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in schistosomiasis
Qianglin Chen1†, Jianqiang Zhang1†, Ting Zheng1, Hui Chen1, Hao Nie1,2, Bing Zheng1,2* and Quan Gong1,2* 

Abstract 

Schistosomiasis is a prevalent parasitic disease worldwide. The main pathological changes of hepatosplenic schisto-
somiasis are hepatic granuloma and fibrosis due to worm eggs. Portal hypertension and ascites induced by hepatic 
fibrosis are usually the main causes of death in patients with chronic hepatosplenic schistosomiasis. Currently, no 
effective vaccine exists for preventing schistosome infections. For quite a long time, praziquantel (PZQ) was widely 
used for the treatment of schistosomiasis and has shown benefit in treating liver fibrosis. However, drug resistance 
and chemical toxicity from PZQ are being increasingly reported in recent years; therefore, new and effective strate-
gies for treating schistosomiasis-induced hepatic fibrosis are urgently needed. MicroRNA (miRNA), a non-coding RNA, 
has been proved to be associated with the development of many human diseases, including schistosomiasis. In this 
review, we present a balanced and comprehensive view of the role of miRNAs in the pathogenesis, grading, and 
treatment of schistosomiasis-associated hepatic fibrosis. The multiple regulatory roles of miRNAs, such as promoting 
or inhibiting the development of liver pathology in murine schistosomiasis are also discussed in depth. Additionally, 
miRNAs may serve as candidate biomarkers for diagnosing liver pathology of schistosomiasis and as novel therapeutic 
targets for treating schistosomiasis-associated hepatic fibrosis.
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Background
Schistosomiasis is one of the most common zoonotic 
parasitic diseases worldwide [1, 2]. It is estimated that at 
least 230 million people are infected with schistosomes 
globally [3]. The main species of schistosome that infect 
humans include Schistosoma japonicum, Schistosoma 
mansoni and Schistosoma haematobium [4]. In China, S. 
japonicum infection is the main cause of schistosomia-
sis; this species also presents more severe pathogenicity 
because it produces more eggs than other Schistosoma 
species [2, 5]. Schistosoma japonicum and S. mansoni 

colonize the mesenteric veins, where their eggs induce 
a local liver granulomatous response and subsequent 
progression of hepatic fibrosis; this review will focus on 
S. japonicum and S. mansoni-induced schistosomiasis. 
Generally, the development of schistosomiasis can be 
divided into the acute and chronic stages [6]; the acute 
phase is believed to be associated with Th1 response 
[7]. Then a rapid transition from Th1 response into Th2-
dominated response will occur when a large number of 
schistosome eggs are deposited [8]. The main pathologi-
cal damages incurred during schistosomiasis are granu-
loma formation and subsequent hepatic fibrosis induced 
by the eggs in the middle and late stages of infection, 
which result from the hostʼs immune response to the sol-
uble egg antigen (SEA) [9].
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The liver is composed of hepatic parenchymal and 
non-parenchymal cells. Non-parenchymal cells include 
hepatic stellate cells (HSCs), Kupffer cells, and liver sinu-
soidal endothelial cells (LSECs) [10]. Activated HSCs are 
thought to be central effector cells during hepatic fibrosis 
[11]. During schistosomiasis, the inflammatory granu-
lomas initially form around the schistosome eggs, then 
the dormant HSCs are activated by various cytokines 
and transform into myofibroblast cells to initiate hepatic 
fibrosis [5, 12]. Hepatic fibrosis, characterized by exces-
sive deposition of extracellular matrix (ECM) [13], is a 
wound healing response to multiple pathogenic factors 
such as parasitic infection, alcohol, viruses, cholesta-
sis and oxidative stress [14]. Hepatic fibrosis can further 
develop into portal hypertension and ascites, which are 
usually the leading causes of death in patients with schis-
tosomiasis [15]. Praziquantel (PZQ) is the primary drug 
for treating schistosomiasis. Although PZQ has been 
shown to aid in ameliorating liver fibrosis via multiple 
mechanisms in murine models of schistosomiasis [16, 
17], PZQ cannot completely reverse the progression of 
chronic liver fibrosis, and the excessive reliance on this 
drug to treat schistosomiasis has raised concerns about 
drug resistance [18]. Therefore, effective therapeutic 
methods for treating schistosomiasis-associated hepatic 
fibrosis are urgently needed [19].

