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Abstract 

Background:  The development of insecticide resistance in disease-vectoring mosquito species can lead to vector 
control failure and disease resurgence. However, insecticide applications remain an essential public health interven-
tion. In Florida, insecticide resistance in Aedes aegypti, an anthropophilic mosquito species capable of transmitting 
dengue, chikungunya, and Zika virus, is a major concern. Understanding the location, scale, and driving factors of 
insecticide resistance can enhance the ability of vector control organizations to target populations effectively.

Methods:  We used previously collected data on frequencies of mutations that confer resistance to commonly used 
pyrethroid insecticides in Ae. aegypti specimens from 62 sites distributed across 18 counties in Florida. To determine 
the scale of clustering for the most resistant variant, we used a Ripley’s K function. We also used a spatial scanning 
statistic technique to identify locations of clusters where higher than expected frequencies of susceptible or resistant 
mosquitoes occurred. We then tested for associations between landscape, demographic, and insecticide-use factors 
using a beta regression modelling approach and evaluated the effect of spatial lag and spatial error terms on overall 
explanatory power of these models.

Results:  The scale at which maximum clustering of the most resistant variant occurs is approximately 20 kilometers. 
We identified statistically significant clusters of genotypes associated with resistance in several coastal cities, although 
some of these clusters were near significant clusters of susceptible mosquitoes, indicating selection pressures vary at 
the local scale. Vegetation density, distance from roads, and pyrethroid-use by vector control districts were consist-
ently significant predictors of knockdown resistance genotype frequency in the top-performing beta regression mod-
els, although pyrethroid use surprisingly had a negatively associated with resistance. The incorporation of spatial lags 
resulted in improvements to the fit and explanatory power of the models, indicating an underlying diffusion process 
likely explains some of the spatial patterns observed.

Conclusions:  The genetic mutations that confer resistance to pyrethroids in Ae. aegypti mosquitoes in Florida exhibit 
spatial autocorrelation and patterns that can be partially explained by landscape and insecticide-use factors. Further 
work at local scales should be able to identify the mechanisms by which these variables influence selection for alleles 
associated with resistance.
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Background
Insecticides are used globally to control mosquito popu-
lations and reduce the risk of mosquito-borne disease 
[1]. An unfortunate side effect of this widespread use has 
been the rise of insecticide resistance via the selection 
for mosquitoes that are resistant to these treatments [2, 
3]. In many areas, the prevalence and intensity of insec-
ticide resistance in mosquito vectors has increased in the 
last decade, leading to resurgences of mosquito-borne 
disease [4–6]. For diseases for which there are currently 
no widely available vaccines, such as Zika, chikungunya, 
and West Nile virus, insecticide applications are seen as 
the only truly effective approach for protecting the public 
[7]. However, when vector control organizations are not 
aware of the presence or extent of insecticide resistance 
and how resistance reduces efficacy, they may inadvert-
ently waste time and resources applying pesticide treat-
ments that will not reduce disease-transmitting mosquito 
populations.

In Florida, insecticides are widely used to control the 
mosquito species that transmit disease as well as nui-
sance species [8]. There are currently 61 active mosquito 
control programmes throughout the state, most of which 
are organized at the county level [9] (Fig. 1), in addition 
to numerous private pest control companies that per-
form mosquito control. Vector control districts generally 
aim to implement integrated pest management including 
efforts in public education and outreach, larval breeding 
site reduction, and the application of biological controls, 
but the application of insecticides to kill adult mosquitoes 
remains the central component of vector control, par-
ticularly during an outbreak of mosquito-borne disease 
[9]. In Florida, insecticide application is typically done 
using ultra-low volume (ULV) spraying from ground 
vehicles or airplanes [8, 10]. Control districts most fre-
quently use pyrethroids (e.g. permethrin and resmethrin) 
or organophosphates (e.g. malathion and naled), with 
pyrethroids being more frequently used than organo-
phosphates throughout the state [9]. Residual spraying, 
usually with a handheld device, can be used to coat sur-
faces with insecticides and kill landing adult mosquitoes, 
though pest control companies use this technique more 
frequently than control districts [9]. Repeated exposure 
of mosquito populations to these treatments has led to 
the development of localized insecticide resistance in 
several species throughout the state [9, 11–13].

