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Abstract 

Background:  In order to evaluate the risk of human exposure to tick-borne pathogens in Belgium, a study on the 
prevalence of several pathogens was conducted on feeding ticks removed from humans in 2017.

Methods:  Using a citizen science approach based on an existing notification tool for tick bites, a sample of ticks 
was collected across the country. Collected ticks were screened by PCR for the presence of the following pathogens: 
Anaplasma phagocytophilum, Babesia spp., Borrelia burgdorferi (sensu lato), Borrelia miyamotoi, Neoehrlichia mikurensis, 
Rickettsia helvetica and tick-borne encephalitis virus (TBEV).

Results:  In total, 1599 ticks were included in the sample. The great majority of ticks belonged to Ixodes ricinus (99%); 
other tick species were identified as Ixodes hexagonus (0.7%) and Dermacentor reticulatus (0.3%). Borrelia burgdorferi 
(s.l.) was detected in 14% of nymphs and adult ticks. Adult ticks (20%) were more likely to be infected than nymphs 
(12%). The most common genospecies were B. afzelii (52%) and B. garinii (21%). Except for TBEV, the other tick-borne 
pathogens studied were all detected in the tick sample, although at a lower prevalence: 1.5% for Babesia spp.; 1.8% 
for A. phagocytophilum; 2.4% for B. miyamotoi; 2.8% for N. mikurensis; and 6.8% for R. helvetica. Rickettsia raoultii, the 
causative agent of tick-borne lymphadenopathy, was identified for the first time in Belgium, in two out of five D. reticu-
latus ticks. Co-infections were found in 3.9% of the examined ticks. The most common co-infection was B. burgdorferi 
(s.l.) + N. mikurensis.

Conclusions:  Although for most of the tick-borne diseases in Belgium, other than Lyme borreliosis, no or few cases 
of human infection are reported, the pathogens causing these diseases were all (except for TBEV) detected in the tick 
study sample. Their confirmed presence can help raise awareness among citizens and health professionals in Belgium 
on possible diseases other than Lyme borreliosis in patients presenting fever or other non-characteristic symptoms 
after a tick bite.
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Background
Ticks are important vectors of infectious diseases affect-
ing human health. The most common tick-borne disease 
in Europe is Lyme borreliosis, caused by bacteria of the 
Borrelia burgdorferi (sensu lato) complex. The bacte-
ria may infect different organs, resulting in skin, neu-
rological, musculoskeletal or cardiac manifestations in 
humans. In Europe, at least five different genotypes are 
pathogenic to humans: B. afzelii, B. garinii, B. burgdorferi 
(sensu stricto), B. bavariensis and B. spielmanii [1–3]. The 

contribution to disease of some other genospecies, such 
as B. valaisiana and B. lusitaniae, is not clear [1, 4]. In 
Belgium, the incidence of Lyme borreliosis is estimated 
at 103 per 100,000 (95% UI 87–120), based on a meta-
analysis [5].

Although reported far less frequently, infections with 
other pathogens transmitted by Ixodes ricinus, such as 
tick-borne encephalitis virus (TBEV), Anaplasma phago-
cytophilum, Borrelia miyamotoi, Neoehrlichia mikuren-
sis, Rickettsia spp. and several Babesia spp., may cause 
human disease as well [6, 7]. Approximately two-thirds 
of human infections with TBEV are asymptomatic. In 
clinical cases, tick-borne encephalitis (TBE) often has a 
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biphasic course, with a first phase presenting as a flu-like 
illness, followed in one-third of the patients by a second 
phase with central nervous system involvement (such 
as encephalitis or meningitis) [8]. Serological studies in 
animals suggest that TBEV has been circulating at a low 
level for at least several years in Belgium and infections 
in humans were expected to occur [9]. In 2018, the two 
first TBE cases with possible/probable autochthonous 
infection were reported [10]. Human infections with 
Anaplasma phagocytophilum are often asymptomatic or 
present as a mild self-limiting flu-like illness, but severe 
complications (e.g. opportunistic infections) and fatal 
infections are possible. In Belgium, confirmed cases of 
human granulocytotropic anaplasmosis are rare, but con-
siderable underdiagnosis is suspected due to difficulties 
in diagnosis and lack of awareness among physicians [11].

The relapsing fever spirochete B. miyamotoi has 
recently been identified as pathogenic for humans, caus-
ing a nonspecific flu-like illness, with possible severe 
disease in immunocompromised patients [12]. Only a 
few cases have been reported in Europe, but the species 
has been detected at low prevalence in ticks throughout 
Europe [13]. No human infection has been detected in 
Belgium so far. Ixodes ricinus can also transmit Neoehr-
lichia mikurensis, also known as “Candidatus Neoehrli-
chia mikurensis”. This species is widespread and has been 
found in questing ticks in at least 20 European coun-
tries [14]. It was first described as a human pathogen in 
a Swedish patient in 2010 and since then only a limited 
number of human infections have been described, often 
in immunocompromised patients [14]. There have been 
no reports of human disease in Belgium.