MicroRNAs (miRNAs), a class of short and non-cod-
ing RNAs, have a strong regulatory effect on posttran-
scriptional gene expression [20]. miRNAs can bind to 
the 3’-untranslated region (UTR), coding sequence, and 
5’-UTR of the target gene mRNA, and mediate mRNA 
degradation or inhibit its translation [4, 21, 22]. miRNAs 
are thought to be involved in numerous biological pro-
cesses such as cell growth, development, proliferation, 
differentiation, and body metabolism [23, 24]. Numerous 

studies have shown that miRNA deregulation is related 
to many human diseases, such as cancers, autoimmune 
diseases, and parasitic diseases [25–28]. Several studies 
have also revealed that host miRNAs are differentially 
expressed before and after S. japonicum infection in 
mouse models, and the expression levels are upregulated 
or downregulated [29]. Further studies have shown that 
these differentially expressed miRNAs play modulatory 
roles in maintaining equilibrium in immune responses, 
including hepatic granuloma formation and schistosomi-
asis-induced fibrosis [30]. Here, we focus on recent stud-
ies evaluating the roles of miRNAs in the pathogenesis 
of schistosomiasis-associated liver fibrosis (Table 1). We 
also discuss the use of miRNAs as diagnostic biomarkers 
for schistosomiasis-associated hepatopathology progres-
sion and the potential of miRNAs as novel therapeutic 
targets for treating schistosomiasis-associated hepatic 
fibrosis.

Pro‑fibrogenic role of miRNAs in schistosomiasis
MiR‑21 and miR‑96 activate the SMAD signaling pathway 
to promote schistosomiasis‑associated hepatic fibrosis
It is well known that severe hepatic fibrosis results when 
multiple signaling pathways trigger HSC activation [31], 
and miRNAs can balance multiple growth factor receptor 
signals during HSC activation [32]. It has been reported 
that miR-21 is overexpressed in many liver diseases and 
is considered to be one of the most significantly upregu-
lated miRNAs in activated HSCs in several fibrosis dis-
ease models [33]. For example, miR-21 can mediate 
LX-2 cell activation during liver fibrosis via the PTEN/
Akt pathway [34]. Also miR-21 has been associated with 
cholestatic liver injury and liver necrosis disease by acti-
vating HSCs and promoting hepatic fibrosis in a murine 
model of bile duct ligation [35]. It has also been reported 

Table 1  The role and underlying regulatory mechanisms of miRNAs in the pathogenesis of hepatic fibrosis in schistosomiasis

Function Type Target Mechanism/pathway References

Pro-fibrosis miR-21, miR-96 Smad7 SMAD signaling pathway [40, 41]

miR-351 VDR SMAD and IFN-γ signaling pathway [45]

miR-146a/b STAT1 Regulates the transformation of macrophages from M1 to 
M2/IFN-γ signaling pathway

[46]

miR-27b PPARγ Enhances the activation of hepatic stellate cells [89]

Anti-fibrosis miR-203-3p IL-33/Smad3 IL-33/IL-13 pathway [67, 70]

let-7b TβRI TGF-β/SMAD signaling pathway [80]

miR-182 unknown Preserves Tregs stability and suppressor function [88]

miR-15b, miR-16 Bcl2 Caspase signaling pathway [90]

miR-454 Smad4 SMAD signaling pathway [91]

miR-155 FOXO3a ERK1 signaling pathway, EMT process [92, 93]

miR-29b-3p COL1A1, COL3A1 TGF-β signaling pathway [94]

miR-92a-2-5p TLR2 Promotes NIH-3T3 cell apoptosis [95]
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that miR-96 can facilitate cell proliferation, migration 
and invasion by targeting SOX6 in hepatocellular carci-
noma [36, 37].

