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Abstract 

Background:  Visceral leishmaniasis (VL) caused by dimorphic Leishmania species is a parasitic disease with high 
socioeconomic burden in endemic areas worldwide. Sustaining control of VL in terms of proper and prevailing 
immunity development is a global necessity amid unavailability of a prophylactic vaccine. Screening of experimental 
proteome of the human disease propagating form of Leishmania donovani (amastigote) can be more pragmatic for in 
silico mining of novel vaccine candidates.

Methods:  By using an immunoinformatic approach, CD4+ and CD8+ T cell-specific epitopes from experimentally 
reported L. donovani proteins having secretory potential and increased abundance in amastigotes were screened. A 
chimera linked with a Toll-like receptor 4 (TLR4) peptide adjuvant was constructed and evaluated for physicochemical 
characteristics, binding interaction with TLR4 in simulated physiological condition and the trend of immune response 
following hypothetical immunization.

Results:  Selected epitopes from physiologically important L. donovani proteins were found mostly conserved in L. 
infantum, covering theoretically more than 98% of the global population. The multi-epitope chimeric vaccine was 
predicted as stable, antigenic and non-allergenic. Structural analysis of vaccine-TLR4 receptor docked complex and 
its molecular dynamics simulation suggest sufficiently stable binding interface along with prospect of non-canonical 
receptor activation. Simulation dynamics of immune response following hypothetical immunization indicate active 
and memory B as well as CD4+ T cell generation potential, and likely chance of a more Th1 polarized response.

Conclusions:  The methodological approach and results from this study could facilitate more informed screening and 
selection of candidate antigenic proteins for entry into vaccine production pipeline in future to control human VL.
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Background
Leishmania spp. are obligate intracellular pathogens of 
phagocytic host cells. Two species, Leishmania dono-
vani and L. infantum cause visceral leishmaniasis (VL), a 
neglected tropical disease and second only to malaria in 
parasitic cause of death. With a chance of case fatality of 
100% in an inadequate treatment scenario, over 90% of 
VL cases occur in relatively poor communities of Bangla-
desh, India, Sudan, South Sudan, Ethiopia and Brazil [1]. 
The VL elimination program known as Kala-azar Elimi-
nation Programme (KEP) has contributed to a remarka-
ble decline in the incidence of VL over recent years in the 
Indian subcontinent and now it is approaching the main-
tenance phase of VL elimination [2]. However, sustained 
elimination cannot be possible without proper and pre-
vailing immunity development in the endemic popula-
tion against Leishmania parasites in the post-elimination 
era due to the chance of reservoir mediated re-emergence 
of the disease [3]. A vaccination strategy can induce long-
term protection with proper immunity in order to pre-
vent development of disease in the most economical way, 
regardless of its mode of implementation.

In recent years, enormous progress has been made in 
the design of vaccines against leishmaniasis using live-
attenuated or killed parasites, cellular extracts, and indi-
vidual and/or recombinant antigens of parasites. The 
first-generation vaccine, which includes live-attenu-
ated, killed and fractionated parasites, is the only class 
of human prophylactic VL vaccine that entered phase 
III clinical trials so far. However, this vaccine failed to 
achieve satisfactory results [4]. The second-generation 
vaccines are produced from recombinant Leishmania 
antigens (single peptides/polypeptides). Among sev-
eral approaches, LEISH-F3, a multicomponent vaccine 
formulated with GLA-SE adjuvant showed promising 
results in phase I as a robust immune response inducer 
in healthy people [5]. Earlier, LEISH-F1 in combination 
with MPL-SE adjuvant also showed strong antigen-spe-
cific immune response in healthy people living in a L. 
donovani endemic area [6]. More recently, a third-gen-
eration DNA vaccine approach that employed simian 
adenovirus expressing a novel synthetic gene encoding 
Leishmania antigens, hence termed as ChAd63-KH, has 
shown potentiality to be a safe and immunogenic thera-
peutic vaccine for human VL and post kala-azar dermal 
leishmaniasis (PKDL) in a phase I trial [7]. Despite the 
ongoing progresses in vaccine development, the priority 
objective has not yet been achieved, i.e. the development 
of safe, effective, durable and low-cost prophylactic vac-
cine for human visceral leishmaniasis [8].

Besides producing memory lymphocytes towards a 
long-term immunity pathway, an ideal vaccine against 
Leishmania will stimulate parasite-specific cellular 

immunity that include a strong Th1 response to eliminate 
infections. In this regard, the use of epitopes or epitope-
containing peptides is advantageous since epitopes can be 
evaluated for immuno-recognition and epitope-specific 
response. Since epitopes/peptides themselves remain 
poorly immunogenic, the approaches that have been 
gaining interest are based on the development of peptide-
based formulations in combination with potent adjuvant 
components (peptide, lipids, virus particles, nanoparticles 
etc.) [9]. However, mapping of epitopes in immunogenic 
proteins remains crucial in peptide vaccine development. 
In addition to in vitro methods of epitope mapping such 
as phage display library, immunodominance and peptide 
competition assays, immunoinformatic mapping can be 
a powerful approach to facilitate screening of desired 
epitopes in immunogenic proteins [9]. Recent findings of 
leishmaniasis vaccine research also suggest that in silico 
predicted MHC class I and class II restricted epitope-
containing peptides derived from Leishmania antigens 
alone, as a cocktail, as a chimeric peptide or in combi-
nation with adjuvant can be substantially immunogenic 
in vitro and/or in vivo [10–13]. Thus, the application of 
immunoinformatics-based pipeline can facilitate large-
scale screening of peptide epitopes from Leishmania pro-
teome for rational design of potent vaccines.