Babesia spp. mainly cause disease in livestock, domes-
tic and wild animals. Infection in humans is often asymp-
tomatic or mild but severe disease has been reported, 
mainly in asplenic or immunocompromised individuals 
[15]. Three species have been reported to cause disease in 
humans in Europe, B. divergens, B. venatorum (sp. EU1) 
and, to a lesser extent, B. microti [15]. Although no clini-
cal cases of babesiosis have been reported in Belgium so 
far, specific antibodies for the three European species 
have been detected in blood from patients with a his-
tory of a tick bite and clinical symptoms (mainly fever) 
[16]. Several Rickettsia species are transmitted by ticks in 
Europe, including R. conorii transmitted by Rhipicepha-
lus sanguineus (s.l.) ticks, R. helvetica and R. monacensis 
by Ixodes ricinus and R. slovaca and R. raoultii by Der-
macentor marginatus and Dermacentor reticulatus [17]. 
The most apparent rickettsial disease in Europe is the 
Mediterranean spotted fever caused by R. conorii, found 
mostly in southern and eastern Europe [17]. Rickettsia 
slovaca and R. raoultii have more recently been associ-
ated with human disease, a syndrome characterized by 

scalp eschars and cervical lymphadenopathy [17]. The 
pathogenicity of R. helvetica is questionable, but infected 
patients with an atypical and mild clinical picture (fever, 
skin rash and muscle aches) and some more serious ill-
nesses have been described in Europe [17]. In Belgium, 
about 20 cases of rickettsioses (tick-borne and others) are 
reported every year; the rickettsia species isolated from 
patients are R. conorii and R. africae, related to travelling 
in the Mediterranean region and South Africa [18].

Since most of the above diseases present with mild and 
non-characteristic symptoms, it is difficult to assess their 
public health risk and burden. As a first step, it is impor-
tant to have information on the geographical distribution 
and prevalence of these pathogens in ticks to evaluate the 
risk of exposure through tick bites and consequently the 
risk of disease.

In Belgium, most of the previously conducted research 
concerned questing ticks collected from relatively small 
areas during a short time period, or ticks collected from 
animals [19–26]. However, the evaluation of pathogens in 
feeding ticks represents the risk of human exposure bet-
ter than studies in questing ticks. Therefore, the present 
study on the prevalence of several tick-borne pathogens 
in ticks was conducted on ticks removed from humans 
in Belgium, in a larger sample collected over several 
months and all over the country, with the participation of 
citizens. The choice of pathogens included was based on 
previous evidence of their presence in I. ricinus ticks and 
their association with human diseases in Europe.

Methods
Sample collection and identification
In March 2017, citizens were invited through a press 
release to send in ticks that were attached to their body 
(or to another person) to the Belgian Health Institute Sci-
ensano, between April 1st and October 31st [27]. They 
were asked to attach the tick on a piece of paper or postal 
card, with transparent tape. In order to allow collection 
of additional data on the tick bite occurrence, a ques-
tionnaire had to be filled in through the website Teken-
Net. This is an interactive website to engage citizens in 
the monitoring of tick bites in Belgium, launched in 2015 
[28]. People reporting a tick bite on the website were also 
automatically invited to send in the tick they removed. 
The online questionnaire included questions on the 
probable geographical area where the bite occurred 
(postal code), the type of environment (wood, garden, 
natural park, etc.), the type of activity that was carried 
out (professional, leisure such as gardening, walking or 
playing, and other), as well as the age of the bitten person. 
Filling in the questionnaire generated a unique identifier 
that had to be copied on the paper containing the tick. 
Sending the ticks to Sciensano by postal mail was free of 



Page 3 of 11Lernout et al. Parasites Vectors          (2019) 12:550 

charge for the participants. At their arrival, ticks were 
stored at − 20  °C until the end of the collection period. 
Ticks that were not removed from humans (based on 
information provided in the questionnaire) or with miss-
ing information on the geographical location of the bite 
were discarded.

Ticks were identified morphologically to the species 
level and developmental stage using standard taxonomic 
keys [29]. Specimens that could not be identified due to 
extensive damage induced by the removal from the skin 
or from the tape were not included in the study. When 
multiple ticks were received from the same person at 
the same time, only one randomly selected tick (adult or 
nymph) was included to avoid oversampling of some geo-
graphical areas with a high density of ticks.

