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Abstract 

Background:  Practical, field-ready age-grading tools for mosquito vectors of disease are urgently needed because of 
the impact that daily survival has on vectorial capacity. Previous studies have shown that near-infrared spectroscopy 
(NIRS), in combination with chemometrics and predictive modeling, can forecast the age of laboratory-reared mos-
quitoes with moderate to high accuracy. It remains unclear whether the technique has utility for identifying shifts in 
the age structure of wild-caught mosquitoes. Here we investigate whether models derived from the laboratory strain 
of mosquitoes can be used to predict the age of mosquitoes grown from pupae collected in the field.

Methods:  NIRS data from adult female Aedes albopictus mosquitoes reared in the laboratory (2, 5, 8, 12 and 15 days-
old) were analysed against spectra from mosquitoes emerging from wild-caught pupae (1, 7 and 14 days-old). Differ-
ent partial least squares (PLS) regression methods trained on spectra from laboratory mosquitoes were evaluated on 
their ability to predict the age of mosquitoes from more natural environments.

Results:  Models trained on spectra from laboratory-reared material were able to predict the age of other laboratory-
reared mosquitoes with moderate accuracy and successfully differentiated all day 2 and 15 mosquitoes. Models 
derived with laboratory mosquitoes could not differentiate between field-derived age groups, with age predictions 
relatively indistinguishable for day 1–14. Pre-processing of spectral data and improving the PLS regression framework 
to avoid overfitting can increase accuracy, but predictions of mosquitoes reared in different environments remained 
poor. Principal components analysis confirms substantial spectral variations between laboratory and field-derived 
mosquitoes despite both originating from the same island population.

Conclusions:  Models trained on laboratory mosquitoes were able to predict ages of laboratory mosquitoes with 
good sensitivity and specificity though they were unable to predict age of field-derived mosquitoes. This study sug-
gests that laboratory-reared mosquitoes do not capture enough environmental variation to accurately predict the 
age of the same species reared under different conditions. Further research is needed to explore alternative pre-pro-
cessing methods and machine learning techniques, and to understand factors that affect absorbance in mosquitoes 
before field application using NIRS.
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Background
Quantifying the average age of a mosquito population 
would provide cost-effective and compelling entomo-
logical evidence for the potential epidemiological impacts 
of vector control. The mosquito death rate is the most 
important determinant of vectorial capacity [1] but 
measuring the age of wild-caught mosquitoes remains 
impractical and unreliable despite its epidemiological 
importance. The use of near infrared spectroscopy and 
chemometrics may offer a solution [2–6], but its ability to 
be used in the field remains untested.

Only older mosquitoes are able to transmit disease. 
This is because pathogens require time to replicate and 
disseminate in the mosquito after ingestion of an infected 
blood meal. This extrinsic incubation period (EIP) com-
monly takes 9–14 days for dengue and Zika [7, 8]. Age-
grading methodologies are also required for determining 
the impact of any vector control intervention that might 
skew the age structure of a population (i.e. insecticide 
treated materials and indoor residual sprays will reduce 
the average age of mosquitoes). Previous methods used 
to age Aedes sp. include transcriptional profiles, mor-
phological differences and cuticular hydrocarbon (CHC) 
analysis (see [9] for a review); however, these methods 
are often laborious, destructive, expensive and inaccu-
rate. The work on CHCs in particular [10] gives credence 
to the idea that the composition of mosquito exoskel-
etons changes with age and that near-infrared spec-
troscopy (NIRS) might be used to measure the differing 
absorbances of those surfaces in relation to the organic 
compounds that they contain [10, 11]. NIRS provides 
information on the changing biochemical information on 
the surface of mosquitoes through detecting changes in 
C-H, N-H and O-H functional groups in mosquitoes as 
they age [12]. The use of NIRS to age-grade mosquitoes 
requires no sample preparation and is fast and accurate in 
distinguishing young and old mosquitoes in laboratory-
derived samples. In that context, the NIRS method has 
been used to age grade Anopheles spp. [2, 5], Ae. aegypti 
[12, 13] and Ae. albopictus [6]. Most models to date have 
been laboratory-derived and typically their accuracy has 
been tested against mosquitoes from the same origin. 
The models are therefore likely to be overly optimistic. 
Milali et  al. [14] examined spectra collected from labo-
ratory and wild-caught Anopheles mosquitoes and found 
no significant difference between them. However, the age 
of the field-collected material appears to be unknown 
and so the capacity of those similar spectra to reflect age-
related differences was not tested. At least for Anopheles, 
other studies suggest that calibrations generated with 
one population of mosquitoes are not applicable to com-
bined datasets derived from NIRS studies conducted in 
different laboratories, on different populations or using 