While derivation of potentially immunogenic pep-
tides can be performed by analyzing (in vitro and/or 
in silico) either the whole parasite proteome, proteins 
known to elicit immunological outcome, or the known 
peptide libraries [9], two essential criteria have been sug-
gested for consideration to initially select potential vac-
cine antigens for leishmaniasis: (i) known antigen that is 
expressed in the disease-causing mammalian stage of the 
parasite; and (ii) selected adjuvants that elicit a cellular, 
Th1-biased immune response for the immunizations in 
humans [14]. The human stage-associated Leishmania 
proteins that facilitate intracellular survival and infective 
process of the parasite thus constitute attractive targets 
for anti-Leishmania vaccine design. In order to adapt in 
mammalian host, the promastigote stage of Leishmania 
undergoes morphological and metabolic changes when 
transformed into amastigote stage upon entry and inva-
sion. This is accompanied by a cascade of programmed 
changes in mRNA abundance, translation rate, and/or 
protein processing. However, interpretation of Leish-
mania transcriptome is likely controversial on whether 
relative changes in mRNA abundance is substantial [15, 
16], constitutive or negligible [17–19]. Moreover, stage-
specific upregulation for some transcripts [20] does not 
necessarily reflect in altered functional protein profile 
because of post-transcriptional [21] and post-transla-
tional regulation [22] evident for Leishmania species. 
While mRNA abundance may not be a perfect indicator 
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of protein levels in eukaryotes [19, 23, 24], the relation-
ship between mRNA and protein abundance is sug-
gested to be dynamically changing as L. donovani adapts 
to amastigote condition, with correlation in changes 
for only a small proportion [22]. Moreover, the changes 
in protein level can also vary between clinical and cul-
tured amastigotes [25]. In this scenario, experimentally 
evaluated proteome analysis can better highlight the key 
changes, which have important implications for diagnos-
tics, drug target identification and vaccine design.

Reverse vaccinology [26] has been becoming increas-
ingly popular in supported vaccine design by the com-
bined use of genomics, transcriptomics, proteomics and 
immunoinformatics. Here, we propose an approach 
to design a subunit vaccine based exclusively on mass 
spectrometry (MS)-driven comparative proteomic infor-
mation associated with amastigotes, since genome/tran-
scriptome information can be deviant as Leishmania 
adapts to amastigote condition. Invasion and survival 
of L. donovani in the mammalian host largely involves 
the export of virulence factors and immune-modulatory 
components into the host cytosol. However, constant 
exposure of these secretory proteins to host immune 
system can lead to immunological tolerance and strong 
parasite-specific humoral response, which can be prob-
lematic for vaccine design. Hence, we limited our focus 
on rational screening of immunogenic T cell-specific 
epitopes in such secretory proteins, which have substan-
tial coverage of endemic population as well. We then 
combined the epitopes into a single recombinant protein 
molecule. We explored into the physicochemical proper-
ties and receptor binding interaction of the multi-epitope 
vaccine, followed by molecular dynamics simulation of 
the vaccine-receptor complex and simulation of immune 
response. Overall, we showed that the experimental pro-
teome data-driven immunoinformatic approach can 
facilitate informed screening of potential subunit vaccine 
candidates from truly produced human stage-associated 
parasitic proteins of pathological/physiological impor-
tance. The immunogenic potential evaluated in silico can 
also provide rationality for experimental validation of the 
modeled subunit vaccine.

Methods
All the computational tasks using online and offline tools 
in this study were carried out with the concurrent ver-
sion of the tools between September 2018 and Decem-
ber 2018. Graphpad Prism v.7 software was used for 
descriptive data calculation, comparison of means and 
to reproduce graphs using software generated numeric 
values when applicable. A two-tailed P-value of < 0.05 
was considered as significant. The methodological flow-
chart of the study is given in Fig.  1. The details of the 

methodological steps are given in Additional file 1: Text 
S1.

Antigen selection
Literature reports on the proteome profile of L. dono-
vani were screened in the PubMed (NCBI) database to 
index articles published between year 2000 and 2018, 
and reports on MS-driven comparative abundance of 
proteins in promastigotes and amastigotes were selected 
to generate a local database of proteins. Sequences of 
identical or closely similar L. donovani proteins, which 
had more abundance in amastigotes, were retrieved. An 
MS-derived secretome profile of L. donovani was also 
retrieved from the published literature [27]. Secretory 
proteins in the local database were screened by both 
cross-matching the secretome and proteome data using 
ViroBLAST [28], as well as by evaluating combined pre-
diction of SignalP [29], SecretomeP [30] and TMHMM 
[31]. Antigenicity of the potential secretory proteins was 
estimated using ANTIGENpro [32] and VaxiJen [33] 
programs.

Epitope screening
For screening of cytotoxic T-lymphocyte (CTL, 9-mer) 
epitopes and helper T-lymphocyte (HTL, 15-mer) 
epitopes, both affinity and allele coverage were consid-
ered. Initially, CTL and HTL epitopes were screened for 
above cut-off prediction scores in NetCTL [34] and lower 
percentile rank in IEDB (Immune Epitope Database) 
recommended MHC-II consensus module (http://tools​
.iedb.org/tcell​/), respectively. Epitopes that are superior 
in human leukocyte antigen (HLA) cross-allele cover-
age were preliminarily selected. Then, both CTL and 
HTL epitope sets were filtered through specific (MHC-I 
and MHC-II modules of IEDB) and common (VaxiJen) 
immunogenicity prediction tools. CTL epitopes were 
further filtered in TAPpred [35] for more accurate pre-
diction of TAP transporter binder. As per requirement 
of a proper anti-Leishmania immune response, T cell 
epitopes containing B cell recognition region (predicted 
by Bepipred [36]) were excluded, and all IL-10 inducing 
epitopes (predicted by IL-10Pred [37]) were removed. 
BLAST search against the non-redundant human protein 
database was carried out to rule out self-epitopes, while 
search against the RefSeq [38] protein database of Leish-
mania was performed to find out the conservancy of the 
epitopes in other Leishmania species.