Pathogen detection
Individual nymph and adult ticks were homogenised in 
Minimum Essential Media (Life Technologies, Merel-
beke, Belgium) using a TissueLyser (3 min, 25 Hz) and a 
5 mm metal bead. Larvae were pooled by month of the 
tick bite. Nucleic acids were extracted from the homoge-
nate, using the MagMAX Total Nucleic Acid Isolation 
Kit and the MagMAX Express-24 Purification System 
(Life Technologies, Merelbeke, Belgium), according to 
the manufacturer’s instructions. The extracted DNA was 
stored at − 20  °C until a multiplex real-time PCR assay 
was performed on the individual nymphs and adult ticks 
and the pooled larvae, for molecular detection and spe-
cies identification of Anaplasma phagocytophilum, Babe-
sia spp., Borrelia burgdorferi (s.l.), Borrelia miyamotoi, 
Neoehrlichia mikurensis and Rickettsia helvetica. Der-
macentor ticks were also screened for R. raoultii. The 
qPCR- and PCR-based approaches used were as exactly 
described in previous studies [26, 30, 31]. DNA from the 
samples that were positive from the B. burgdorferi (s.l.) 
qPCR, were amplified by conventional PCR, targeting the 
5S-23S ribosomal RNA intergenic spacer region (IGS) 
of B. burgdorferi (s.l.). If the PCR was successful show-
ing a clear band on the gel, the DNA was cleaned with 
ExoSAP-IT® PCR Product Cleanup Reagent (Applied 
Biosystems, Foster City, CA, USA) and sent to sequenc-
ing by BaseClear (Leiden, The Netherlands). The chro-
matographs of the sequences were visually inspected and 
the primers sites were trimmed in Bionumerics software 
version 7.6 (Applied Math, Sint-Martens-Latem, Bel-
gium). Our sequences were used to identify the B. burg-
dorferi (s.l.) genospecies by comparison to sequences of 
known genospecies from GenBank as described previ-
ously [32]. To minimize cross-contamination and false-
positive results, negative controls were included in each 
batch tested by PCR. In addition, DNA/RNA extraction, 
PCR mix preparation, sample addition and PCR analyses 

were performed in separated air-locked dedicated labs. 
Positive controls were based on plasmids containing the 
primer-probe-primer sequences for the target qPCR plus 
unique nucleotide codes between the primer and the 
probes. These constructs enable us to distinguish poten-
tial contaminations of samples with positive controls. 
Negative processing controls (50 µl distilled water) are 
taken along during the whole DNA extraction and qPCR 
procedure and negative qPCR controls (distilled water) 
are also taken along with the positive controls.

In addition, TBEV qRT-PCR was performed on RNA 
extracts, following the method described by Briggs 
et al. [33]. Briefly, 5 μl of RNA was mixed with the PCR 
master mix Kit qPCR Sqcript XLT one-step RT-QPCR 
(Quanta, Houston, TX, USA), 0.4  μM of the primers 
RH TBE Rev, primer RH TBE Fwd and primers for 
r18S detection (VETINHF2 and VETINHR1), 0.2 µM 
of TBE probe, 0.08  µM of the r18S probe and nucle-
ase-free water to obtain a final volume of 25  μl. The 
amplification was performed on MxPro3005 (Strata-
gene system, San Diego, CA, USA) according to the 
following program: 30 min at 50 °C (reverse transcrip-
tion) followed by 2 min at 95  °C and 45 cycles of 15 s 
at 95  °C (denaturation), 30  s at 55  °C (annealing and 
extension) and a final step of 30 s at 72 °C.

Statistical analyses
Statistical analyses were performed in STATA 13 (Stat-
corp College Station, TX, USA). Co-infections and differ-
ences in pathogen prevalence by tick stage, localisation, 
season, type of environment, type of activity and age 
classes of the persons bitten were statistically analysed by 
Pearsonʼs Chi-square tests and Fisher’s exact tests, when 
appropriate. P-values < 0.05 were considered statistically 
significant.

Results
From April 1st till October 31st 2017, a total of 3751 ticks 
were sent to Sciensano, of which 2004 were (presum-
ably) collected from humans and had information on the 
place of the bite. After removal of unidentifiable ticks 
and multiple ticks from the same person, the final sam-
ple consisted of 1225 nymphs (80.9%) and 290 adult ticks, 
of which 248 were females (16.4%) and 42 males (2.7%) 
(Table  1). In addition, 84 larvae, pooled over 7 months, 
were included. An overview of the inclusion flow is 
shown in Fig. 1. 