Cumulative evidence suggests that miR-21 and miR-
96 are involved in regulating schistosomiasis-associated 
liver fibrosis partially through the transforming growth 
factor beta 1 (TGF-β1)/SMAD signaling pathway, which 
is considered to be the classical signaling pathway dur-
ing schistosomiasis-associated liver fibrosis [38]. Previ-
ous studies found that in murine schistosomiasis, the 
levels of two major hepatic fibrosis mediators, interleukin 
(IL)-13 and TGF-β1, were elevated and capable of driv-
ing the HSC activation [39]. TGF-β1 promotes miR-21 
expression in HSCs by activating SMAD2 and 3 proteins, 
whereas IL-13 facilitates miR-21 expression by activat-
ing the SMAD 1/5, 2, and 3 proteins [40]. Unlike miR-21, 
increased miR-96 expression in HSCs is primarily medi-
ated by TGF-β1. Specifically, TGF-β1 elevates miR-96 
levels by activating SMAD proteins and inducing forma-
tion of a complex composed of SMAD2/3, pri-miR-96, 
and the subunit of the microprocessor complex, DRO-
SHA. SMAD7, a SMAD-signaling regulator, is a common 
target of miR-21 and miR-96 in schistosomiasis-associ-
ated hepatic fibrosis. Surprisingly, miR-21 and miR-96 
together exert a synergistic inhibitory effect on SMAD7. 
Collectively, miR-21 and miR-96 could promote schisto-
somiasis-associated liver fibrosis by targeting SMAD7 to 
activate the SMAD signaling pathway and increase col-
lagen expression [40, 41].

MiR‑351 promotes hepatic fibrosis by targeting the vitamin 
D receptor (VDR) in schistosomiasis
MiR-351 has been shown to participate in modulat-
ing various physiopathological processes, including the 
development of the nervous system and skeletal muscle 
atrophy, proliferation, and differentiation [42, 43]. For 
example, upregulated miR-351 improves skeletal mus-
cle atrophy and plays a protective role during acute sep-
sis by blocking the Tead-4-mediated Hippo signaling 
pathway [44]. Moreover, miR-351 has been reported to 
be associated with several liver diseases as an antiviral 
miRNA [43]. A recent study found that miR-351 medi-
ated schistosome-induced hepatic fibrosis by targeting 
VDR [45]. Interferon (IFN)-γ negatively regulates miR-
351 in HSCs in the early stages of schistosomiasis. IFN-γ 
inhibits miR-351 production to increase the expressions 
of VDR and SMAD7, two TGF-β/SMAD signaling chan-
nel antagonists, thereby blocking activation of HSCs [45]. 
The inhibitory role of IFN-γ mainly depends on the sig-
nal transducer and activator of transcription 1 (STAT1) 
and IFN-regulatory factor 2 (IRF2), which are impor-
tant transcription factors in the IFN-γ signaling path-
way. When eggs are deposited in the liver, the secreted 

cytokines switch from the Th1-type to the Th2-type, and 
correspondingly, the IFN-γ levels decrease. This weakens 
the negative regulation of miR-351; thus, the increased 
miR-351 induces HSC activation and promotes Col1α1, 
Col3α1, and α-SMA production by targeting VDR [45].

MiR‑146a/b plays a protective role in hepatic 
schistosomiasis by regulating differentiation 
of macrophages into M2 cells
M1 macrophages are mainly involved in inflamma-
tion and tissue damage by producing pro-inflammatory 
cytokines such as tumor necrosis factor alpha (TNF-
α), IL-1β, IL-12 and IL-23 [46, 47], whereas, M2 mac-
rophages are thought to be important regulatory factors 
in attenuating excessive inflammation and promot-
ing protective responses of the host mainly by secret-
ing cytokines such as TGF-β and IL-10 [48, 49]. IL-10 is 
thought to play an immunosuppressive role in infectious 
diseases and antagonize M1 macrophage-induced tissue 
damage [50, 51]. Arg-1, the canonical marker of M2 mac-
rophages, is supposed to exhibit both anti-inflammatory 
and anti-fibrotic activity after infection with S. mansoni, 
and Arg1-expressing macrophages act as critical media-
tors to downmodulate the immune response in chronic 
schistosomiasis [52]. Interestingly, M2 macrophages can 
also expedite fiber dissolution by secreting matrix metal-
lopeptidase (MMPs) [53].