In order to calculate the theoretical population cover-
age (TPC) (http://tools​.iedb.org/popul​ation​/) of each 
epitope, binding affinity to HLA allele-specific MHC 
molecules was set at percentile rank cut-off of 1.0 for 
CTL epitopes (IEDB recommended), and IC50 cut-off of 
100 nM for HTL epitopes (10-times lower than the IEDB 

http://tools.iedb.org/tcell/
http://tools.iedb.org/tcell/
http://tools.iedb.org/population/
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recommended value). Our target was to reach more than 
90% population coverage by both CTL and HTL epitope 
sets in each of three most endemic areas of VL (India, 
Sudan and Brazil) with maximum number of alleles per 
epitope, while keeping the subunit length at minimum. 
In accordance, CTL epitopes with minimum TPC of 40% 
and at least eight HLA alleles were selected for vaccine 
construction. On the other hand, most of the screened 
HTL epitopes had more than 80% coverage in our obser-
vation, and therefore HTL epitopes having greater than 
90% coverage were selected.

Chimeric vaccine construction and evaluation
The vaccine construct was arranged by joining the CTL 
and HTL epitopes with linkers [39, 40], and preceded by a 
synthetic peptide adjuvant [41]. The selection of chimeric 
arrangement was based on antigenicity (ANTIGENpro 
and VaxiJen) and allergenicity (AlgPred [42] and Aller-
TOP [43]) scores, retaining of cleavage, TAP transporter- 
and MHC-binding propensity of target epitopes, and 
generation of none/least number of non-specific and/
or IL-10 inducing epitopes due to recombination. The 
capability to induce IFN-γ and IL-10 by the chimera was 

Fig. 1  Methodological flowchart in multi-epitope subunit vaccine design
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predicted by scanning in IFNepitope [44] and IL-10Pred 
module, respectively. Simulation of immune response 
based exclusively on the chimeric construct was per-
formed in C-ImmSim [45] server, whereas two previously 
reported candidate Leishmania vaccine peptides [46, 47] 
were used to evaluate whether C-ImmSim prediction 
corroborates to the dynamicity of antigenic constructs. 
For structural analysis, the tertiary structure of the con-
struct was produced in I-TASSER [48] modeling server 
followed by refinement using YASARA [49] force-field 
and GalaxyRefine [50] web tools. Stability of vaccine con-
struct, a prerequisite for antigen processing, was assessed 
using physicochemical features predicted by both 
sequence-based (ProtParam [51]) and structural (SCooP 
[52] and CamSol [53]) analysis tools. Furthermore, chi-
meric vaccine-specific linear (Bepipred and BCPREDS 
[54]) and conformational (Ellipro [55]) B cell epitopes 
were predicted. The structural model was used to dock to 
Toll-like receptor 4 by using ClusPro [38] docking server 
and the binding interactions were analyzed. Molecular 
dynamics (MD) simulation was performed by using Des-
mond v5.3 (Schrödinger, LLC, New York, USA) software 
to check the conformational stability of vaccine-receptor 
docked complex.

In silico cloning
To validate the immunoinformatic findings, evaluation 
of immuno-reactivity through serological analysis is the 
preliminary step and this requires expression of the can-
didate vaccine. For this purpose, codon optimization was 
carried out by using JCAT [56]. A cloning model was 
then developed for this construct by using SnapGene 
(GSL Biotech, California, USA) tool and by inserting the 
optimized coding sequence into a plasmid vector.

Results
Screening of secretory amastigote proteins 
from experimental studies
Following literature screening, three out of 28 PubMed 
indexed experimental studies on L. donovani proteome 
were considered for the study. Two of the studies com-
pared proteomic abundance of promastigotes with that of 
amastigotes as Leishmania adapts to the changes in con-
ditions resembling the host [57, 58], while the other one 
compared splenic amastigotes to axenic amastigotes [25]. 
A total of 118 out of 134 proteins, which had a relative 
increase of at least 1.5-fold or were reported exclusively 
in the protein profile of amastigotes and/or splenic amas-
tigotes, were found to have an identity of 90% or above 
for absolute query coverage with L. donovani proteins 
of similar functional annotations. After cross-matching 
of this group of proteins to 151 L. donovani secretory 
proteins revealed experimentally [27], 16 proteins were 

found to have an identity percentage and query coverage 
of 96.75 ± 1.1% and 99.44 ± 1.13%, respectively. Based 
on the presence of classical or non-classical secretion sig-
nal sequences along with minimum (no more than one) 
transmembrane helices, one common and an additional 
17 secretory proteins were included to the pool. Among 
33 amastigote-associated potential secretory proteins, 
26 were selected based on their antigenicity probability 
scores of ≥ 0.5 as predicted by both ANTIGENpro and 
VaxiJen (Table 1, Additional file 2: Data S1).

Multi‑epitope subunit L. donovani vaccine: construction 
and properties
A total of 79 CTL 9-mer epitopes were initially screened 
in NetCTL. Among them, only nine epitopes from six 
proteins were predicted to be non-self, highly immu-
nogenic and high-to-moderate TAP-transporter binder 
non-B cell epitopes. These epitopes covered theoreti-
cally, an average of 66.46 ± 7.88% and a cumulative of 
98.57% of the world population. Similarly, HTL 15-mer 
epitopes were screened to ensure both affinity and cover-
age. Fourteen selected HTL epitopes from eight proteins 
were finally predicted to be non-self, highly immuno-
genic non-B cell epitopes, with a mean theoretical cover-
age of 96.62 ± 1.35% and a cumulative of 99.52% of the 
world population. All the CTL and HTL epitopes except 
for H2-10 and H2-13 were conserved (100% identical) in 
L. infantum, whereas, less conservancy was found in rep-
resentative proteins of L. major (13/23) and L. mexicana 
(10/23). Properties of individual CTL and HTL epitopes 
are given in Tables 2 and 3, respectively.