Almost all nymphs and adult ticks belonged to I. ricinus 
(99.0%). Other tick species identified were I. hexagonus 
(0.7%, four nymphs and six females) and D. reticulatus 
(0.3%, three females and two males).

Ticks were collected from persons aged less than one 
year to 77  years, with a median age of 45  years. The 
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number of ticks was well distributed over all age catego-
ries, except for the age group 15 to 24 years-old, repre-
senting only 5.5% of the specimens (Table 2). For 80.5% 
of the included ticks, the bite occurred in one of the four 
eastern provinces (Antwerp, Limburg, Liège, Luxemburg) 
or in the central provinces (Brabant) of Belgium.

Ixodes ricinus ticks were mostly sent in the months of 
June and July (Fig.  2). The proportion of nymphs over 
the total number of ticks increased from 74.8% in April 
to 87.5% in August (χ2 = 7.61, df = 1, P = 0.006), followed 
by a decrease to 75.0% in October (χ2 = 4.27, df = 1, 
P = 0.04). There was no significant difference in propor-
tion of nymphs by age group (χ2 = 4.65, df = 4, P = 0.326). 
The median number of larvae collected by month was 
10, with a minimum of 1 larva (in April) and a maximum 
of 23 (in July). Ixodes hexagonus tick bites were mostly 
reported between June and September (80%), whereas D. 
reticulatus ticks were sent in April and May only.

Borrelia burgdorferi (s.l.) was detected in 13.9% (95% 
CI: 12.2–15.7%) of nymphs and adult Ixodes ticks. 
Nymphs (12.3%) were less often infected than adults 
(20.3%, χ2 = 12.63, df = 1, P < 0.001) (Table 1). No B. burg-
dorferi (s.l.) was found in the pools of larvae. The Borrelia 
genospecies could successfully be identified for 70% of 
the qPCR-positive B. burgdorferi (s.l.) samples. The most 
frequently detected genospecies was B. afzelii (52.4%), 
followed by B. garinii (21.1%), B. valaisiana (14.3%), 
B. spielmanii (6.8%), B. burgdorferi (s.s.) (4.8%) and B. 
bavariensis (0.6%).

None of the ticks were infected with TBEV. The preva-
lence of other pathogens in Ixodes ticks ranged between 
1.5–2.8%, except for R. helvetica, with an infection rate 
of 6.8% (95% CI: 5.8–8.3%) (Table  1). For the Babe-
sia samples (n = 22), four species were identified: B. 

venatorum (77.3%), B. divergens (9.1%), B. microti (9.1%) 
and B. capreoli (4.5%). Out of the five D. reticulatus ticks, 
two were infected by R. raoultii (see Additional file  1: 
Table S1).

There were no significant differences in infection rates 
between developmental stages. Out of the seven pools of 
larvae, five were infected, one with B. miyamotoi (in May) 
and the four others with R. helvetica (April, June, July and 
August).

A detailed overview of infection rates by different 
characteristics is shown in Table  2. No significant dif-
ferences were found in pathogen prevalence by age 
class of the person bitten, by region (Flanders, Wal-
lonia or Brussels), season, type of environment (wood, 
garden, natural park, field or other such as dunes or 
a golf court) and type of activity (professional, leisure 
or others, such as short stays in the garden for hang-
ing up laundry or at school). The only exception was a 
significantly higher prevalence of Babesia spp. in ticks 
in autumn (September and October) compared to other 
seasons (χ2 = 9.82, df = 2, P = 0.007).

Co-infections were found in 3.9% (59/1515) of the 
examined ticks (Fig. 3) and only in I. ricinus ticks; 3.6% 
(55/1515) of nymphs and adult ticks carried two path-
ogens and four ticks (0.3%) were infected with three 
pathogens. The most common co-infection in ticks was 
B. burgdorferi (s.l.) + N. mikurensis (17 infected ticks 
out of 381), followed by B. burgdorferi (s.l.) + R. hel-
vetica (14 infected ticks out of 381); ticks infected with 
either B. miyamotoi or N. mikurensis showed the high-
est proportion of co-infections with other pathogens 
(Table 3 and Fig. 3). Infections with N. mikurensis or B. 
miyamotoi are more likely to occur as co-infection with 
B. burgdorferi (s.l.).