Monitoring insecticide resistance in Aedes aegypti has 
been a concern for vector control organizations interna-
tionally and in Florida. This species is widespread in Flor-
ida, particularly in urban areas, and is the primary vector 
of dengue, chikungunya and Zika viruses throughout 

most of the tropics and sub-tropics [14]. To monitor 
insecticide resistance in this and other species, research-
ers and control districts perform bioassays, in which 
sampled mosquitoes are exposed to diagnostic concen-
trations of insecticides inside a closed container and 
percent mortality is recorded at specified time intervals 
[15]. Additionally, two single nucleotide polymorphisms 
(SNPs) confer knockdown resistance (kdr) to pyrethroid 
insecticides in Ae. aegypti through changes in the sodium 
channel [16]. The first mutation at codon 1016 results in 
a change from a valine (V) to an isoleucine (I) [17], while 
the second mutation at codon 1534 results in a change 
from a phenylalanine (F) to a cysteine (C). The fre-
quency of individuals with the homozygous mutant vari-
ant at both sites (IICC) has a strong positive correlation 
with pyrethroid resistance in tested populations and can 
be used to estimate on-the-ground resistance [18, 19]. 
Mosquitoes that are heterozygous at both sites typically 
exhibit limited resistance to pyrethroids [20].

In this study, we first described the spatial variation in 
kdr mutation frequencies in Florida Ae. aegypti popula-
tions by measuring scales of spatial dependency and iden-
tifying statistically significant clusters of kdr genotypes. 
This was done for two reasons. First, conducting bioas-
say-based resistance monitoring is costly, time-consum-
ing, and logistically difficult, meaning most vector control 
districts can only regularly monitor a small number of 
sites. An understanding of the scale of spatial autocor-
relation in resistance-causing genotypes across collection 
sites would allow the status of a site where monitoring 
is not conducted to be estimated based on neighboring 
sites. Secondly, identified clusters of resistant and sus-
ceptible genotypes can be used to inform operational 
management decisions. Areas with higher than expected 
frequencies of genetically resistant strains of mosquitoes 
would likely benefit from deploying alternative control 
strategies, while clusters of susceptible mosquitoes may 
play an important role in preventing fixation of resistance 
in the population [21].

Beyond describing the observed patterns in kdr muta-
tions across Florida, there is a need to explain this varia-
bility. The development of insecticide resistance is shown 
to be related to the frequency and intensity of insecticide 
exposure [22]. However, in field settings, multiple land-
scape variables can modulate the degree to which mos-
quito populations are exposed to insecticide applications, 
resulting in differential selection pressure and resistance 
outcomes. For example, percent mortality from road-
based ULV spraying in cage trials has been shown to be 
lower for Ae. aegypti in densely vegetated areas and loca-
tions further from the road [23]. Additionally, proximity 
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to agricultural production, where insecticides are often 
applied regularly, has been associated with the devel-
opment of resistance in multiple mosquito species [24, 
25]. An understanding of the strength and direction of 
the relationships between the prevalence of insecticide-
resistant mosquitoes and these factors could be beneficial 
in efforts to tailor insecticide applications for maximum 
effectiveness and sustainability.

There were three specific objectives for this study: (i) 
determine the spatial scale of clustering in frequencies 
of the resistant kdr genotype in Florida populations of 
Ae. aegypti; (ii) identify and map locations that repre-
sent statistically significant clusters of kdr genotypes; and 
(iii) test for significant associations between quantifiable 
landscape factors and frequencies of the resistant IICC 
genotype using a beta regression modeling framework.

Methods
The data used in this study were collected as part of a 
statewide insecticide resistance monitoring effort that 
is described in detail in Estep et al. (2018) [18]. The fre-
quencies of kdr genotypes were determined for Ae. 
aegypti strains collected as eggs or larvae at 62 sites 
across 18 counties, primarily in 2016 and 2017, although 
Ae. aegypti from one site (Hillsborough County) were 
collected in 2014. For 21 sites, specimens from collec-
tions in close proximity to each other were pooled to the 
geographic mean center of the contributing locations. 
Importantly, collections were not made within a single 
season, which could influence the probability of detecting 
resistance, since mosquito activity and resulting appli-
cation intensity both tend to peak during the summer 
months.