The construct of 397 amino acid residues comprised of 
the 9 CTL and 14 HTL epitopes, with AAY and GPGPG 
linkers added in the intra-epitopic positions of CTL and 
HTL epitopes, respectively. It preceded in N-terminal 
by TLR4 peptide adjuvant, APPHALS, linked by EAAK 
linker to the vaccine. The selected rearranged model had 
the antigenicity score of 0.8 calculated by ANTIGEN-
pro, and 0.74 (bacteria model) and 0.65 (parasite model) 
by VaxiJen. Furthermore, the construct was found to be 
non-allergenic for human use. When re-analyzed by the 
screening tools, all the original CTL and HTL epitopes 
were found consistent with the pre-screening immuno-
genicity, cleavage and TAP binding properties in the rear-
ranged model. On the other hand, the arrangement of the 
construct resulted in generation of only three regions (15-
mer overlapping) of IL-10 inducing epitopes and three 
non-specific CTL epitopes (9-mer) comparable to the 
potency of target epitopes (Additional file 3: Figure S1).

IFN‑γ epitopes
Prediction on IFN-γ induction capacity revealed a total 
of 117 epitopes (15-mer) with positive scores. This 
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prediction was consistent with the C-ImmSim simulated 
immune response in terms of high IFN-γ production 
after hypothetical immunization (three doses) in a pop-
ulation characterized by a combination of frequent and 
VL susceptible HLA alleles [59–61]. Since the hypotheti-
cal cytokine levels in simulated immune response rep-
resent only the outcome of algorithmically set dynamic 
cellular interactions for a defined time period after anti-
gen priming [37], it was important to evaluate whether 
the simulation module can respond dynamically to dif-
ferent constructs [45]. Therefore, we simulated immune 
responses of two additional peptide vaccine candidates: 
peptide 1 (L. infantum derived fusion peptide [46]) and 
peptide 2 (L. donovani GP63 derived peptide [47]), which 
were experimentally found to exhibit varying cytokine 
response in comparison to soluble Leishmania antigen 
(SLA). Substantial difference was observed in terms of 
immunosuppressive IL-10 and TGF-β induction capacity 
between peptide 1 and peptide 2; however, determination 
of statistical significance was not possible in the simula-
tion module. Nevertheless, the outcome can be consid-
ered consistent with the general trend of in vitro immune 
response (compared to SLA), with peptide 2 being more 
prominent IL-10 inducer compared to SLA as reported 
in [47]. In terms of cytokine induction potential, simula-
tion outcome of our designed construct conformed more 

closely to that of peptide 1, which did not induce IL-10 
level higher than that by SLA in vitro [46] (Fig. 2).

Tertiary structure of the chimeric protein and cloning 
model
Since there was no significant template hit, the choice of 
3D model among outputs generated by I-TASSER was 
based on: (i) cluster size of model replicas; (ii) frequency 
of model in simulation trajectory; and (iii) C-score. The 
selected model has the highest C-score of − 1.56 which 
is close to the I-TASSER recommended score (− 1.5) for 
accuracy, and has the highest frequency in the top clus-
ter by size. After further refinement of the protein topol-
ogy, the PROCHECK [62] server returned a G-score of 
− 0.04, which indicates that the backbone and side chain 
of the model correspond to high-probability stereo-
chemical conformations. The model scored 1.73 in X-ray 
resolution scale by MolProbity [63], with no poor rota-
mers and bad bonds, negligible all atom steric overlaps 
(0.5%) and an increase in Ramachandran-favored residue 
number from 79.2% (unrefined) to 92.4% (refined) with 
a subsequent decrease in outliers (Additional file 4: Fig-
ure S2). The vaccine construct has a molecular weight 
of 42.1 kDa, with a basic nature (isoelectric point: 9.16). 
The score obtained for instability index was 27.26, which 
implied the stable nature of the vaccine in vitro. The 

Table 3  List of MHC II epitopes with characteristic affinity and coverage

a  100% identity for absolute query cover
b  Identity threshold in human for amino acids > 12 (80%)

Epitope no. Selected HLA 
epitopes

Protein ID Starting position Vaxijen score IEDB class II rank IL-10 World TPC (%) Epitope 
conservancya in 
other Leishmania 
spp. in RefSeq 
database

Selfb

H2-01 QDCKFVLVKAAAPAA E9BDB8 325 0.77 6.12 No 98.71 L. major, L. infantum No

H2-02 AAYYIKAAERIAAKG E9BI76 321 0.94 4.67 No 97.15 L. major, L. infantum No

H2-03 TFVKWNFTAFLVDKD E9BI90 121 1.19 8.91 No 97.76 L. infantum No

H2-04 LGTTFVKWNFTAFLV E9BI90 118 0.97 9.34 No 97.46 L. infantum No

H2-05 TTFVKWNFTAFLVDK E9BI90 120 1.06 8.31 No 97.76 L. infantum No

H2-06 LTKLFRYKSSRSESE E9BKM5 486 0.82 6.18 No 95.45 L. major, L. infantum No

H2-07 WLKGYFRLGVAMESM E9BT68 71 1.01 7.98 No 99.32 L. major, L. infantum, 
L. mexicana

No

H2-08 APLMLYISKMVPTAD E9BT80 376 1.10 3.24 No 93.09 L. major, L. infantum, 
L. mexicana, L. 
braziliensis, L. 
panamensis