different machines [3]. Similarly, models built using lab-
oratory-reared mosquitoes had low predictive power in 
relation to the age of Anopheline adults derived from 
wild-caught larvae [15].

Machine learning methods are required to convert 
spectral data into predictive models for mosquito age. 
This has historically been performed using Partial Least 
Squares (PLS) regression and the software GRAMS IQ 
(Thermo Fisher Scientific, MA, USA). It has been postu-
lated that prediction accuracy might be improved using 
more complex analytical and model-building techniques 
[15, 16] and that pre-processing data cleaning might also 
improve performance [3].

In the present study, we used a laboratory-reared col-
ony of Aedine mosquitoes to attempt to predict the age 
of mosquitoes collected as pupae in the field and reared 
to known age in cages held at ambient field conditions. 
To our knowledge, this is the first attempt to use labo-
ratory reared Aedes mosquitoes to develop predictive 
models of age for mosquitoes derived from field-collected 
material under ambient environmental conditions. We 
also examined whether the accuracy of our calibration 
and prediction models could be improved using different 
pre-processing and analytical techniques.

The Asian tiger mosquito (Aedes albopictus), which 
is the subject of this study, originates from Southeast 
Asia, but now has a global distribution facilitated by the 
international movement of passengers and cargo and its 
ability to adapt quickly to new environments [17]. Aedes 
albopictus is an important vector of dengue [18, 19] and 
chikungunya [20, 21]. Field female Ae. albopictus are on 
average thought to live for approximately 8 days [22] 
although mark-release-recapture studies suggest individ-
ual mosquitoes may live up to 17 days [23].

Methods
Mosquito collection and rearing
Laboratory‑reared mosquitoes
Aedes albopictus eggs were collected from Hammond 
Island, Torres Strait, Australia, in June 2016 and used 
to derive a stable laboratory-maintained colony at the 
quarantine facility in Queensland Medical Research 
Institute (QIMR) Berghofer. The species was first noted 
on the Torres Strait islands of Australia in 2005 and has 
since facilitated some minor dengue outbreaks in that 
region [24]. Larvae hatched from that colony were reared 
in trays (35 × 15 cm) of de-chlorinated water kept at 
27 °C and 70% humidity. Larvae were fed with ground 
fish food ad libitum (Tetramin fish food flakes; Blacks-
burg, VA) and pupae were removed to round containers 
(9 cm diameter, 130 ml water). Emerging females were 
transferred daily to cages and provided with 10% sucrose 
ad libitum and maintained at 27 °C.
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Adults used for NIRS analysis were killed 2, 5, 8, 12 and 
15 days post-emergence. Individuals of the same age from 
two different generations were pooled to include possible 
variations in laboratory rearing conditions. Mosquitoes 
were anaesthetised with CO2 and placed in individual 
1-ml tubes containing RNAlater® (Ambion, TX, USA), a 
standard protocol for NIRS characterization [25]. Tween-
20 (0.1% v/v) was added to the RNAlater® to reduce sur-
face tension and allow RNAlater® to fully penetrate the 
mosquito. Sample tubes were maintained at room tem-
perature for 24 h. The mosquitoes were then preserved 
at − 20 °C until spectral collection (< 14 days later). The 
total number of mosquitoes collected is listed in Table 1.