Fig. 1  Map of pyrethroid application intensity by gallons of active ingredient per the number of acres treated by vector control districts. 
Headquarters of control districts and their current aerial capability are also shown. Data is based on 2016 Florida Department of Agriculture and 
Consumer Services Chemical Activity Reports
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We used the weighted Ripley’s K-function to charac-
terize spatial dependency in the recorded frequencies 
of the resistant IICC genotype across the 62 sampled 
sites in Florida. The Ripley’s K-function summarizes the 
extent to which points are clustered or dispersed across 
a range of distance bands [26]. This is done by comparing 
the actual number of neighboring points present within 
a circle centered on an arbitrary point to the number of 
points that would be expected given a random distribu-
tion. In a weighted K-function analysis, the null hypoth-
esis is that the pattern of weight values (in this case, the 
count of mosquitoes with the IICC genotype) assigned 
to the points is not significantly more clustered than the 
underlying pattern of the points. This analysis was imple-
mented in ArcMap 10.6 with 30 distance bands of 5 km. A 
minimum enclosing rectangle, which is the smallest rec-
tangle that can be generated to include all the sampling 
sites, was used as the study area for the analysis. This was 
chosen as an alternative to using the Florida boundaries, 
since sampling was not evenly distributed throughout 
the state and was not conducted at all in the Florida Pan-
handle. The Ripley’s edge correction formula was applied 
to account for points located near the edge of the study 
area. The confidence interval was computed based on 999 
permutations of random point patterns, derived from the 
first implementation of the Ripley’s K-function on the 
unweighted sampling sites, while the plot of observed spa-
tial dependency was based on the sampling sites, weighted 
by the count of mosquitoes with the IICC genotype.

We used SaTScan Version 9.4 [27] to identify and map 
clusters of the different kdr genotypes. This software 
detects clusters in space and time and tests identified 
clusters for statistical significance. We used the multino-
mial probability model [28], allowing detection of higher 
or lower than expected frequencies of each unique kdr 
genotype, and implemented both a circular and ellipti-
cal window shape to allow comparisons between the two 
methods [29]. The genotype frequencies, which ranged 
from 0.0 to 1.0 in the original dataset, were multiplied by 
100 and rounded to the nearest integer, then imported as 
case counts. The population for each site was set to 100 
individuals. After experimentation at different maxi-
mum spatial cluster sizes, 15% of the population at risk 
was used as the cut-off value. This maximum cluster size 
detected clusters at scales that approximated the county-
level scale of vector control implementation, whereas 
larger thresholds yielded clusters that encompassed many 
counties, and smaller thresholds resulted in many clus-
ters that only included a single site. We used 999 stand-
ard Monte Carlo replications to compute significance 
and allowed adjustment for more likely clusters.

Several landscape variables were considered as poten-
tial covariates in the model of pyrethroid-resistant IICC 

genotype frequency (Table  1). Products derived from 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS) were downloaded to represent vegetation 
density. This included the MODIS Vegetation Con-
tinuous Fields products, which are generated annually 
based on monthly composites to represent percent tree 
cover and percent non-tree vegetation cover at a scale 
of 250 meters [30]. MODIS-derived enhanced veg-
etation index (EVI) and leaf area index (LAI) products 
were also included, representing vegetation conditions 
in January, April, July and October 2016. Because vec-
tor control districts frequently apply insecticides from 
ground vehicles in Florida, we also included spatial data 
representing the configuration of road networks. The 
2016 TIGER/Line road files were downloaded from the 
United States Census Bureau [31], and Euclidean dis-
tance and road density were calculated using the data-
set of only primary and secondary roads as well as the 
dataset of all roads. To represent agricultural land use, 
we downloaded the 2016 United States Department of 
Agriculture National Cropland Data Layer and calcu-
lated the Euclidean distance from all agricultural land 
cover and from each of the five most abundant crop 
types in Florida (oranges, sugar cane, hay, peanuts, and 
cotton) [32]. We also included data on land cover and 
percent impervious surface from the 2016 National 
Land Cover Database, published by the Multi-Resolu-
tion Land Characteristics Consortium [33]. Euclidean 
distances from urban or built-up land, forested land, 
and wetland were calculated for the study area. Finally, 
we included data on the 5-year estimates of median 
household income and population density at the census 
tract level from the United States Census Bureau 2016 
American Community Survey [34].