Table 1  Pathogen prevalence in feeding ticks on humans by developmental stage

Tick stage No. of ticks (%) B. burgdorferi (s.l.) A. phagocytophilum Babesia spp. B. miyamotoi N. mikurensis R. helvetica TBEV

Nymph

 # 1225 (80.9) 151 20 17 32 37 84 0

 % (95% CI) 12.3 (10.6–14.3) 1.6 (1.1–2.5) 1.4 (0.9–2.2) 2.6 (1.9–3.7) 3.0 (2.2–4.1) 6.8 (5.6–8.4) 0 (0–0.2)

Female

 # 248 (16.4) 51 8 4 3 4 18 0

 % (95% CI) 20.6 (15.0–26.1) 3.2 (1.6–6.3) 1.6 (0.6–4.2) 1.2 (0.4–3.7) 1.6 (0.6–4.2) 7.3 (4.6–11.2) 0 (0–1.2)

Male

 # 42 (2.7) 8 0 1 1 2 1 0

 % (95% CI) 19.1 (10.6–33.9) 0 (0–6.9) 2.4 (0.3–15.4) 2.4 (0.3–15.4) 4.8 (1.2–17.4) 2.4 (0.3–15.4) 0 (0–6.9)

Total

 # 1515 (100) 2101 28 22 36 43 103 0

 % (95% CI) 3.9 (12.2–15.7) 1.8 (1.3–2.7) 1.5 (1.0–2.2) 2.4 (1.7–3.3) 2.8 (2.1–3.8) 6.8 (5.8–8.3) 0 (0–0.2)
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Discussion
To our knowledge, no study of the presence of patho-
gens has been carried out on feeding ticks collected from 
human hosts in Belgium, but several such studies have 
been carried out, on one or some pathogens, in other 
European countries, such as in the Netherlands, Finland, 
France, Poland, Italy, Germany and Sweden [30, 34–
40]. In most studies, ticks were removed by physicians, 
whereas in our study they were removed by citizens and 
sent by postal mail. The call to citizens to participate to 
the collection of ticks, through a single press release, gen-
erated a marked interest and resulted in a sample of over 
3700 ticks in only half a year. If the information was not 
specified otherwise in the questionnaire or on the paper 
containing the tick, we assumed that the specimen was 
removed from a human. The number of ticks removed 
from other hosts is probably limited and is unlikely to 
impact our results. People participating to the study seem 
to have good knowledge on ticks, since only six speci-
mens received were no ticks but other arachnids or veg-
etal parts.

Although more than half of the ticks received could 
not be included in the study due to missing information 
or damage, our final sample covered ticks of all develop-
mental stages, collected all over the country over several 
months. Citizen science participation was also used to 
collect ticks (from humans and animals) via mail and zip-
locked plastic bags in a study in the USA in 2016–2017, 
with submission of over 16,000 ticks [41]. Both studies 
demonstrate that citizen science can be an effective tool 
to collect ticks for surveillance or research, at a relatively 
low cost.

The ticks removed from humans in Belgium were 
almost exclusively I. ricinus (99%), the most widespread 
and abundant tick species transmitting pathogens caus-
ing tick-borne disease in human in Europe. Besides I. 
ricinus, a few specimens of I. hexagonus and D. reticu-
latus were collected. A review by Obsomer et al. [42] on 
the spatial distribution of tick species in Belgium, based 
on new tick collections and a literature and “grey data-
sets” search between 1989 and 2012, showed that these 
three species were reported most frequently. Ixodes 

Fig. 1  Overview of the amount of ticks at the different steps of inclusion



Page 6 of 11Lernout et al. Parasites Vectors          (2019) 12:550 

ricinus and I. hexagonus were found to be present in all 
the provinces, while D. reticulatus showed a more patchy 
distribution. In our sample, two out of the five specimens 
of the latter were sent from De Panne, on the border with 
France, where the tick has repeatedly been reported pre-
viously [42, 43]. Ixodes hexagonus was also removed from 
patients in Germany and D. reticulatus in Poland [37, 39].

The number of ticks per province included in the study 
is consistent with the spatial distribution of human tick 
bite occurrence and Lyme borreliosis in the country, with 
a higher number of reports in the eastern part [18, 28].

The observed predominance of nymphs (81%) was 
higher than reported in several other European studies 
on ticks removed from humans, where proportions of 
nymphs ranged between 41% (Italy) and 70% (Sweden) 
[38, 40]. In a citizen-based tick reporting study in Great 
Britain, the proportion of nymphs removed from humans 
was also 81% [44].

For both, I. ricinus and D. reticulatus, a bimodal quest-
ing activity pattern has been described, with peaks in 
spring (March-May) and in late summer or autumn (mid-
August-November) [45–47]. Ixodes hexagonus appears to 
show less marked seasonal changes than I. ricinus [44]. 
In our study, the peak in number of ticks sent in June 
and July corresponds to a higher exposure during these 
months (holiday period, warmer weather) rather than a 
peak of questing activity.