“Field‑derived” mosquitoes
The term “field-derived” is used to describe mosquitoes 
with an origin that is more representative of the field 
than of the laboratory. They were collected as pupae from 
a natural habitat (a productive rainwater tank) on Ham-
mond Island, Torres Strait, during March 2018. This site 
is also the origin of the material used to derive the 2016 
laboratory colony (see above). Pupae emerged in stand-
ard rearing cages (60 × 60 × 60 cm, Bugdorm, Megaview, 

Taiwan) maintained outdoors under ambient conditions. 
Adults were aspirated from the cages when they were 1, 7 
or 14 days-old, immobilized by cold (4 °C) and placed in 
RNAlater® with 0.1% (v/v) of Tween-20 at − 20 °C until 
ready for shipping to QIMR Berghofer.

Mosquito scanning using near‑infrared spectroscopy
Preserved, frozen mosquitoes were defrosted at room 
temperature and excess RNAlater® removed by plac-
ing specimens on paper towelling. A Spectralon plate 
was used for spectral background collection. Individual 
mosquitoes were placed on the Spectralon plate later-
ally, and the head and thorax were scanned using the 
LabSpec 5000 NIR spectrometer (Malvern Panalytical, 
Longmont, CO, USA). NIR spectra were obtained with 
an attached bifurcated fiber-optic probe that is approxi-
mately 2.4 mm above the Spectralon plate; scanning an 
area of approximately 2 mm. Spectral data was recorded 
in the 350–2500 nm region. Each spectrum was built 
using an average of 30 scans at a sampling resolution of 
3 nm. Spectral data were collected using RS3 v6.4.3 (Mal-
vern Panalytical, Longmont, CO, USA). Reflectance (R) is 

Table 1  Predictive power of models derived from different Ae. albopictus populations

Notes: The true age of mosquito groups is shown on the left while the mean predicted age (and variability, given as standard error of the mean, SEM) is shown on the 
right using standard Partial Least Squares (PLS) regression or a resampling PLS framework. Mosquitoes are classified as young (< 8 days) or old (≥ 8 days). First line 
of each section of the table shows the number of components used in the different models. Accuracy of age estimates is shown by the average difference between 
the true and predicted age measured in days (root-mean-square deviation, RMSD), with lowest values indicating a more accurate model. The ability to classifying 
mosquitoes as young or old is given by the area under the curve (AUC), with higher values indicating greater accuracy

Actual age (days) No. scanned Standard PLS Resampling PLS

Age in days Classed as old (%) Age in days Classed as old (%)

Using laboratory-derived models to predict the age of laboratory-reared mosquitoes

 Number of components 8 10

 2 41 3.58 (0.28) 0 2.13 (0.22) 4

 5 42 7.62 (0.30) 36 7.27 (0.23) 9

 8 42 8.35 (0.27) 60 8.07 (0.21) 57

 12 42 8.47 (0.33) 57 9.84 (0.22) 58

 15 44 14.0 (0.33) 100 14.7 (0.26) 68

 Overall accuracy RMSD = 2.38 – RMSD = 2.89 AUC = 0.88

Using field-derived models to predict the age of field-derived reared mosquitoes

 Number of components 8 10

 1 50 4.58 (0.32) 6 3.31 (0.28) 0

 7 50 7.71 (0.44) 41 7.28 (0.36) 0

 14 100 11.7 (0.34) 90 12.7 (0.26) 100

 Overall accuracy RMSD = 3.41 – RMSD = 2.82 AUC = 0.97

Using laboratory-derived models to predict the age of field-derived reared mosquitoes

 Number of components 8 10

 1 50 6.50 (0.20) 12 8.23 (0.18) 36

 7 50 6.92 (0.20) 18 9.40 (0.27) 74

 14 100 7.00 (0.15) 24 9.18 (0.22) 75

 Overall accuracy RMSD = 5.84 – RMSD = 5.42 AUC = 0.60
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converted to absorbance (log 1/R) through RS3 prior to 
analyses.