All of the spatial data described above were projected 
to the Albers Conic Equal Area projection used by the 
Florida Geographic Data Library, clipped to the state 
boundary, and resampled to 250 m resolution, which was 
the coarsest spatial resolution of the input datasets. We 
extracted values from each dataset at the sampling site 
locations. In cases where multiple neighboring sites were 
pooled to a centroid, we generated a single standard devi-
ation ellipse centered on the centroid to capture the dis-
persal of the contributing sites, and calculated the mean 
value for the pixels included within the ellipse.

In addition to landscape factors, we included informa-
tion on insecticide use by vector control districts in 2016. 
Each vector control district in the state submits an annual 
Chemical Activity Report to the Florida Department of 
Agriculture and Consumer Services (FDACS), detailing 
the types and amounts of adulticides and larvicides used, 
as well as the number of acres treated. We summarized 
adulticide use by class as gallons of active ingredient used 
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per acre treated for each district. We also calculated the 
combined amount of adulticides used in each district as 
the total number of gallons of active ingredient per acre 
treated.

We used a beta regression modelling framework to 
test for statistically significant associations between the 
variables described above and the frequency of the IICC 
genotype in collected Ae. aegypti specimens. Beta regres-
sion was selected because it is an appropriate model in 
cases where the dependent variable is a proportion rang-
ing from 0 to 1, as was the case for the IICC genotype 
frequency [35]. Prior to implementing the model, the 
distributions of all explanatory variables were assessed 
for approximate normality using density plots and log-
transformed as necessary, and each individual predictor 
was plotted against the response variable to determine if 
a linear relation would likely be appropriate. All explana-
tory variables were rescaled to have a mean of zero and 
a standard deviation of one, due to the wide-ranging 
scales of measurement used across the original, unscaled 
set of variables [36]. To assess for collinearity between 
the explanatory variables, we used variance inflation 
factors (VIF), calculated with the ‘vifstep’ function with 
a threshold of 10 using the USDM R package [37]. Ten 

variables were removed based on this threshold, and the 
remaining 22 variables were included in the full model, 
generated using the betareg R package [38]. All poten-
tial combinations of variables were considered using the 
‘dredge’ function in the MuMIn R package, with a limit 
of six explanatory variables [39]. The models were ranked 
by AICc, a variant of Akaike’s information criterion that 
is adjusted for small sample sizes, and the twenty best-
performing models by this metric were considered.

We assessed the top ten models using standard regres-
sion diagnostics and tested the residual values from these 
models for spatial autocorrelation using the Moran’s I 
statistic, with a k-nearest neighbors weights matrix. We 
used three nearest neighbors instead of a distance-based 
weights matrix due to the underlying, clustered distribu-
tion of the sampling sites. When considering alternative 
weights matrices, smaller distances resulted in outly-
ing sites being without neighbors, while larger distances 
resulted in most of the sampling locations being neigh-
bors for more central sites. We considered spatial lag 
and spatial error models, using the spdep R package [40], 
comparing them to the original models using likelihood-
ratio (LR) tests, Wald tests, AICc, and pseudo-R2 values. 
These models are both extension of the non-spatial linear 

Table 1  Variables considered for beta regression models and data source

a  EVI 17 January 2016, 22 April 2016, 27 July 2016, 15 October 2016
b  LAI 24 January 2016, 30 April 2016, 24 July 2016, 23 October 2016

Variable Source Date

Distance from agricultural land National Cropland Data Layer 2016

Distance from oranges, sugar cane

Distance from sugar production

Distance from hay production

Distance from peanut production

Distance from cotton production

Primary and secondary road density United States Census Bureau TIGER Shapefiles 2016