No

H2-09 NTDFVMYVASVPSEG P23223 194 1.10 8.86 No 90.42 L. infantum No

H2-10 ASDAGYYSALTMAIF P23223 335 0.89 5.58 No 98.63 None No

H2-11 LVKYLIPQALQLHTE P23223 143 0.85 4.67 No 98.72 L. infantum No

H2-12 DILVKYLIPQALQLH P23223 141 0.74 2.72 No 94.14 L. infantum No

H2-13 SDAGYYSALTMAIFQ P23223 336 0.70 9.81 No 99.53 None

H2-14 CNGGLMLQAFEWLLR Q95WR6 188 1.04 8.42 No 94.48 L. infantum No
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estimated value of aliphatic index was 75.39 which indi-
cated its thermo-stability. The folded structure has a 
melting temperature of 73.9 °C and folding free energy of 
−  17.7 kcal/mol at neutral pH in humans. Additionally, 
this model was found to have substantial solubility with 
a score of 0.38 in folded state in contrast to the unfolded 
intrinsic score of − 3.06, which suggests that hydropho-
bic residues in this model tend to ideally form the stable 
core leaving hydrophilic residues much on the solvent 
accessible surface. The half-life of the construct in mam-
malian reticulocytes was estimated as 4.4 h in vitro, com-
pared with 20 h and 10 h in yeasts and Escherichia coli 
in vivo, respectively.

In terms of chimera-specific B cell response, Bepipred 
predicted six B cell epitopes of 8–12 residues in length 
above the threshold score, while BCPREDS predicted 
11 non-overlapping and linear 20-mer B cell epitopes 
with specificity scores > 0.99. Residues in those linear 
epitopes accounted for 41% residues of the 08 non-over-
lapping conformational epitopes (Fig. 3, Additional file 5: 
Table S1).

This sequence was used to generate in silico cloning 
model for E. coli (K12) expression. After optimization 
of the codon, the codon adaptation index (CAI) value of 

Fig. 2  Simulation of cytokine response. Illustration of cytokine induction potential by control peptide 1 (L. infantum derived fusion peptide) (a), 
vaccine construct designed in this study (b) and control peptide 2 (L. donovani GP63 derived peptide) (c) by independent simulation of immune 
response. Hypothetical administration of the peptides was performed in three doses four weeks apart with 1000 units/dose

Fig. 3  Refined tertiary structure of the chimeric protein. The 
secondary structure elements consist of helix (34%), sheet (10%), 
turns (39%) and coil (17%). Residue positions in B cell conformational 
epitope that overlap linear epitopes are depicted as CPK shapes
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the chimera was 0.98, while the GC content was 56.09%. 
For insertion into the E. coli pET28a(+) expression vec-
tor, two restriction sites for XhoI and NdeI enzymes were 
added in the 3ʹ- and 5ʹ-end, respectively, of the vaccine 
coding strand enclosed by 6-histidine residues at both 
ends (Additional file 6: Figure S3).

Molecular docking of vaccine in TLR4
Molecular docking of the vaccine construct with TLR4 in 
ClusPro 2.0 docking server generated 30 models ranked 
by cluster size of the representative pose. The selected 
docked complex had the largest cluster size (ClusPro 
recommended) with second-lowest binding energy score 
(− 1282.3) among the top ten models. The chimeric con-
struct seemed to occupy partially into the lateral concave 
surface, but not the convex surface, with strong hydro-
phobic interactions mostly with the beta-sheet adjacent 
residues at the C-terminal domain of TLR4 ectodomain 
(ECD) and also with its adapter protein, MD2, with sup-
port of several hydrogen bonds, thus establishing ligand 
mediated cross-link between TLR4 and MD2 (Fig. 4).

Molecular dynamics (MD) simulation of vaccine‑TLR4 
complex
Molecular dynamics simulation of the docked complex 
was performed by using OPLS_2005 force field. Using 
the Simulation Quality Analysis tool of the Desmond 
software, the mean potential energy for the complex was 
obtained as − 6.4e5 kilocal/mol (Additional file 7: Figure 
S4). The radius of gyration (Rg) obtained for the docked 
complex showed that the mean distance in rotating com-
plex from the center of mass is 4.31 nanometers (SD: 0.2 
nanometers) about which the model becomes consistent 
after 4 ns (Fig. 5a). The number of intermolecular hydro-
gen bond (H-bond) between the side chains of vaccine 
protein and TLR4 initially fluctuated probably due to sol-
vent effect before matching the trend of Rg in reaching 
steadiness after 4 ns. This suggests the role of H-bonds 
in the overall compactness of the complex (Fig. 5b). The 
trends of Rg and H-bond plots indicate that 6–8 strong 
H-bonds were persistent over simulation period between 
vaccine and TLR4, and this might be crucial for stable 
binding.

The root mean square deviation (RMSD) of the vac-
cine-TLR4 complex for backbone atoms over the simula-
tion period was 4.0 Å (SD: 0.49 Å), while it was 3.2 Å (SD: 

Fig. 4  Docked complex of TLR4 with vaccine construct. Accompanying structural monomers include second TLR4 ECD (TLR4*), MD-2 adapter and 
second adapter (MD-2*). Residual participants of receptor monomers interacting with vaccine (green) are represented by yellow (hydrophobic) and 
red (hydrogen bond) CPK shapes
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0.35 Å) for ligand-free TLR4 atoms (Fig. 5c), suggesting 
comparably higher (paired t-test: P < 0.0001) RMSD of 
the complex backbone. The root mean square fluctuation 
(RMSF) for side-chain atoms of vaccine-bound TLR4 (1.9 
Å, SD: 0.7 Å, range: 0.8–7.0 Å) was higher (Wilcoxon 
matched-pairs test, P < 0.0001) than unbound TLR4 
(1.6 Å, SD: 0.5 Å, range: 0.7–4.2 Å). The RMSF indicates 
overall less fluctuations for atoms interacting with vac-
cine residues, while atoms at vaccine unbound regions 
of the N-terminal and central domain underwent high 
fluctuations (Fig. 5d). Although the trends toward reach-
ing convergence were very similar, higher RMSD value of 
the complex than the vaccine-unbound TLR4 indicates 
structural mobility in the complex due to vaccine inter-
action and this is likely attributable to the higher RMSD 
of vaccine protein along the MD simulation time. In con-
gruence, rearrangement of several bonds between the 
vaccine and TLR4 was observed between pre-simulation 
and post-simulation models, while the total number of 