It has been confirmed that macrophages play vital roles 
in the pathogenesis of schistosomiasis [54]. In the early 
stages of schistosomiasis, larval and adult worm migra-
tion in the host induces a Th1 response, which is charac-
terized by elevated levels of IFN-γ [55], which can induce 
differentiation of M1 macrophages [56]. After 4–6 weeks 
of infection, the worm eggs are released, causing a rapid 
transition from a Th1 to Th2 response in the host [57], 
and the series of Th2-type cytokines induce miR-146b 
expression by activating STAT3/6 in macrophages. While 
miR-146b inhibits the differentiation of macrophage into 
M1 by targeting STAT1, which is a key component of the 
IFN-γ signaling pathway [46]. Thus, miR146a/b plays a 
protective role against hepatic schistosomiasis by regulat-
ing macrophage differentiation from M1 to M2 cells [46, 
58]. In addition to its role in schistosomiasis, miR146a/b 
regulates the transformation from liver fibrosis to cirrho-
sis in patients infected with hepatitis B [59] and attenu-
ates liver fibrosis in carbon tetrachloride (CCL4)-induced 
rats [60]. It has also been reported that miR-146a/b can 
regulate macrophage activation by acting on the toll-
like receptor family, GM-CSF, M-CSF, and other signal-
ing pathways and molecules [61]. Whether miR-146a/b 
can also activate macrophages, via these mechanisms in 
schistosomiasis remains unclear.
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Anti‑fibrogenic role of miRNAs in schistosomiasis
Role of miR‑203‑3p in inhibiting schistosomiasis‑induced 
liver fibrosis
The IL-33/IL-13 pathway is associated with the immu-
nopathological process of liver fibrosis, and hepatic 
group 2 innate lymphoid cells (ILC2s) have been identi-
fied as fibrogenic immune cells in the murine liver [62]. 
It has been reported that IL-33 promotes fibrosis in 
many organs, including the liver [63], lungs [64], kidney 
[65] and heart [66]. In a murine model of schistosomia-
sis, schistosome eggs trapped tissue induced down-
regulation of miR-203-3p in HSCs. Correspondingly, 
IL-33, the target of miR-203-3p, was increased [67]. 
As an inducer of type 2 immunopathology, IL-33 and 
its receptor ST2 were shown to be involved in fibrosis 
development after S. japonicum infection by trigger-
ing the release of IL-5 and IL-13 [68]. IL-33 promotes 
proliferation of ILC2s, which secrete large amounts of 
IL-13, and then IL-13 activates HSCs to produce exces-
sive ECM through the STAT6 pathway [67]. Meanwhile, 
IL-13 can activate macrophages into M2-types, which 
promote synthesis of liver collagen and subsequent 
hepatic fibrosis [69]. Therefore, miR-203-3p can inhibit 
the process of schistosomiasis-associated liver fibrosis 
by inhibiting IL-33 secretion. Additionally, an in vitro 
study demonstrated that miR-203 may inhibit the syn-
thesis and deposition of ECM components to prevent 
HSC activation by targeting SMAD3 [70] and functions 
to inhibit myocardial fibrosis [71].