Distance from primary and secondary road

All roads density

Distance from all roads

Percent tree cover MODIS Vegetation Continuous Fields 2016

Percent non-tree vegetation cover

16-day composite of enhanced vegetation index (EVI)a MODIS LP DAAC​ 2016

16-day composite of leaf area index (LAI)b

Distance from urban or built-up land cover National Land Cover Database 2016

Distance from forest land

Distance from wetland

Percent impervious surface

Population density United States Census Bureau American Community Survey 2016

Median household income

Pyrethroid use by control district
Organophosphate use by control district
Total insecticide use by control district

Florida Department of Agriculture and Consumer Services 2016
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regression model. While the spatial lag model includes 
the average value of the dependent variable for the neigh-
bors of a site as an additional independent variable, the 
spatial error model includes the model error values asso-
ciated with the neighbors of the site [41].

Results
Collection sites and the season during which these collec-
tions were made are shown in Fig. 2 (Winter: December–
February; Spring: March–May; Summer: June–August; 
Fall: September–November). The number of mosquitoes 
collected at each site ranged from 11 to 180, with an aver-
age sample size of 76 (Additional file 1: Table S1).

The results from the dual Ripley’s K analysis to detect 
clustering of the frequency of the IICC genotype are 

shown in Fig. 3. The observed K-value was furthest from 
the expected value at 25 km, indicating this is the scale at 
which maximum spatial autocorrelation in the count of 
Ae. aegypti with the IICC genotype occurs. At approxi-
mately 120  km, however, IICC count values no longer 
exhibit spatial dependency, indicating that sites that are 
more than 120  km away from each other are not more 
similar to each other than would be expected given a ran-
dom distribution.

The SaTScan analyses identified clusters of higher 
than expected frequencies of the various kdr genotypes; 
the circular and elliptic window shapes revealed similar 
results, as shown in Fig.  4. Each cluster is labeled with 
the specific genotype that was found to have the high-
est relative risk (RR) of being detected in that window. 

Fig. 2  Map of sampling locations in Florida counties. Inset map shows Miami-Dade County, where more intensive sampling was conducted and 
neighboring sites were pooled to central locations
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Relative risk represents the estimated risk of finding that 
particular genotype within the identified cluster divided 
by the estimated risk of finding that genotype outside of 
the cluster [27]. Additionally, each cluster label has the 
number of points that were included in that cluster noted 
in parentheses. The first cluster detected was located on 
the western coast in Pasco County and consisted of five 
sites where high frequencies of the IICC genotype were 
detected, and the second cluster was located in Broward 
County, encapsulating five sites with high frequencies of 
the VIFF genotype, which is heterozygous at the 1016 
locus and homozygous susceptible at the 1534 locus. 
Similarly, clusters of the VVCC, VIFF, and IIFC geno-
types were identified along the western coast of the state 
in Hillsborough, Manatee and Lee County with two, one 
and six to seven sites (depending on circular or elliptical 
window shape), respectively. A cluster of the VVFC geno-
type consisting of a single site was detected in Monroe 
County, which includes the Florida Keys. Importantly, 
the VIFF, IIFC and IIFF genotypes are rare, meaning 
even low counts of these mosquitoes constituted clusters 
due to these genotypes not being found elsewhere in the 
state. There were several notable differences when com-
paring the clusters identified with circular versus ellipti-
cal window shape. In Miami-Dade County, the location 
and extent of the identified IICC and VIFC clusters dif-
fered depending on the window shape, while a single-site 
cluster of the VVFF genotype, which is the wild-type, 
susceptible genotype was detected with the elliptic win-
dow shape, but not the circular. Similarly, a second VVFF 
cluster composed of four points was detected exclusively 
with the elliptic window shape on the northeastern coast 
in Saint Johns County, extending southward to Orange 
County, and an IICC cluster of two sites was detected 
exclusively with the circular window shape in Collier 
County.