non-covalent bonds increased from 41 in pre-simulation 
model to 64 in post-simulation model (not shown). Visu-
alization of the interacting residues also indicates that, in 
comparison to unbound (and also pre-simulation) struc-
ture, the post-simulation bonding rearrangement is cou-
pled with increased number of H-bond at the C-terminal 
domains between TLR4 and TLR4* (second TLR4 ECD) 
(Additional file  8: Figure S5). This implies likely chance 
of positive interactions between the TLR4 monomers in 
physiological condition following vaccine interaction. 
Overall, the conformation of vaccine-bound receptor 
supports structural flexibility, which might be in favor of 
biological response of the receptor.

Immune simulation to predict secondary response
Hypothetical administration of three doses of vaccine 
construct four weeks apart with 1000 unit/dose was 
performed to simulate the immune response gener-
ated by immunization. In silico immune simulation 

Fig. 5  Molecular dynamics simulation of docked complex. For a time duration of 10 ns, plots of the radius of gyration (Rg) (a), hydrogen bond (b), 
RMSD of the backbone atoms fitted to complex (green) and ligand-free receptor (black), with respect to initial structure (c), and RMSF for side-chain 
atoms fitted to complex (green) and ligand-free receptor (black) with respect to initial structure of TLR4 ECD (627 aa; divided into three domains of 
leucine rich repeats or LRR) (d). Receptor positions interacting with vaccine (final frame) are represented with red circles
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plots hinted at antigenic recognition and subsequent 
response in terms of antibody production, and active as 
well as memory B cell and T cell generation in the pop-
ulation with a VL susceptible HLA profile after hypo-
thetical immunization. The primary response to the 
proposed chimera can be characterized by a marked 
increase in chimera-specific IgM and IgG production. 
After subsequent doses, a corresponding decrease in 
antigen concentration indicates gradual increase in 
memory B cell production with persistence. Further-
more, expansion of CD4+ T lymphocytes with memory 
development following the initial dose was observed. 
CD8+ T lymphocytes response was also high for the 
susceptible population reaching at its peak after the 
second dose. Repeated exposure of 12 doses, on the 
other hand, did not seem to cause clonal expansion of 
any epitope-specific T cells- as indicated by the Simp-
son’s index D, which is inversely related to diversity 
(Additional file 9: Figure S6).

Discussion
Proteomics-driven identification of potential vaccine can-
didates can be a sound approach for selecting promising 
antigens, which are elicited against environmental stimuli 
analogous to host response upon pathogen invasion and 
are physiologically relevant for pathogens within the host 
[64]. Availability of pathogen proteome information upon 
infection of the host can provide opportunities for in sil-
ico mining of novel vaccine candidates, and this approach 
has been utilized for in silico design of an epitope-based 
vaccine against Theileria parasites of ruminants [65]. For 
a dimorphic human parasite like Leishmania, it is impor-
tant to target human stage-associated antigenic proteins 
that are physiologically important for parasites to infect 
and establish in a new host. In recent years, several stud-
ies utilized immunoinformatic approaches of epitope 
screening in designing epitope-based vaccines. Khatoon 
et  al. [66], Singh et  al. [67] and Vakili et  al. [68] have 
previously reported the theoretical potential of in silico 
designed vaccines for visceral leishmaniasis. Notably, in a 
recent study by Vakili et al. [69], the group further evalu-
ated successfully the immunogenic potential of the multi-
epitope vaccine, derived in part from known antigens, 
by administering the chimeric construct in experimental 
mice. This suggests that the in silico designed vaccines 
with epitopes derived from appropriate protein targets 
have the potential to progress toward advanced phases 
of vaccine development for visceral leishmaniasis. While 
the in silico studies by Khatoon et al. [66] and Singh et al. 
[67] largely utilized available genomic databases of L. 
donovani to select vaccine targets, Dikhit et  al. [11, 70] 
performed thorough investigations involving in silico, in 

vitro and in vivo analysis to screen and validate immuno-
genic epitopes obtained from proteins that are increas-
ingly expressed at the infective parasite stage. Such highly 
expressed proteins are likely important for physiological 
and/or infective process of the parasite and thus can be 
more effective vaccine targets. In this study, we took an 
approach to select such amastigote proteins in terms of 
contrasting abundance or specificity (abundant up to the 
level of detection) from comparative proteome profiles of 
L. donovani promastigotes and amastigotes. Based on the 
propensity of those proteins for secretion in vitro and/or 
having secretory signal sequence, we further combined 
immunoinformatic tools to identify candidate antigens 
that have secretory potential. A comparison of the meth-
odological and outcome features among several stud-
ies that have employed in silico design and evaluation of 
epitope-based candidate vaccines against visceral leish-
maniasis to date is summarized in Table  4. Overall, our 
reported vaccine construct was found to be comparable 
to the earlier exclusively-in silico reports in terms of anti-
genicity, population coverage and receptor interaction. 
However, experimental studies remain crucial to validate 
the immunogenic potential of the designed vaccine.