Data analysis
Estimating mosquito age in days
Analyses were performed within the wavelengths of 700 
to 2350 nm to disregard background noise at the start 
and end of the spectra, and any colour differences in 
mosquitoes (detected at < 700 nm). PLS regression was 
used to convert spectral data into predictive models of 
mosquito age (in days). Previous mosquito NIRS studies 
have used GRAMS IQ software (Thermo fisher Scientific, 
MA, USA) to conduct the PLS analysis. GRAMS IQ uses 
a “leave-one-out” method for internal cross-validation 
where one sample is taken from the calibration set and 
the remaining samples are used to develop an equation 
that would predict that removed sample (therefore for 
each iteration the model is tested against a single data 
point). This process is repeated for all samples to create 
a predictive regression model (calibration model). The 
whole “leave-one-out” method is then repeated varying 
the number of PLS components (factors) and the best 
model selected [2, 13, 26] by choosing the number of 
components that maximises accuracy whilst trying to 
minimise overfitting (inclusion of too many components 
results in models that fit the sampled data perfectly but 
that fail to predict new data). This involves subjectively 
deciding when increasing the number of components 
starts to have a minimal impact on cross-validation accu-
racy. Here we repeat the methods of the past (leave-one-
out internal cross-validation and selecting the number 
of components based on the correct classification rates 
of the calibration and prediction sets) and refer to this 
method as “Standard PLS”.

An alternative approach for the development of pre-
dictive models whilst reducing overfitting is to split 
the dataset into three for training, validation and test-
ing [27]. Here we use 50% of the sample for training 
(fitting the model to samples of known age using dif-
ferent numbers of PLS components), 25% for valida-
tion (selecting an optimum number of components 
that effectively predict another subset of known sam-
ples) and 25% to the test dataset (evaluating the final 
model against a blinded subset of data). This process is 
repeated 100 times, each time randomly resampling the 
original dataset to generate different training, valida-
tion and testing datasets so that no model is validated 
or tested against data used in its fitting. The overall 
accuracy of this set of models is then reported as the 
mean accuracy (as measured by the root-mean-square 
deviation, RMSD) of the 100 different models. This 
averaging is necessary in order to reduce sampling 
noise generated by the resampling process and obtain 

an unbiased estimate of the error (i.e. if only a sin-
gle randomisation was used accuracy could be much 
higher or lower by chance depending on data split). 
Here the number of components selected during the 
validation exercise (and used in all 100 models) is the 
lowest number of components that permits an aver-
age error (RMSD) within 0.5 days of the best fitting 
model. This value was arbitrarily selected to be a com-
promise between accuracy and generalizability (fur-
ther reducing overfitting). This resampling procedure 
and selection of the number of components is referred 
to as “resampling PLS” and has been used to optimise 
models for predicting the presence of malaria parasites 
in mosquitoes [28]. Results are shown comparing the 
standard error of the predictions with the true age of 
the mosquito (RMSD). To allow a direct comparison 
with Standard PLS, RMSD estimates for Resampling 
PLS were calculated on estimates of individual mos-
quito age calculated from the mean of the 100 randomi-
sations using the training/validation/test dataset. The 
Resampling PLS method was written for these analyses 
in R [29] and available from https​://githu​b.com/pmesp​
eranc​a/mlevc​m.

Mathematical pre-treatment of spectra may reduce 
noise and increase the ability of NIRS to differentiate 
between mosquitoes with different characteristics. To 
investigate whether the accuracy of the standard PLS 
models could be improved by pre-processing tech-
niques we examined standard normal variate (SNV), 
mean normalizing, and detrend-SNV methods to mini-
mize spectral distortion due to scattering. We used sec-
ond derivative Savitzky-Golay (SG) filtering to remove 
baseline noise [30, 31].

Classifying mosquitoes as young and old
Previous NIRS studies have estimated mosquito age 
in days as a continuous variable and then classified 
mosquitoes according to whether this age estimate is 
above or below a pre-defined threshold (i.e. > or < X 
days-old; [4–6]). Here we use a binomial logistic regres-
sion framework to classify mosquitoes as young or old 
using the same resampling PLS framework outlined 
above [27]. An 8-day threshold is used to differenti-
ate between young and old mosquitoes as it was the 
median age of mosquitoes collected thus allowing the 
calibration dataset to be evenly balanced between out-
comes. Misclassification rates (the proportion of test 
observations incorrectly classified) were used to esti-
mate the optimal boundary threshold (the value of the 
linear predictor differentiating between age classes), 
with sensitivity, specificity and accuracy determined 
using equations by Milali et  al. [32]. Overall accuracy 