Let‑7b inhibits liver fibrosis in schistosomiasis 
through multiple mechanisms
Let-7 miRNA was originally discovered in the free-
living nematode Caenorhabditis elegans [72]. Growing 
evidence suggests that let-7b, one of twelve members of 
the let-7 family, is associated with a variety of diseases, 
including tumor, liver, and skin diseases [73]. Let-7b 
regulates tumorigenesis and cancer progression by 
inhibiting cell proliferation [74] in thyroid cancer [75], 
breast cancer [76] and acute lymphoblastic leukemia 
[77]. Furthermore, let-7b is believed to upregulate the 
gene expression of heme oxygenase-1 through tar-
geting Bach1 and thus alleviate oxidative damage of 
human hepatocytes [78]. Let-7b also inhibits the pro-
gression of alcoholic liver fibrosis by targeting LIN28B 
and HMGA2 [79]. Recent studies have shown that let-
7b inhibits schistosomiasis-associated liver fibrosis by 
targeting TβRI, which is considered an important tar-
get for inhibiting liver fibrosis [80]. Moreover, let-7b 
can simultaneously suppress liver fibrosis by inhibiting 
Th1 and Th2 responses as well as expression of TGF-β1, 
α-SMA and collagen I [80].

MiR‑182 may regulate the specialization of regulatory T 
cells in schistosome infections
Regulatory T cells (Tregs), a subgroup of T cells, can 
maintain immunological tolerance to self-antigens, 
thereby preventing autoimmune diseases [81]. Tregs 
exert immunosuppressive effects by secreting inhibitory 
cytokines, such as TGF-β, IL-10 and IL-35 [82]. Although 
multiple regulatory cell types have been identified, 
Tregs remain the most important immunoregulatory 
cell population to efficiently limit schistosome-induced 
immunopathological damage to host organs [83, 84]. In 
schistosomiasis, Tregs can exert their immunosuppres-
sive effects by producing IL-10 to inhibit Th1 response 
and limit the excessive effects of Th2 response [85]. Th2 
and Th17 cells are also reported to upregulate granu-
loma formation by secreting IL-4 and IL-17, respectively; 
however, Tregs downregulate the formation of granu-
loma [86]. Previous studies have shown that miRNAs 
can affect Tregs generation and plasticity, thereby regu-
lating the pathogenesis and treatment of autoimmune 
diseases and cancers [87]. A recent study found that 
miR-182 plays a similar regulatory role during schisto-
some infections [88]. Local environmental factors, such 
as IL-4, regulate the miR-182 pathway, thus shaping Th2 
into Tregs and preserving Tregs stability and suppressor 
functions. Although miR-182 is an important mediator 
of Tregs specialization and stability during schistosome 
infections, the role and underlying mechanism of miR-
182 in the immunopathology of schistosomiasis remain 
unknown [88].

Other miRNAs associated with liver fibrosis 
in schistosomiasis
In addition to the aforementioned miRNAs, some other 
miRNAs are also involved in the development of liver 
fibrosis by regulating HSC activation and apoptosis. For 
example, an in vitro study showed that miR-27b expres-
sion is downregulated in rSjP40-treated LX-2 cells, 
and miR-27b could promote HSCs activation through 
targeting PPARγ, which is thought to inhibit fibro-
sis by holding HSCs in a more quiescent phenotype 
[89]. However, the pro-fibrogenic effect of miR-27b in 
murine schistosomiasis remains unconfirmed. Also, 
miR-15b and miR-16 play important roles in inducing 
HSC apoptosis by targeting bcl-2 in the caspase sign-
aling pathway [90]; miR-454 was reported to be down-
regulated in S. japonicum-induced liver fibrosis models 
and it could participate in inhibiting HSC activation 
during schistosomiasis-associated liver fibrosis by tar-
geting Smad4 [91]. As a pleiotropic modulator, miR-155 
inhibits HSC activation by blocking the ERK1 signal-
ing pathway [92] and inhibits LX-2 cell activation by 
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targeting FOXO3a [93]. During schistosomiasis-asso-
ciated liver fibrosis, miR-29b-3p is believed to inhibit 
HSC activation by targeting COL1A1 and COL3A1 in 
the TGF-β1 signaling pathway [94]. Moreover, another 
recent study showed that mmu-miR-92a-2-5p inhibits 
schistosome-induced liver fibrosis in vitro and in vivo 
by targeting TLR2, but the underlying molecular mech-
anism remains unclear [95]. TGF-β/SMAD signaling 
is an important pathway for HSC activation, and the 
modulatory roles of miRNAs in this signaling pathway 
further affect schistosomiasis-associated liver fibrosis 
are summarized in Fig. 1.