Analyzing amastigote secretome through intra-mac-
rophagic studies is considered difficult, while significant 
difference in secretome between amastigotes and pro-
mastigotes is unlikely due to relatively low stage-specific 
differences in gene expression [27]. However, due to 
the dynamicity in the relationship between mRNA and 
protein abundance as L. donovani adapts to the amas-
tigote condition, comparative levels of abundance of 
these secretory proteins can be a more reliable indica-
tor. Hence, our screening approach is relevant within the 
context. Perhaps, the most studied amastigote-specific 
vaccine candidate in L. donovani happens to be a cel-
lular stress countering abundant surface antigen, A2, 
which has shown to confer whole or epitope-specific effi-
cacy in multiple immunization models [8, 71]. The vac-
cine construct reported in the present study comprised 
of immunogenic T cell-specific epitopes (as predicted 
immunoinformatically) from 13 amastigote-associated 
proteins. Five of them are known to associate with vir-
ulence in the mammalian host (fructose-1,6-bisphos-
phatase, putative protein disulfide isomerase, putative 
lipophosphoglycan biosynthetic protein, leishmanolysin 
and cysteine protease), while others have putative roles 
in countering the host-induced stress response (thiore-
doxin-like protein, glutathione peroxidase, stress-induc-
ible protein STI1 homolog), host-microbicidal activity 
regulation (proteasome endopeptidase) and protein syn-
thesis (elongation factor 2). Three proteins were unchar-
acterized according to the proteomic studies. Protein 
domain and homology (to proteins of other Leishmania 
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species) suggest that two of these proteins may poten-
tially play a role in drug resistance phenotype (E9BUW4) 
and protection from intracellular stress (E9BDB8), while 
the specific function of alpha/beta hydrolase domain-
containing protein (E9BQ40) in amastigotes has not yet 
been deciphered. On the other hand, lack of reports on 
experimental evaluation of immunogenicity of several 
Leishmania proteins, which have been included in our 
set of antigenic proteins is apparent. Among the 13 pro-
teins of current interest, only six (elongation factor 2, 
proteasome endopeptidase complex, putative protein 
disulfide isomerase, leishmanolysin, cysteine protease 
and putative lipophosphoglycan biosynthetic protein) 
or their species homologs are known to have proven 
immunoreactive properties (Table  1). Nevertheless, the 
increased abundance of the unexplored proteins suggests 
their likely role of pathological/physiological significance 
in host invasion and/or survival. The antigenicity scores 
further corroborate to the potentiality of these proteins 
as antigenic. Immunological evaluation of these amastig-
ote stage-associated proteins may unravel novel Leishma-
nia antigens in future.

In the context of functional roles of selected proteins, 
our designed vaccine has the potential to benefit the host 
by generating appropriate immune response both in the 
early and progressive phase of systemic infection. Fur-
thermore, almost all of the epitopes were found in cor-
responding proteins of L. infantum, indicating potential 
cross-protection against this visceralizing species. Most 
of the VL cases are reported from the endemic zones of 
the Indian subcontinent, East Africa and South America. 
Thus, in designing an epitope-based subunit vaccine, it is 
important to estimate the fractions of population in the 
target endemic zones based on HLA genotypic frequen-
cies. The immunogenic non-self CTL epitopes in the 
vaccine modeled here is estimated to cover 96.8%, 91.7% 
and 93.9% of the allelic populations of Brazil, India and 
Sudan, respectively, with experimentally evaluated truly 
binding affinity [72], while for HTL epitopes, it is almost 
100% for each of these populations. The vaccine con-
struct has antigenic properties while it was not found 
to be an allergen. The structure was found thermody-
namically stable and surface-soluble, while the core is 
hydrophobic, a favorable feature for antigen process-
ing. Vaccine-specific, but not parasite protein-specific 
humoral response was predicted, and this can be used as 
a biomarker of vaccine efficacy [46, 73] without eliciting a 
parasite-specific B cell response. Moreover, the construct 
structure showed a good binding affinity in previously 
reported binding cavity of TLR4 [74–77].

The structural interface between TLR4 and the pep-
tide adjuvant (APPHALS) used here has been extensively 
studied before. The position occupied by the adjuvant 

peptide in the TLR4-MD2 complex has been suggested 
to be varying depending on its position in the vaccine 
model and the canonical activation of the receptor is 
thought to be mechanized by insertion of peptide adju-
vant in MD2 [78]. Since we used already activating but 
hypo-responsive TLR4-MD2 crystal structure removed 
of LPS for docking [79], it was not possible to speculate 
about the agonistic behavior of the bound vaccine. Nev-
ertheless, our docking model is suggestive of non-MD2 
(non-canonical) binding of adjuvant linked peptide, in 
which the vaccine intrinsic segment may have more affin-
ity than the peptide adjuvant for binding to TLR4. The 
binding interface along with the molecular dynamics 
(MD) simulation of the docked complex in the solvent 
system hint at a sufficiently stable cross-link of TLR4 and 
MD2 with no major bond rearrangement between TLR4 
and MD2, and between TLR4* and MD2 heterodimer 
formations. Although, the simulation time was short, this 
is reasonable as none of the vaccine residues interacted 
at crucial MD2-binding sites [74]. On the other hand, 
H-bond was found to increase between TLR4 ECDs 
(where vaccine is bound to one TLR4 ECD) in the vac-
cine-bound form compared to the unbound TLR4, which 
suggests potential event of positive interactions and 
movement between the ECDs. Additionally, reduction 
in electrostatic surface potential at the vaccine-bound 
TLR4 interface was observed after docking, which was 
consistent in post-simulation structural interface. Simul-
taneously, it was observed that a homo-dimer destabiliz-
ing His458-His458* repulsion [76] at pre-dock TLR4 was 
nullified and superseded post-dock by a solvent stable pi-
hydrophobic interaction. It is thus possible that a change 
in the interpolated charge difference between pre-dock 
and post-dock TLR4 interface could have contributed to 
the bonding rearrangement between TLR4 ECDs. Nota-
bly, this rearrangement also involved participation of 
other critical histidine (His431, His555) residues at the 
TLR4-TLR4* interface [80] unlike the unbound struc-
ture (Additional file  8: Figure S5). Overall, these events 
are congruent with non-canonical TLR4 activation model 
mediated by microbial peptides, metals and cationic lipid 
nano-carriers, which are suggested to not confer canoni-
cal interaction with other monomers but to induce bond 
rearrangement among receptor monomers upon interac-
tion [74–77]. Although the exact mechanism remains to 
be elucidated, our observations suggest that the vaccine 
construct may possess a characteristic peptide feature of 
a non-canonical TLR4 ligand [81, 82], which may facili-
tate TLR4-TLR4* dimerization for downstream activa-
tion of immune cells. The trends of backbone RMSD, 
Rg and H-bond of the vaccine-bound complex over the 
simulation period complied with structural flexibility 
rather than rigidity of the complex. The RMSF values of 
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the complex side-chain indicate that the higher fluctua-
tions in TLR4 were of those residues, which are vaccine-
unbound and located in the solvent exposed loop mostly 
at or around glycines [83]. Increased residual fluctuation 
at LRR10-12 and around Gly397 may also be attributed 
to the mutations introduced at the position 299 and 399 
in TLR4 structure (4G8A), as reported in [79], which 
was used to dock the vaccine protein. Nevertheless, it is 
unlikely that vaccine interaction would induce dissocia-
tion in structural interface of natural TLR4-MD2 since 
none of the highly fluctuating TLR4 residues had any 
direct interaction with the vaccine or MD2.