https://github.com/pmesperanca/mlevcm
https://github.com/pmesperanca/mlevcm
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for resampling PLS is assessed by comparing the area 
under the receiver operating characteristic (ROC) 
curve (AUC). This is a graphical tool commonly used 
to illustrate the diagnostic accuracy of binary classifi-
cation systems, with an AUC of 0.5 signifying the abil-
ity of NIRS to classify old and young mosquitoes is no 
better than chance whilst a value of 1 indicates perfect 
accuracy. The model with the minimum number of 
components that is within 0.01 of the model with the 
highest AUC is selected. Estimates of whether a mos-
quito is classified as young or old are made by averaging 
prediction of the linear predictor from 100 randomisa-
tions and comparing that to the average cut-off (in the 
linear predictor space) for all mosquitoes to enable a 
fair assessment of the quality of the model in a real-life 
setting [27].

Analysis of spectra
Potential outliers in the data were identified and removed 
using Hotelling T2 statistics, where samples positioned 
outside of a 95% confidence interval ellipse and consisted 
extreme differences in spectra are considered outliers. 
Outliers were not used in this analysis because they are 
considered data points that are not representative of the 
age-grading spectral information used for the develop-
ment of a principal component analysis (PCA) model. 
Ten laboratory samples and nine field-derived samples 
were removed as outliers. PCA was then used to iden-
tify spectral differences and clustering within the data-
sets. Loading plots generated from PCA were analysed to 
identify key absorbance peaks that may correspond to the 
age grading of mosquitoes. PCA analysis was conducted 
in Unscrambler X (v. 10.5.1).

Results
Determining mosquito age in days
NIRS can determine the calendar age of laboratory-
reared Ae. albopictus mosquitoes with moderate accu-
racy but our laboratory model fails to predict the age 
of the same mosquito species with the same geographi-
cal origin reared in situ. The exact predictive accuracy 
depends on the method of analysis. The best fit calibra-
tion model using laboratory data are shown in Fig.  1 
generated with the resampling PLS (Fig. 1a–c) and stand-
ard PLS (Additional file 1: Figure S1a–c). Both methods 
generate regression coefficients with peaks at similar 
wavelengths (Fig. 1a, Additional file 1: Figure S1a) which 
are broadly the same as those observed previously [12] 
although they differ in amplitude, and had wavelengths 
correspond to CH absorption overtones (1120–1225 and 
1350–1450 nm). The resampling PLS framework gave 
an average difference between the true age and the pre-
dicted age of individual mosquitoes of 2.89 days, which 
was not as good as 2.38 days for the standard method 
(Table 1). Average estimates for the different age classes 
were more accurate in every age group using the resam-
pling method, producing average age predictions that are 
closer to their actual age of mosquitoes compared to the 
standard method (Table 1).

Neither PLS model derived from laboratory-reared 
mosquitoes was able to predict the age of field-derived 
mosquitoes (Fig.  1c, Additional file  1: Figure S1c). The 
standard PLS method had an average error of 5.84 days 
whilst the resampling method gave an error of 5.42 days. 
Mean predicted age across the three different field-
derived age groups was broadly the same, and age groups 
were indistinguishable from one another (Table  1). The 

Fig. 1  The ability of NIRS to predict the age of Ae. albopictus mosquitoes in days. a The best-fit regression coefficient function for the resampling 
PLS model trained on laboratory-reared mosquitoes showing the most informative regions of the spectrum. Grey lines show best-fit model for each 
of the 100 dataset randomisations whilst black line indicates the average. b Ability of the model to predict age of laboratory-reared mosquitoes. 
Boxplot thick horizontal black line shows the median/50th-percentile whilst the box edges, inner and outer whiskers show 25th/75th, 15th/85th 
and 5th/95th percentiles, respectively. Grey dashed line shows model with 100% accuracy. c Ability of the model trained on laboratory mosquitoes 
to predict the age of field-derived mosquitoes. Results can be compared to the simple PLS method presented in Additional file 1: Figure S1
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inadequacy of using laboratory-reared mosquitoes to 
predict the age of field-derived mosquitoes is not driven 
by a lack of signal from the field-derived mosquitoes as 
training the model on the field-derived mosquitoes alone 
and then using that to predict the age of a subset of these 
mosquitoes (internal cross-validation) generated moder-
ately accurate results (average error of 3.41 days and 2.82 
days for standard and resampling methods, respectively, 
see Table 1).