Twenty models were within two AICc values of the low-
est AICc, indicating these all had approximately equal 
plausibility as candidates for modelling these data [42]. 
All the model coefficients, AICc values and R2-values 
are shown in Additional file 1: Table S2. The size of the 
twenty candidate models ranged from four to six explan-
atory variables, and the R2-value ranged from 0.26 to 
0.35.

In the twenty best performing models, the residuals 
exhibited significant spatial autocorrelation, based on the 
Moran’s I test with a spatial weights matrix of k = 3 near-
est neighbors. The incorporation of a spatial lag and spa-
tial error had varying effects on the AICc and R2 metrics 
for the candidate models (Additional file  2: Figure S1). 
Thirteen models had improved (lower) AICc scores with 
a spatial lag while seven models improved with the inclu-
sion of a spatial error term, although only two of those 

Fig. 3  Results of Ripley’s K-function analysis. The x-axis represents 
the scales of clustering considered and the y-axis represents the 
K-function value. When the observed K has a higher value than the 
confidence intervals surrounding the expected K, this implies there 
is greater than expected clustering in the IICC genotype frequency 
values at that spatial scale

Fig. 4  Comparison of statewide SaTScan analysis results with circular 
window shape (top), with inset map showing clusters identified in 
Miami-Dade County (top left) and elliptical window shape (bottom), 
with inset map showing Miami-Dade County (bottom left)
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models showing a decrease in AICc > 2. Additionally, the 
spatial lag models consistently had higher R2-values than 
the original or spatial error model with the same set of 
variables.

The best performing model, in terms of both the AICc 
and R2-values, was the spatial lag model with October 
EVI, July LAI, percent tree cover, percent non-tree veg-
etation, district-level pyrethroid-use, and distance from 
primary and secondary roads. Five additional spatial lag 
models were within two AICc values of this top perform-
ing model (Table 2).

Discussion
The positive spatial autocorrelation in counts of the 
IICC, pyrethroid-resistant genotype at the sampled 
sites indicates that neighboring sites tend to have simi-
lar IR profiles for this species, particularly when sites 
are approximately 20 km away each other. In a scenario 
where the status of an Ae. aegypti population is unknown 
at one site, a vector control district could predict that it 
will be typically similar to neighboring sites with a known 
kdr genotype frequency. However, this estimate would 
merely be a starting point if data on resistance status are 
not immediately available and would ideally not replace 
an actual assessment of susceptibility. This is especially 
true given the limited intensive, local-scale sampling 
included in this dataset, which was collected with the aim 
of capturing statewide patterns. For example, while col-
lections in Miami-Dade County were conducted at many 
sites, most of these collections were pooled to centroids. 
Across these pools, the average distance between sites 

ranged from 40 meters to 4.4 kilometers. Within more 
dispersed clusters, genotype frequencies may have varied 
across sites, but this variation at the local scale cannot be 
examined with this dataset because collected mosquitoes 
were pooled to the cluster centroid. Similarities in IICC 
counts decrease and approximate a random distribution 
at the scale of 120 km, indicating that sites from neigh-
boring counties would not be informative in predicting 
IICC frequencies. For future work in estimating IICC 
prevalence throughout the state, interpolation meth-
ods would likely be informative. However, other studies 
have found reduced accuracy in multiple interpolation 
methods when sampling sites are highly clustered, as is 
the case with this dataset [43]. To address this concern 
and employ interpolation in this scenario, more evenly 
distributed sampling would need to be conducted, par-
ticularly in the central parts of the state that are not cur-
rently well represented and generally have a more rural 
landscape that is distinct from the well-sampled, urban 
coasts.