The observed prevalence of B. burgdorferi (s.l.) infec-
tion in Ixodes ticks in our study (13.9%) is in line with 
the overall mean prevalence of 13.7% (range: 0–49.1%) in 
Europe, reported by a meta-analysis of surveillance data 
in 2011 [48]. Previous studies in Belgium on questing I. 
ricinus ticks reported high variability in infection rates 
ranging from 2.8% to 37% [22, 24, 25]. However, these 
studies were often limited to ticks collected over a short 
time period, at one spot or in a small geographical area, 
whereas the distribution and prevalence of pathogens in 

Table 2  Pathogen prevalence in feeding ticks on humans according to demographic characteristics

Note: Bold indicates statistically significant difference

* Statistically different (P = 0.01) compared to September-October

** Statistically different (P = 0.002) compared to September-October

Abbreviation: % pos: % positive

Characteristic B. burgdorferi (s.l.)
% pos (95% CI)

A. phagocytophilum
% pos (95% CI)

Babesia spp.
% pos (95% CI)

B. miyamotoi
% pos (95% CI)

N. mikurensis
% pos (95% CI)

R. helvetica
% pos (95% CI)

Age of the person bitten (in years)

 < 15 (n = 306) 15.4 (11.7–19.9) 1.6 (0.7–3.9) 0.7 (0.2–2.6) 2.9 (1.5–5.6) 3.9 (2.2–6.8) 7.2 (4.8–10.7)

 15–24 (n = 84) 9.5 (4.8–18.0) 1.2 (0.2–8.1) 3.6 (1.1–10.6) 1.2 (0.2–8.1) 2.4 (0.6–9.1) 8.3 (4.0–16.5)

 25–44 (n = 353) 14.2 (10.9–18.2) 2.6 (1.3–4.8) 1.1 (0.4–3.0) 2.5 (1.3–4.8) 3.1 (1.7–5.5) 5.9 (3.9–9.0)

 45–64 (n = 506) 12.5 (9.5–15.6) 2.2 (1.2–3.9) 2.2 (1.2–3.9) 2.0 (1.1–3.6) 3.0 (1.8–4.9) 6.9 (5.0–9.5)

 ≥ 65 (n = 266) 15.8 (11.9–20.7) 0.8 (0.2–2.3) 0.8 (0.2–3.0) 2.6 (1.3–5.4) 1.1 (0.4–3.4) 6.8 (4.3–10.5)

Region

 Brussels (n = 20) 0 0 0 5.0 (0.7–29.3) 0 5.0 (0.7–29.3)

 Flanders (n = 881) 14.2 (12.0–16.7) 2.2 (1.4–3.3) 1.4 (0.8–2.4) 2.5 (1.6–3.8) 3.0 (2.0–4.3) 7.6 (6.0–9.6)

 Wallonia (n = 614) 13.8 (11.3–16.8) 1.5 (0.8–2.8) 1.6 (0.9–3.0) 2.1 (1.2–3.6) 2.8 (1.7–4.4) 5.7 (4.1–7.8)

Season

 April-June (n = 929) 14.5 (12.4–17.0) 2.3 (1.5–3.4) 1.4 (0.8–2.4)* 2.4 (1.6–3.6) 3.1 (2.2–4.5) 6.2 (4.9–8.0)

 July-August (n = 484) 12.4 (9.7–15.6) 1.4 (0.7–3.0) 0.8 (0.3–2.2)** 2.9 (1.7–4.8) 2.5 (1.4–4.3) 7.6 (5.6–10.4)

 September-October (n = 102) 14.7 (9.0–23.0) 0 4.9 (2.0–11.3) 0 2.0 (0.5–7.6) 7.8 (4.0–15.0)

Type of environment

 Wood/Forest (n = 513) 14.2 (11.5–17.5) 2.1 (1.2–3.8) 1.4 (0.7–2.8) 2.1 (1.2–3.8) 3.7 (2.4–5.7) 6.4 (4.6–8.9)

 Garden (n = 666) 13.4 (11.0–16.2) 1.2 (0.6–2.4) 1.4 (0.7–2.6) 2.9 (1.8–4.4) 2.0 (1.1–3.3) 7.2 (5.5–9.4)

 Nature reserve, not forest (n = 102) 18.6 (12.2–27.4) 4.9 (2.0–11.3) 2.0 (0.5–7.6) 2.0 (0.5–7.6) 3.9 (1.5–10.0) 5.9 (2.7–12.5)

 Grassland, agricultural field (n = 56) 10.7 (4.9–22.0) 1.8 (0.2–11.8) 5.4 (1.7–15.5) 0 1.8 (0.2–11.8) 7.1 (2.7–17.7)

 Other (n = 38) 15.8 (7.2–32.2) 0 0 2.6 (0.4–16.8) 0 15.8 (7.2–31.2)