Using miRNAs to grade schistosomiasis‑associated 
hepatic fibrosis
It is known to us that the current challenge in treat-
ing schistosomiasis is determining how to completely 
prevent liver fibrosis progression and other immuno-
pathological damage caused by the parasite eggs in the 
later stage of schistosomiasis [96]. Therefore, effective 
methods for early diagnosis and grading hepatic fibrosis 
must be developed. Circulating and exosomal miRNAs 
could be used as markers for diagnosis or indicators for 
determining severity of certain diseases and therapeutic 
effects [97–99]. For example, elevated miR-21, miR-122 
and miR-223 in the serum may serve as new biomarkers 

Fig. 1  miRNAs regulate the HSC activation and schistosomiasis liver fibrosis through modulating TGF-β/SMAD signaling pathway. The key event 
of schistosomiasis liver fibrosis is the HSC activation, where the TGF-β/SMAD signaling pathway plays a vital role in the process. After schistosome 
infection, soluble egg antigen (SEA) induces macrophages to secret TGF-β [119, 120], which is the classic fibrogenic cytokine that promotes the 
activation of HSC. TGF-β binds to the receptors leading to phosphorylation of Smad-2 and Smad-3, followed by aggregation with Smad-4 and 
subsequently drives the expression of Smad-7 which negatively regulates TGF-β/SMAD signaling by blocking the TGF-β type I receptor (TβRΙ). 
Upon HSC activation, synthesis of ECM proteins is enhanced, especially collagen I and II, therefore resulting in liver fibrosis. Dysregulation of miRNAs 
regulate the TGF-β/SMAD signaling pathway to influence the activation of HSC and therefore exert a pro-fibrosis (miR-21, miR-96 and miR-351) or 
anti-fibrosis (miR-203-3p, miR-454, let-7b and miR-29b-3p) role in schistosomiasis
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for liver injury diseases such as liver cancer and chronic 
hepatitis [100]. MiR-122 and miR-192 were elevated in 
the serum of mice with drug-induced liver injury [101].

Evidence indicates that host miRNAs in schistosomia-
sis serve as important molecules for host-parasite inter-
actions and may serve as new biomarkers for diagnosing 
schistosomiasis and assessing the severity of liver pathol-
ogy [102]. MiR-223 is reported to be significantly upreg-
ulated in the serum of S. japonicum-infected mice and 
is highly associated with hepatic pathological changes. 
After PZQ treatment in these mice, the miR-223 lev-
els returned to nearly normal, suggesting that miR-223 
could be used as a diagnostic biomarker of schistosome 
infection and a prognostic marker to monitor therapeu-
tic effects [103]. Serological differences in the circulat-
ing host miRNAs (miR-122, miR-21 and miR-34a) were 
tested in a mouse model before and after schistosome 
infection [104]. Although their respective potential value 
as biomarkers for diagnosing schistosomiasis was limited, 
a combination of several biomarkers could be used to 
evaluate hepatopathology progression in murine schisto-
somiasis [104]. A subsequent study was performed to test 
the correlation between the levels of circulating miRNAs 
and fibrosis grading in human schistosomiasis [105]. Cai 
et al. [105] evaluated the potential of ten miRNAs in dis-
tinguishing the severity of liver fibrosis in S. japonicum-
infected mice and in schistosomiasis patients and found 
that four circulating miRNAs (miR-150-5p, let-7a-5p, let-
7d-5p and miR-146a-5p) had moderate diagnostic value 
to discriminate mild from severe liver fibrosis in schisto-
somiasis patients. Additionally, miR-150-5p displayed the 
best diagnostic performance for grading hepatic fibrosis 
[105]. Although miR-706 and miR-134-5p levels are asso-
ciated with aberrant expression of caspase-3 and Creb1 
in the early stage of schistosome infection in mice, their 
potential as diagnostic biomarkers for schistosomiasis 
hepatopathology progression is unclear [102]. Further-
more, schistosome-specific miRNAs, such as sja-miR-277 
and sja-miR-3479-3p, showed potential as biomarkers 
for diagnosing S. japonicum infection and liver fibrosis 
intensity based on observations in two murine models 
[104]. Bantam and miR-2c-3p isolated from serum extra-
cellular vesicles of infected patients can also be used as 
diagnostic and follow-up tools [106]. These findings indi-
cate that circulating miRNAs showed potential as pre-
dictors of fibrosis progression, but available information 
remains limited; at this stage, usage of circulating host 
miRNAs for schistosomiasis diagnosis is still question-
able, because host miRNAs may be altered under a wide 
range of etiology, thus leading to the problem of diagnos-
tic non-specificity of schistosomiasis. Therefore, more 
potential miRNAs must be identified that are specific for 
grading schistosomiasis-associated fibrosis by increasing 