We included SaTScan analyses with both circular and 
elliptic scanning window shape, since the sampled points 
in this study were predominantly located in coastal areas, 
which reflects the natural distribution of Ae. aegypti in 
FL, and an elliptic shape may capture this configuration 
more adequately. While the results from these two analy-
ses were similar, each approach identified at least two 
significant clusters that that were unique to that method. 
This confirms previous findings that suggest considering 
multiple graphical representations of clusters in SaTScan 
can yield clusters that would not otherwise be detected 

Table 2  Summary of top-ranked spatial lag models. AICc and R2 values for six best performing spatial lag models, as well as variable 
coefficients and corresponding significance levels

Notes: Each column corresponds with a single model. The first two rows show the AICc and R2 values for six best performing spatial lag models. The remaining rows 
show the variable coefficients and corresponding significance levels for each model

*P < 0.05, **P < 0.01, ****P < 0.001

Model 1 2 3 4 5 6

AICc − 24.82 − 24.20 − 24.17 − 23.70 − 23.68 − 23.61

R2 0.49 0.49 0.47 0.46 0.46 0.49

Intercept 0.32*** 0.32*** 0.30*** 0.32*** 0.32*** 0.32

October EVI 0.05* 0.04 0.06*

July LAI 0.07** 0.07** 0.07** 0.07** 0.08***

Percent tree cover 0.07** 0.07** 0.05* 0.07** 0.05*

Percent non-tree vegetation − 0.05* − 0.05 − 0.06*

Pyrethroid use − 0.08*** − 0.09*** − 0.08*** − 0.09*** − 0.07** − 0.09***

Distance from roads 0.04* 0.04* 0.04 0.04 0.05* 0.08

January EVI 0.05* 0.04

Distance from forest − 0.03

Median income 0.07**

January LAI 0.06**
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[29]. Further work in this area would benefit greatly from 
collecting longitudinal data on kdr genotype frequencies 
to identify the temporal variation in the identified clus-
ters using the space-time scan statistic available in SaTS-
can, allowing for assessment of the stability or seasonality 
of the patterns identified in this study.

The areas identified as significant clusters of the IICC 
genotype were in coastal cities, including New Port 
Richey, Naples and Miami. Each of these clusters com-
prised four or fewer sites, indicating that these occur-
rences of high IICC genotype frequency may be the result 
of neighborhood or household-scale selective pressures. 
Similar work in Yucatàn State, Mexico, found significant 
differences in IICC frequencies between city blocks [44], 
and it has been shown that typical household-level insec-
ticide use can result in selection for resistance in Aedes 
aegypti [45]. Clusters of the most susceptible genotype, 
VVFF, which is homozygous susceptible at both loci, 
were identified with centers in St. Johns County and 
Miami-Dade County. In the case of Miami-Dade County, 
this cluster could represent a localized refuge wherein 
mosquitoes are somehow protected from the regular 
applications of pyrethroid treatments, despite heavy use 
throughout the rest of the county. This persistence of the 
wild-type genotype, even if only at limited refugia, has 
important implications for the potential to re-establish 
susceptibility. Given the fitness cost of pyrethroid resist-
ance to mosquitoes, susceptible mosquito populations 
would gain an advantage if the selective pressure of pyre-
throid applications is removed [46].

The top-ranked beta regression models revealed a 
complex relationship between vegetation and insecti-
cide resistance in Ae. aegypti in this system (Additional 
file  3: Figure S2). Based on field trials that found lower 
Ae. aegypti mortality in caged trials in areas with high 
vegetation density [23], we predicted lower frequencies 
of the IICC genotype in areas with high vegetation den-
sity. There was a negative association between percent 
non-tree vegetation cover and IICC genotype frequency 
in three of the original twenty candidate models, all of 
which were ultimately in the best performing spatial lag 
models. This indicates that areas with dense ground veg-
etation may shelter Ae. aegypti from insecticide applica-
tions and reduce the selective pressure driving insecticide 
resistance. However, there were significant positive asso-
ciations between the variables of January or October EVI, 
January or July LAI, and percent tree cover, and the out-
come of IICC genotype frequency. This means that areas 
with healthy, dense canopy cover are more likely to have 
pyrethroid-resistant Ae. aegypti populations. This could 
be due to overall higher abundance of multiple mos-
quito species in shaded, sheltered areas [47, 48], leading 
to a response of more liberal applications of insecticides 

by control districts, pest control companies, and pri-
vate landowners, and overall intense selection pressure. 
Understanding the exact nature of the impact of vegeta-
tion on insecticide application efficacy and the develop-
ment of resistance will likely require experimental field 
trials or fine-scale sampling across several landscape 
configurations.