Activity of person bitten

 Leisure (n = 1336) 14.2 (12.4–16.2) 1.7 (1.1–2.6) 1.4 (0.9–2.2) 2.4 (1.8–3.5) 2.6 (1.9–3.6) 7.1 (5.8–8.6)

 Professional (n = 50) 16.0 (8.1–29.0) 6.0 (1.9–17.2) 2.0 (0.3–13.1) 4.0 (1.0–14.8) 6.0 (1.9–17.2) 2.0 (0.3–13.1)

Other (n = 47) 10.6 (4.5–23.3) 2.1 (0.3–13.9) 0 0 4.3 (1.0–15.7) 6.4 (2.0–18.2)
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ticks is known to show important variations, both tem-
porally and spatially [49]. The observed significant lower 
infection rates in nymphs compared to adults (12.3% 
and 20.3%, respectively) is in accordance with previous 
reports and can be explained by the fact that host-seek-
ing adult ticks have had two blood meals from different 
hosts and therefore have a higher probability of acquir-
ing bacteria from infected hosts [48–50]. Although in 
our study larvae were not infected by B. burgdorferi (s.l.), 
detection of the spirochetes in larvae has previously 
been described, at a low prevalence [50]. In line with 
other studies in Belgium and neighbouring countries, the 
rodent-associated B. afzelii was the most common Bor-
relia genospecies (52.4%), followed by B. garinii (21.1%) 
[24, 39, 51–53]. Both are dominant genospecies in ticks 
in Europe [54]. Borrelia valaisiana, B. spielmanii and 
B. burgdorferi (s.s.) represented 14.3%, 6.8% and 4.8% of 

Fig. 2  Number of ticks included in the study, by stage and month

Fig. 3  For each pathogen, proportion of feeding ticks on humans 
infected with the pathogen (referred to as 1) and co-infected with 
one or two more pathogens (referred to as 2 and 3, respectively) are 
shown (n = 1515)

Table 3  Number of ticks presenting a co-infection for different pathogen combinations

*P = 0.001, **P < 0.001

B. burgdorferi (s.l.) A. phagocytophilum Babesia spp. B. miyamotoi N. mikurensis

B. burgdorferi (s.l.) (n = 210) –

A. phagocytophilum (n = 28) 7 –

Babesia spp. (n = 22) 2 0 –

B. miyamotoi (n = 36) 13* 1 1 –

N. mikurensis (n = 43) 17** 0 2 0 –

R. helvetica (n = 105) 14 3 3 3 1
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genospecies, respectively. Borrelia bavariensis (0.7%) was 
previously described in Belgium in one study only, in 17 
out of 1203 ticks (1.4%) removed from hedgehogs [26].

Except for TBEV, the other tick-borne pathogens stud-
ied were all detected in the tick sample, although at a 
lower prevalence, ranging between 1.5% (Babesia spp.) 
and 6.8% (R. helvetica). Anaplasma phagocytophilum 
was detected in 1.8% of nymphs and adult ticks. This is 
in line with the relatively low number of human cases of 
anaplasmosis diagnosed in Belgium, compared to Lyme 
borreliosis. However, many cases of the disease prob-
ably remain undiagnosed [11]. Studies on questing ticks 
reported a similar prevalence (1.2–3.0%) [21, 55].

All three Babesia species causing disease in humans 
in Europe, B. divergens, B. venatorum (sp. EU1) and B. 
microti, have been detected in our study, although at 
low prevalence. In ticks feeding on animals (cats and 
dogs, 1.3%; wild cervids, 2.7%), equally low rates have 
been reported [23, 56]. A study on bovine Babesia spp. 
with targeted sampling in areas with known babesiosis 
reported higher values: 7.9% in questing ticks and 14.6% 
in feeding ticks on cattle [55].

The prevalence of B. miyamotoi in ticks removed from 
humans (2.4%) is slightly higher than results from earlier 
studies on questing ticks (1.1–1.6%, 2010–2014) [20, 21]. 
The absence of human cases in Belgium up to now might 
be due to the absence of routine laboratory testing and 
low clinical awareness.

The absence of diagnoses of neoehrlichiosis in Bel-
gium might also be related to low awareness and lack 
of diagnostic testing, since 2.8% of nymphs and adult 
ticks examined here were infected with N. mikurensis. A 
recent review of studies on the presence of N. mikurensis 
in I. ricinus ticks in Europe reported prevalence in ticks 
removed from humans between 0.5% in Italy and 8.1% 
in Germany [14]. In questing ticks, much higher infec-
tion rates have been reported, up to 17% in Norway; in 
Belgium, only one study has been published, reporting a 
very low prevalence of 0.4% [21]. Studies in the Nether-
lands and Norway using molecular detection techniques 
found N. mikurensis in 1.4% and 10.0%, respectively, of 
patients presenting with an erythema migrans after a tick 
bite [30, 57]. However, there is no evidence of a causal 
relation. The pathogenicity of N. mikurensis should be 
further investigated.