clinical sample numbers and/or testing extracellular vesi-
cle-derived miRNAs.

Use of miRNAs to treat schistosomiasis‑associated 
hepatic fibrosis
Regarding treatment of schistosomiasis-associated liver 
fibrosis with chemical drugs, the function of renin-
angiotensin system (RAS) inhibitors and kaempferol in 
alleviating hepatic fibrosis have been extensively stud-
ied. These drugs can inhibit HSC activation and reduce 
collagen and TGF-β production [107, 108]. Both taurine 
supplementation and combining PZQ with silymarin 
substantially ameliorate liver fibrosis, likely by down-
regulating relevant cytokines or chemokines and reduc-
ing the endoplasmic reticular stress response [109, 110]. 
Mesenchymal stem cell therapy can significantly improve 
and reverse fibrosis in liver tissues of S. mansoni-infected 
mice [111]. A double-stranded oligodeoxynucleotide 
decoy containing the TGF-β regulatory element in the 
distal promoter of the COL1A1 gene was reported to 
effectively treat schistosome-induced fibrosis by sup-
pressing TGF-β1 and COL1A1 production [112].

MiRNA-based treatments may provide promising 
prospects for treating schistosomiasis-associated liver 
fibrosis. Recently, miRNA intervention therapy has 
been investigated in murine schistosomiasis by deliver-
ing miRNA antagonists or mimics. First, vector-based 
miRNA inhibition, a miRNA silencing strategy, has been 
tested in mice. Lentivirus or adenovirus vectors are 
commonly used to deliver miRNA-expression cassettes 
into target cell lines or animals [113]. In mouse models 
of schistosomiasis-associated liver fibrosis, inhibiting 
miR-96 or miR-21 via recombinant adeno-associated 
virus serotype 8 (rAAV8)-mediated delivery of Tough 
Decoy RNAs can effectively alleviate hepatic fibrosis by 
reducing collagen I and III [40, 41]. When recombinant 
lentivirus of let-7b (lenti-let-7b) was transfected into S. 
japonicum-infected mice, the expressions of TGF-β1, 
TβRI, α-SMA, collagen I, serum IL-4 and IFN-γ were sig-
nificantly decreased, and liver fibrosis was significantly 
ameliorated [80]. Furthermore, rAAV8-mediated miR-
203-3p elevation could act as a therapeutic intervention 
for schistosome-induced fibrotic diseases [67]. Secondly, 
competing endogenous RNAs (ceRNAs) can bind to 
miRNA through miRNA response elements (MREs), 
thereby affecting the miRNA-induced gene silencing 
[114]. Thus, we hypothesize that expression of some key 
genes involved in schistosomiasis-associated liver fibro-
sis could be regulated via a ceRNA network to alleviate 
or even cure liver fibrosis. This hypothesis needs to be 
examined in future studies.

