
P  <  0.0001) and mTOR (F(6, 14)  =  1428, P  <  0.0001) 
compared with the levels found in the ES product- or 
rEgTPx-stimulated PMs (Fig.  5c, d, Additional file  5: 
Figure S4). These results indicate that the parasite 
antigen-induced alternative activation of PMs is likely 
mediated by the PI3K/AKT/mTOR signaling pathway.

Fig. 4  Parasite antigen treatment induced an alternatively activated phenotype in PMs in vitro. PMs from normal mice were purified and stimulated 
with different parasite antigens for 24 h. LPS and IL-4 were included as positive controls for CAMs and AAMs, respectively. The transcript levels 
of AAM markers (YM1, Arg1, Fizz1 and IL-10) and CAM markers (iNOS and TNF-α) were evaluated by real-time PCR. The expression levels of each 
molecule were determined by the comparative Cq value normalized against the GAPDH using the 2−ΔΔCq method. The data are presented as the 
mean ± SEM from three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Discussion
An accumulating body of evidence shows that the 
alternative activation of macrophages is a hallmark 
of helminth infections and plays an important immu-
nomodulatory role in these infections by not only lim-
iting inflammation but also preventing excessive tissue 

remodeling [15, 18, 43, 44]. This limited inflammation 
has been confirmed as one of the main survival strat-
egies of helminths that allows them to reside in their 
intermediate hosts for a long time [45]. However, the 
activation status of macrophages during infection with 
E. granulosus (s.s.), which is a major species of the 

Fig. 5  Parasite antigen (rEgTPx) induces an alternatively activated phenotype in macrophages via the PI3K/AKT/mTOR pathway. a, b Western blot 
analysis and quantification of phosphorylated and total mTOR and AKT protein levels in whole-cell lysates of adherent PECs isolated from control 
mice and parasite-infected and antigen-treated mice. c, d Effects of inhibitors on P-AKT and P-mTOR expression in macrophages. The data are 
shown as the mean ± SEM (n = 5). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Abbreviations: Con, control; E. g., E. granulosus (s.s.)
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genus Echinococcus belonging to the family Taeniidae 
of the cestode platyhelminths [46, 47] that causes CE, 
remains poorly defined. In this study, we showed that 
intraperitoneal infection with E. granulosus (s.s.) larvae 
and the injection of ES products secreted by the para-
site, including EgTPx, induced the recruitment of large 
numbers of PMs to the PerC and the preferentially dif-
ferentiation of PMs toward an AAM phenotype. Fur-
thermore, we found that EgTPx induces the alternative 
activation of PMs via the PI3K/AKT/mTOR pathway 
and that this activation is dependent on the antioxi-
dant activity of EgTPx, which suggests that EgTPx plays 
multiple roles in favoring the survival of hydatid cysts 
in the host.

The mouse model of intraperitoneal infection with E. 
granulosus (s.l.) is the most widely used model that mir-
rors the secondary infection that occurs in the intermedi-
ate host after fertile cyst rupture [4, 48], and PMs, which 
are one of the most-studied macrophage populations [9, 
10], have been used in many recent studies investigat-
ing the responses of macrophages related to parasitic 
diseases such as schistosomiasis [18, 19]. Therefore, we 
characterized the phenotypes of PMs isolated from the 
PerC of infected mice. Similar to the findings obtained 
with other helminth infections [13, 17, 18], our results 
showed that E. granulosus (s.s.) infection recruited a rela-
tively large number of PECs to the PerC and that most of 
the recruited cells were preferentially differentiated into 
the AAM phenotype during the late stage of E. granu-
losus (s.s.) infection. Previous studies using this model 
have shown that macrophages are also prominent in the 
early infiltrate, but that infiltration does not develop into 
a severe inflammatory response during the cyst establish-
ment stage. Thus, based on our results, we speculate that 
the parasite might have adapted to avoid the host inflam-
matory response through the activation of AAMs.

Recent studies have shown that the LL, the interface 
between the parasite and the host, is permeable, which 
allows E. granulosus (s.l.) ES products to pass through 
and directly interact with the immune cells around the 
cyst [32, 49]. It is evident that LL extracts, which might 
contain some uncharacterized ES products, can induce 
arginase expression in vitro and enhance the induction of 
Ym1 expression in vivo, which indicates that the LL and 
the materials shed from the LL could have the capacity 
to promote AAM activation to favor parasite survival 
[30, 50, 51]. Our present results showed that EgTPx, one 
of the abundant ES products that has been confirmed 
to play an important role in antioxidant defense against 
the host during development [36], could not only induce 
the alternative activation of PMs in vivo but also modu-
late the differentiation of PMs toward an alternatively 
activated phenotype in vitro. These results are consistent 

with those found for Prx derived from the flukes S. man-
soni and F. hepatica [13].