Preprocessing spectra before standard PLS substan-
tially improved the accuracy of the calibration model for 
the laboratory-derived mosquitoes. The most successful 
method was Detrend-SNV, which reduced the average 
error in the calibration (laboratory-derived) dataset to 
2.09 days (broadly in line with the accuracy of the resa-
mpling PLS framework). However, the accuracy of that 
model in predicting the age of field-derived mosquitoes 
remained poor (average error of 4.9 days, see Additional 
file 2: Table S1).

Binary classification (young or old)
The ability of NIRS to differentiate between young and 
old mosquitoes varied substantially according to the 
method of analysis (Table  1). Most previous work has 
classified mosquitoes as young or old by estimating the 
age in days and then using this to classify mosquitoes 
as young or old. The standard PLS model misclassified 
23.8% mosquitoes reared in the laboratory with a sensi-
tivity of 0.73, specificity of 0.82 and accuracy of 0.76, but 
correctly classified very young and very old laboratory-
reared mosquitoes with high accuracy (100% of 2 day-old 
and 15 day-old mosquitoes; Table 1). However, standard 
PLS models derived from laboratory-reared mosquitoes 
failed to predict the age of field-derived mosquitoes, with 
a sensitivity of 0.85, specificity of 0.24 and accuracy of 
0.55.

Training the model to directly classify young or old 
mosquitoes substantially improves the accuracy of 
results. The resampling PLS classification model selects 
different regions of the spectrum (Fig.  2a) compared to 
the continuous age model (Fig. 1a), though some regions 
were informative to both models. Overall, the ability of 
resampling PLS models to predict the age of laboratory 
mosquitoes was high (Fig. 2b–d; AUC = 0.88) with good 
sensitivity (0.75) and specificity (0.86). However, the 
model trained on laboratory mosquitoes was still unable 
to predict the age class of field-derived mosquitoes with 
a sensitivity of 0.55, specificity of 0.55 and a low overall 
accuracy (AUC = 0.60).

There remains a strong age-related signal from field-
derived mosquitoes even if they cannot be predicted by 
laboratory samples. Resampling PLS models derived 
from field-derived samples accurately differentiated 100% 

of day 1, 7 and 14 mosquitoes (AUC = 0.97; Table 1). The 
standard PLS framework could only classify day 1 and 
day 14 mosquitoes with any accuracy.

Spectra investigation
Results from an analysis of spectral data identified four 
principal components that explained 88%, 8%, 2% and 1% 
of the variance observed. A scatter plot illustrates spectral 
differences between field-derived and laboratory mosqui-
toes (Additional file 3: Figure S2). The clustering of field-
derived mosquitoes towards PC-1 could reflect higher 
water content in these samples, as variances appears to 
result from absorbance peaks associated with water (1450 
nm and 1930 nm) [33] as can be seen in Fig. 3b. Younger 
mosquitoes are found to have higher water content com-
pared to older individuals [34], indicating that water may 
influence age grading in insects. The water signals can be 
detected at these peaks when comparing signals of dried 
mosquitoes (storage in silica for two days) to mosquitoes 
treated similarly to this study (Fig. 3c). The remaining 12% 
of the variances observed consisted of some overtones of 
water absorbance peaks and many weak signals that are dif-
ficult to interpret. Scatter plots of PC-2 and PC-3 showed 
less dramatic spectral differences of unknown cause (Addi-
tional file 3: Figure S2). Overall, there are clear differences 
between spectral outputs that reflect differences in water, 
protein and other chemical content suggesting predict-
ing age in field mosquitoes of different provenance will be 
challenging.

Discussion
NIRS measures the absorption of organic compounds 
within a sample using an electromagnetic spectrum in 
the near-infrared region. The derived spectra are com-
plex and multivariate analytical techniques are required 
for their interpretation. If these outputs are to be of util-
ity for programmatic field evaluations, the predictive 
power of the derived models must effectively classify the 
age of field-collected material of unknown provenance. 
This validation is clearly challenging to design and test. 
It requires a comparison of NIRS data derived from 
mosquitoes of known calendar age, with field collected 
mosquitoes graded using an independent proxy such as 
parity, or an alternative age-grading technique such as 
hydrocarbon analyses or transcriptional profiles [9, 35].