Although miRNAs have shown great potential in treat-
ing schistosome-induced hepatic fibrosis, current studies 
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are primarily limited to murine schistosomiasis; there-
fore, developing therapeutics using anti-miRs or miRNA 
mimics from bench to clinical trials will take much more 
time. More importantly, compared with classic drugs, 
miRNA-based treatment may produce off-target effects, 
leading to undesired changes in unrelated gene expres-
sion [115, 116]. To decrease the unwanted side-effects, 
delivery of anti-miRs or miRNA mimics to specific cells 
or tissues is important. As described previously, adeno-
associated virus (AAV) remains the primary vector for 
delivering the miRNA of interest to specific organs. The 
serotype AAV8 in particular, shows excellent liver speci-
ficity owing to its natural tropism towards the liver; there-
fore, AAV8 was still the major choice in several studies of 
miRNA-based treatment of liver fibrosis in murine mod-
els of schistosomiasis [40, 41, 67]. Furthermore, some 
new miRNA delivery systems, which exhibited good 
cell-target efficiency, have been developed [117, 118]. A 
pH-sensitive and vitamin A (VA)-conjugated copolymer 
VA-PEG-Bpei-PAsp(DIP-BzA) (abbreviated as T-PBP) 
was synthesized, and this copolymer was assembled into 
superparamagnetic iron oxide (SPIO)-decorated cati-
onic micelles, which efficiently transported miRNA-29b 
and miRNA-122 to HSCs and displayed prominent anti-
fibrotic efficacy [117]. A novel lactosylated PDMAEMA 
nanoparticles efficiently delivered a miR-146b mimic 
to hepatocytes to alleviate hepatic steatosis in the non-
alcoholic fatty liver disease (NAFLD) mouse model 
[118]. However, the T-PBP micelle and lactosylated 
PDMAEMA nanoparticles have not been used to deliver 
miRNAs to treat liver fibrosis in a murine schistosomiasis 
model.

Conclusions
Although numerous studies have been conducted to 
determine the roles of miRNAs in the pathogenesis 
of schistosomiasis, the current understanding of the 
miRNA-mediated molecular mechanisms remains 
limited. Previous studies on liver and serum miRNA 
expression profiles in murine schistosomiasis have 
provided valuable information for understanding 
the pathogenesis of the disease. Some differentially 
expressed miRNAs exert both pro-fibrogenic and anti-
fibrogenic roles during liver pathology progression in 
schistosomiasis. In order to develop an effective strat-
egy to treat liver fibrosis, miRNA-based intervention 
has shown great potential to inhibit the progression 
of chronic schistosomiasis. Although some reports 
have suggested that intervention of dysregulated 
hepatic fibrosis-associated specific miRNAs have sig-
nificant effects in treating schistosomiasis, these stud-
ies remain at the animal experimental stage. Safety 
and effectiveness issues of miRNA therapeutics in 

schistosomiasis-associated liver fibrosis require fur-
ther study. Specifically, off-target effects and thera-
peutic specificity are of considerable concerns. Thus, 
more biosafety and hepatotropic materials are needed 
to be developed, and nanoparticles may be good can-
didates. In addition, circulating miRNAs have become 
promising biomarkers for grading liver fibrosis in schis-
tosomiasis. In the future, more efforts are needed to 
clarify the mechanisms of host-parasite interactions 
and miRNA-mediated liver pathology. Although lim-
ited progress has been achieved using intervening sin-
gle miRNAs to treat schistosomiasis-associated liver 
fibrosis, great interest exists surrounding schistosomi-
asis-related miRNAs as a novel therapeutic strategy. 
It is predictable that more miRNA therapeutic targets 
will likely be discovered, and innovation in the areas of 
specific tissue-targeted miRNA delivery will promote 
specificity of treatment and reduce off-target effects, 
thereby maximizing the utility of miRNAs in treating 
schistosomiasis.
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