In addition, infectious and inflammatory stimuli, such 
as Trypanosoma cruzi infection, usually alter the PM 
composition in the PerC due to the disappearance of 
LPMs of embryogenic precursor origin and the notable 
increase in the numbers of SPMs of bone marrow origin, 
which results in marked LPM disappearance and SPM 
expansion in the PerC [9–11]. We and other research 
groups have also shown that LL-derived particles and 
rEgTPx induce similar changes that skew the PM sub-
sets from LPMs to SPMs [51]. SPMs generally present a 
proinflammatory functional profile during inflammation 
initiation and might elicit acute inflammation. How-
ever, we found that the percentages of CD206+ SPMs 
and CD206+ LPMs in mice were significantly increased 
after the administration of nine injections of rEgTPx or 
ES products. These results indicate that rEgTPx and ES 
products derived from E. granulosus (s.s.) can not only 
recruit a wave of blood monocytes into the PerC that dif-
ferentiate into SPMs but also skew the differentiation of 
SPMs toward an anti-inflammatory phenotype over time, 
which would favor the establishment of parasites in the 
host and, to some extent, mimic natural infection.

Our analysis of surface markers showed that SPMs, 
particularly those from rEgTPx-injected mice, expressed 
high levels of MHC-II, whereas LPMs did not express this 
classical activation marker but did exhibit higher expres-
sion levels of CD80 than those found in SPMs. These 
observations are consistent with the reported character-
istics of these two types of cells [10]. Furthermore, mac-
rophages reportedly have the ability to promote immune 
tolerance by directly inducing Tregs [52], and we detected 
a predominant upregulation of the mRNA level of IL-10, 
a crucial Treg-inducing cytokine [53], in PMs exposed 
to rEgTPx in vitro, which might indicate that these PMs 
support Treg generation. To further clarify whether this 
immunoregulatory function of EgTPx can be attributed 
to its antioxidant activity, we also constructed an inactive 
variant of EgTPx and revealed that the EgTPx-mediated 
alternative activation of macrophages depends on the 
antioxidant activity of the enzyme.

Various lines of evidence show that mTOR and its 
related pathways can regulate the functions of dendritic 
cells [54, 55], monocytes [56] and macrophages [38, 57]. 
In addition, recent studies have clearly demonstrated 
that AKT and mTOR signaling play key roles in promot-
ing the alternative activation of macrophages [37, 58]. 
Here, we found that rEgTPx and ES products secreted 
by E. granulosus (s.s.) trigger AKT and mTOR phospho-
rylation and upregulate the expression of the upstream 
regulator PI3K, which indicates that stimulation with 
these parasite antigens activates the PI3K/AKT/mTOR 
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pathway. However, this activated pathway can be sup-
pressed by pre-treatment with an inhibitor of AKT 
(LY294002) or mTOR (rapamycin). Therefore, the activa-
tion of the PI3K/AKT/mTOR pathway is, at least in part, 
the most likely mechanistic explanation for the effects of 
rEgTPx and ES products on the alternative activation of 
macrophage. Inhibition of the mTOR signaling pathway 
might become a novel therapeutic approach for altering 
the survival of parasites.

Conclusions
Our data demonstrate that PMs are recruited and pref-
erentially induced to differentiate toward an alternatively 
activated phenotype after intraperitoneal infection with 
E. granulosus (s.s.) larvae. EgTPx, an important antioxi-
dant enzyme secreted by E. granulosus (s.s.), can induce 
the alternative activation of PMs both in vivo and in vitro, 
and this induction is dependent on the antioxidant activ-
ity of this enzyme, which suggests that EgTPx plays dual 
roles in the survival of cysts in the host by not only resist-
ing oxidative damage but also regulating macrophage 
activation to overcome inflammation. Furthermore, we 
found that the PI3K/AKT/mTOR signaling pathway 
might play an important role during E. granulosus (s.s.) 
antigen (EgTPx)-induced alternative activation of mac-
rophages, which implies that inhibition of the mTOR 
pathway to modulate the macrophage activation status 
could become a novel therapeutic strategy for controlling 
parasitic diseases and some inflammatory disorders. Fur-
ther identification of the immunomodulatory function of 
the important ES product EgTPx will promote the devel-
opment of novel preventive strategies against CE.
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Ym1, Arg1, Fizz1 and iNOS in PMs isolated from E. granulosus (s.s.)-infected 
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