An initial, simpler step in that process is to show that 
laboratory-derived models are applicable to field-derived 
material. In this instance, we attempted to correlate the 
calendar age of mosquitoes from a laboratory colony, 
with the calendar age of mosquitoes derived from field-
collected pupae reared to the adult stage in cages held at 
ambient field conditions.
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We determined that PLS regression models can predict 
the age of other mosquitoes reared under near-identical 
conditions. This is consistent with other studies that have 
used models derived from laboratory-reared Ae. albop-
ictus, Ae aegypti and Anopheles gambiae (s.l.) colonies 
to predict the age of other mosquitoes from the same 
colonies [6, 12, 13, 36]. In an extension of that work, our 
study demonstrates that models derived from labora-
tory mosquitoes were unable to predict the age of field-
derived mosquitoes. Similar results were obtained when 

mosquitoes were ascribed a binary age classification (< or 
> 8 days). This has important implications as the utility 
of the technique in field programmes will rely upon an 
ability to use data sets from one origin, geographical area 
or sampling period to accurately predict the age of other 
samples of a different provenance.

Although our laboratory and field-derived mosqui-
toes originated from the same site, the former was 
established in 2016 and is likely to have diverged sig-
nificantly in profile from those mosquitoes collected in 

Fig. 2  The ability of NIRS to classify Ae. albopictus mosquitoes as being young or old. a The best-fit regression coefficient function for a model 
trained on laboratory-reared mosquitoes showing the most informative regions of the spectrum. Grey lines show best-fit model for each of the 
100 dataset randomisations whilst black line indicates average. b Ability of the model to predict age classification of laboratory-reared mosquitoes. 
Histogram of the estimated linear predictor for the test observations colour-coded by the true class (green, true young mosquitoes; blue, true 
old mosquitoes). Vertical black line indicates optimum threshold for classifying mosquitoes as old or young (“left” predicted to be young, “right” 
predicted to be old). The shaded area where two distributions overlap corresponds to misclassified test observations, false negatives to the left and 
false positives to the right of the optimal classification threshold. c The corresponding confusion matrix for the best model trained and predicting 
laboratory-reared mosquitoes showing the different error rates: tnr, true negative rate; fnr, false negative rate (specificity); fpr, false positive rate; and 
tpr, true positive rate (sensitivity). d The receiver operating characteristic (ROC) curve for the best-fit model predicting laboratory-reared mosquitoes 
showing the false positive and true positive rates achievable for different classification probability thresholds (shifting the black vertical line (b) left 
or right) whilst the overall performance is given by the area under the ROC curve (AUC). The pink dashed line denotes a model with no predictive 
ability (a random chance of correct prediction) whilst a perfect model with 100% sensitivity and specificity would be in the top left corner 
(coordinates 0, 1). The solid line shows the average ROC curve; boxplots show the variability for 100 randomisations of the training, validation and 
testing datasets (box edges, inner and outer whiskers show 25th/75th, 15th/85th and 5th/95th percentiles, respectively; black line inside the box 
showing the median/50th-percentile). e The ROC curve showing the ability of the model trained on laboratory rerared mosquitoes to predict the 
age classification of mosquitoes reared in the field-derived environment. f The corresponding confusion matrix of the best model