Rickettsia helvetica has been detected in I. ricinus ticks 
in at least 24 European countries, but human infection 
with this species has been described (as a relatively mild, 
self-limited illness) in a few countries only [17]. Since 
2005, no definitive, convincing cases have been published 
[17]. It is therefore difficult to relate the relatively high 
prevalence of R. helvetica (6.8%) in Belgian ticks to a risk 
for human disease. On the other hand, the pathogenic 

species R. raoultii, reported in many European coun-
tries, was identified for the first time in our study, in two 
out of the five D. reticulatus ticks collected. However, 
this tick species only sporadically bites humans. In stud-
ies on questing ticks and ticks that fed on animals (dogs 
and cats in Belgium and songbirds in Belgium/The Neth-
erlands), R. helvetica was found more often than in our 
study (16.9%, 14.1% and 22% of Ixodes ticks, respectively) 
[19, 21, 58].

The prevalence of TBEV in ticks was examined for the 
first time in Belgium in this study. The absence of the 
virus in our sample does not mean that the virus is not 
present, as it has been shown through studies in animals 
and possible recent human autochthonous infections in 
Belgium [9, 10]. An extensive study in Poland and Ger-
many showed that the virus prevalence in ticks does not 
correlate with increased risk for humans [59]. Additional 
surveillance methods, such as seroprevalence studies in 
animals, should be further implemented.

Co-infections in ticks are frequently reported. They 
may result from co-feeding of infected ticks on one host, 
from a blood meal on one host carrying several patho-
gens or from blood meals on different hosts. Most of the 
co-infections reported are associations between different 
Borrelia genospecies, which could not be differentiated in 
our study because the approach used was unable to uni-
vocally identify infections with more than one B. burg-
dorferi (s.l.) genospecies. In a study on ticks feeding on 
humans in Italy, 5.7% of Ixodes ticks were infected with 
more than one pathogen and a study on questing I. rici-
nus ticks in Romania reports co-infection of one Borrelia 
spp. with another pathogen in 3.7% of ticks, similar to the 
3.9% we observed [38, 60]. As in our study, the most fre-
quent dual co-infections in Romania were between Bor-
relia spp. and Rickettsia spp. and between Borrelia spp. 
and N. mikurensis [60]. In ticks on songbirds in Belgium 
and the Netherlands, the occurrence of B. burgdorferi 
(s.l.) was also positively correlated with the occurrence 
of N. mikurensis, suggesting transmission facilitation due 
to interactions between pathogens [58]. Co-infection of 
Borrelia spp. with Babesia spp., suspected to enhance 
the severity of Lyme borreliosis, was rare in our study 
(2/1515 ticks) and not statistically significant [61, 62]. 
Further research is needed to investigate the possible 
effect of co-infections on disease in humans.

No statistically significant associations were observed 
for pathogen prevalence according to the age of the per-
son bitten, the region or province in Belgium, the sea-
son (except for a higher prevalence of Babesia species in 
autumn), the type of environment or the type of activity 
during which the bite occurred. However, for all patho-
gens, the prevalence seems to be higher in ticks collected 
during a professional activity than a leisure exposure and 
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some pathogens (B. burgdorferi (s.l.), A. phagocytophilum 
and N. mikurensis) tend to be more common when the 
tick bite occurred in nature reserves or woods and forests, 
compared to gardens and fields. This could be related to 
the higher density of animal reservoirs in these areas. A 
larger sample size might have contributed to detecting a 
statistical significant relation.

Conclusions
A citizen-based collection method, based on an exist-
ing notification tool for tick bites, allowed to collect an 
important sample of ticks across the country, covering 
the whole tick season and at low cost. The present study 
serves as a status survey for the infection rate of several 
tick-borne pathogens in Belgian ticks that were attached 
to humans and allows informing the health authorities 
on emerging tick-borne disease risks. In comparison to 
studies on questing ticks, this approach is more likely 
to reflect the actual tick-borne disease risk (pathogen 
exposure) for humans. Except for TBEV, all the patho-
gens tested were detected in the tick study sample, yet, 
to a different extent. This confirmation can help to raise 
awareness among citizens and health professionals in 
Belgium on possible diseases other than Lyme borreliosis 
in persons presenting fever or other non-characteristic 
symptoms after a tick bite. A new study is planned, to 
allow follow-up and assessment of potential variation in 
infection prevalence and thus infection risk for humans, 
over time and space.
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