Simulation outcome of hypothetical immunization in 
VL susceptible HLA alleles (hypothetical heterozygous 
combination) was consistent with the predicted immu-
nogenicity of the vaccine. Furthermore, we showed that 
the simulation outcome can be dynamic for different 
constructs when we used the same criteria in the simu-
lation program and the same HLA profile to test two 
known vaccine candidates for VL. Importantly, for these 
peptides, IL-10 production was reported previously as 
either prominent (peptide-2) or lessened (peptide-1) 
in comparison to SLA in vitro. It is not expected that 
simulation results will reflect experimental outcomes; 
however, we observed a general trend of difference in 
immunosuppressive cytokine (e.g. IL-10) induction 
potential between the two peptides from the simula-
tion outcome, with peptide-2 having more potent IL-10 
induction capacity. Although statistical significance could 
not be inferred from the simulation plots, the difference 
seems consistent with the experimental result. Under-
standably, the predicted epitopes (not shown) in the sim-
ulation program did not comply mostly with our target 
set of epitopes due to the difference in the epitope pre-
diction algorithm [45]. However, when compared to the 
simulation outcome of the known peptides, the general 
trend was comparable to both peptides for IFN-γ induc-
tion, while TGF-β and IL-10 were predicted to be con-
siderably less pronounced than that by peptide-2. Besides 
IL-10, TGF-β has potent immunosuppressive properties, 
enhances disease progression and may prevent cure and 
protective immunity development against leishmaniasis 
[84, 85]. Thus, the simulation prediction of higher pro-
pensity of the construct to induce a more Th1-polarized 
response rather than Th2 is consistent with our desired 
immunogenicity.

Despite the difference in the epitope set, simulation 
dynamics over time can be extrapolated for the estimated 
set of epitopes of our construct since it is also comprised 
of diverse T cell epitopes and vaccine-specific B cell 
immunogenic regions as predicted by several immunoin-
formatic tools. It has been proposed previously that the 

simulation dynamics can be consistent with a realistic 
immunization process in terms of primary and secondary 
immune responses [45]. Likewise, clearance of antigen, 
production of antibody, development and persistence 
of memory B cells as well as CD4+ T cells over several 
months were assumed in the simulation outcome. For 
primary activation and maintenance of CD8+ T cells, 
CD4+ T cells (both Th1 and Th2 type) [86] are believed 
to be required [87, 88], where cytokines such as IFN-γ, 
IL-2 and IL-4 could be involved [89–92]. The simulation 
outcome suggests chance for expression of high levels 
of IFN-γ and IL-2, which may potentiate CD8+ T cell 
expansion. On the other hand, it is unlikely that the vac-
cine would trigger clonal expansion of epitope-specific 
T cells since we combined potent epitopes from several 
amastigote-associated proteins of comparable affinity, 
and it was consistent with the simulation dynamics for 
repeated exposure of 12 doses, as indicated by Simpsonʼs 
index (D). Rather, high level of IL-2 production can be 
expected for diverse epitope-mediated immune response 
functional over long time in vaccine-mediated immunity.

Experimental validation is utmost to prove this com-
putational work. Next phases of the reverse vaccinology 
approach would ideally involve assessing the recombinant 
immunogenic protein expressed in the E. coli (strain K12) 
system as proposed here, in vitro stimulation of peripheral 
blood mononuclear cells from active VL patients as well 
as healthy endemic people for cytokine production, and 
evaluation in challenge models. While a multi-epitope 
vaccine molecule generated by using a reverse vaccinol-
ogy approach can induce specific responses in in vivo 
and in vitro assays, a single recombinant molecule can 
also reduce the cost of production [93, 94]. The in silico 
designed vaccine reported here confers substantial immu-
nogenic potential to be considered for in vitro experimen-
tal evaluation in the next phase of the study.

Conclusions
Screening and design of large-scale subunit/peptide vac-
cine candidates can be facilitated by a reverse vaccinol-
ogy approach prior to experimental validation. This 
modelling study took a systematic approach to apply a 
series of immunoinformatic tools to extract T cell-spe-
cific epitopes from MS-driven human stage-associated L. 
donovani proteins with secretory potential, and design a 
subunit vaccine with a broad population coverage. Devel-
opment of such a prophylactic vaccine for VL may com-
plement therapeutic strategies against active infections 
as well. Overall, collective approaches of in silico, in vitro 
and in vivo investigations are utmost to develop a univer-
sal subunit vaccine against human VL.
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