Page 8 of 10Ong et al. Parasites Vectors          (2020) 13:160 

2018. Their respective histories of nutrition, competi-
tion and development times will have been very differ-
ent, as will a host of other environmental and abiotic 
factors. We therefore cannot determine whether the 
failure of models trained on field data to predict the 
age of field-derived mosquitoes is due to differences 
in the mosquito population or the rearing conditions. 
Further work is needed to confirm whether models 
derived from laboratory-reared mosquitoes can be used 
to predict the age of field-derived, semi-field and field 
mosquitoes. The utility of NIRS will depend on whether 
models trained on one group of mosquitoes would be 
able to predict the age of mosquitoes from different 
times and places. PCA analysis suggest substantial vari-
ation in spectra between laboratory- and field-derived 
material. That seems at odds with the conclusions of a 
previous study, which suggests no difference between 
near infrared spectra collected from laboratory and 
field mosquitoes [14]. Spectral analyses suggest that 
water absorbance peaks may contribute to the variation 
observed here, and reflect the physiological state of the 
mosquito or the immediate environment. Water creates 
strong NIRS signals that may dominate other signa-
tures in the cuticle [16] and may be masking important, 
age-related spectra; however, this cannot be confirmed 
unless there are additional studies performed on dried 
mosquitoes. All adult mosquitoes used in this study 
were cage-reared with ad libitum access to 10% sugar 
solution; therefore, it is unknown if water signals 
directly influences spectral data collected for age grad-
ing, and whether moisture content in a mosquito is a 
limitation for NIR mosquito studies. There were also 
absorption peaks indicating differences in CH absorp-
tion overtones in the best-fit regression coefficient 

function for standard and resampling PLS methods, 
which has been reported to be important in age clas-
sification of other insects [37].

The preservation of mosquitoes with the use of Tween-
20, although used in very small amounts (0.1% v/v), may 
have the potential to remove lipids and wax from the 
surface of mosquitoes. This could have the potential to 
affect NIR signals however all mosquitoes were preserved 
similarly to avoid variation between samples, and results 
obtained from cross-validation had similar outcomes 
to a previous study on Ae. albopictus [6]. Additionally, 
changes in components other than epicuticular lipids 
have been proven to contribute significantly to changes 
in NIR signals in aging insects [37].

Exploring alternatives to the standard PLS regres-
sion improved internal cross-validation in some cases. 
The resampling method which uses 100 randomisations 
of the original dataset substantially reduces overfitting, 
especially for relatively small datasets [27]. This study 
used spectra from ~40 mosquitoes of highly homoge-
nous origin to represent each age category. This is in line 
with previous studies [2, 6, 13, 26] but the accuracy and 
robustness of machine learning techniques will improve 
substantially as more samples are included and as more 
variability is captured [3]. The resampling PLS framework 
also enables the number of components to be automati-
cally selected, increasing reproducibility and probably 
contributing to improvements in the out-of-sample accu-
racy [28]. Pre-processing of spectral data also appeared 
to improve accuracy of the standard PLS and is routinely 
applied to spectral data, especially on solid materials 
where light scattering often occurs [38]. This reduces 
background noise, which consists of random deviations 
of the spectral measurements and systematic variations 

Fig. 3  Differences between laboratory and field-derived spectra. a Principal components analysis showing the difference between scores 
calculated for PC-1 (which explains 88% of the variation) and PC-2 (8% of the variation) for laboratory (blue; square) and field-derived (red; circle) 
mosquitoes. b Loading plot from PCA showing that water bands at 1450 nm and 1930 nm accounted for 88% of the total variance observed. R 
denotes reflectance c difference between undried (dashed line) and dried (solid line) mosquito spectra. In b and c blue horizontal lines indicate 
peaks associated with water
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within samples which are unimportant in the analysis 
[39]. In our study, pre-processing produced calibration 
models with a higher accuracy and fewer principle com-
ponents for laboratory-derived calibration predicting 
ages of laboratory-reared mosquitoes, and field-derived 
calibration predicting ages of field-derived mosquitoes. 
There were no significant differences in accuracy of field-
derived age predictions using laboratory calibrations but 
there seems further utility in exploring alternative pre-
processing methods and machine learning techniques.

Conclusions
There remain many challenges to the development and 
adoption of NIRS as an age-grading tool with a field 
application. The application of NIRS and chemometrics 
to the age classification of insects would benefit from a 
better understanding of the factors that affect absorb-
ance and the challenges they pose to accurate predic-
tion. A spectral database defined in terms of its causative 
physiological or biochemical drivers might allow for data 
analyses to be performed using only the most relevant 
regions, as can be seen in a mosquito mid-infrared study 
[16]. This method has also been used in various other 
NIRS studies, where there is emphasis on an individual 
wavelength related to the detection of a specific chemi-
cal bond [40, 41]. Efforts to define its potential and limi-
tations are essential as we consider our priorities for 
research and development.
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