The negative association between the intensity of pyre-
throid use by control district and the frequency of the 
IICC genotype was unexpected. This outcome could arise 
due to limitations in the dataset on insecticide use, which 
was derived from Chemical Activity Reports submitted 
by mosquito control districts. In these reports, figures on 
the total amount of each product used and the number 
of acres treated were reported, but there was no deline-
ation of the areas within each district that were treated. 
This means that collection sites used in this study could 
potentially be outside of the areas that were treated regu-
larly and intensively with pyrethroids. Additionally, dis-
tricts that have enough financial resources to purchase 
and apply large amounts of pyrethroids may also be 
more likely to have the ability to incorporate larvicides, 
biological control, or public education efforts into their 
integrated pest management plans, thus mitigating the 
selective pressure of pyrethroid use in some areas of the 
district. Finally, this dataset only included reports from 
mosquito control districts, while insecticide applications 
in this and other states are frequently conducted by pri-
vate pest control companies or landowners [49]. Despite 
these limitations, these data represented the most accu-
rate and current representation of insecticide use in the 
state, meaning it would be inadvisable to exclude them 
from consideration for these models. Further model-
ling of insecticide resistance would benefit from more 
detailed information on the locations and timing of 
insecticide treatments.

The results from the original beta regression models 
identified statistically significant relationships between 
landscape factors and the outcome of IICC frequency. 
However, these models only explained a portion (on aver-
age, 32%) of the variation in this response variable. The 
spatial lag models included information on neighboring 
IICC frequencies, as well as the original landscape fac-
tors, to explain variation in the response variable [41]. The 
spatial lag models improved the overall fit and explained 
a greater amount of the variation present in IICC fre-
quencies than the non-spatial beta regression models, 
with a maximum R2-value of 0.49. In the spatial lag mod-
els, the coefficients of the original variables decreased, 
and the P-values associated with them increased, with 
some of the associations no longer being statistically sig-
nificant. This indicates that including IICC frequencies of 
neighboring sites can dramatically improve our ability to 
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estimate the IICC frequency at a given location and may 
provide more information than the landscape and insec-
ticide-use variables originally considered. The significant 
improvement in the models observed with the addition 
of the spatial lag also indicates that there is likely a dif-
fusion process occurring, meaning immigration between 
neighboring sites may explain some of the observed spa-
tial dependence [41]. While knowledge of this spatial 
dependence is useful for predicting IICC frequencies if 
information on nearby sites is available, the original mod-
els indicate that information on landscape factors and 
insecticide use can explain some of the underlying vari-
ation present.

Ultimately, the best performing model explained 
roughly half of the variation in the frequencies of the IICC 
genotype. Several factors likely contribute to the remain-
der of that variation. Data on the history insecticide 
applications and resistance status throughout the county 
would likely improve these models. For example, if the 
IICC genotype had reached fixation in a population due to 
regular applications of pyrethroids in past years, suscepti-
ble variants would then only arise due to gene flow, which 
may not occur if the population is geographically isolated 
from susceptible strains. Additionally, information on 
the intensity of insecticide use by individuals and private 
companies would likely be informative. In a recent study 
across three regions in North Carolina, researchers found 
that approximately 31% of survey respondents applied 
pesticides to control mosquitoes on their properties [50]. 
If Florida residents are applying insecticides at a similar 
rate, this likely constitutes a selective pressure. To fur-
ther improve the fit of these models, it would be valuable 
to restrict sampling to a more limited time period, since 
variation in IICC frequency has been shown to fluctuate 
seasonally [51], and include more sampling sites, which 
would allow the consideration of potential interactions 
between the explanatory variables.

This study is a demonstration of the potential for spa-
tial analysis methods to explain and estimate frequen-
cies of kdr frequencies in Ae. aegypti populations, with 
important implications for vector control. While kdr 
frequencies and the phenotype of pyrethroid resistance 
have been shown to vary spatially and temporally [44, 
51, 52], intensive, constant monitoring of resistance is 
not logistically feasible. This leaves a need for tools to fill 
in gaps in knowledge both in time and space, although 
this project only focused on space. Important takeaway 
points from the perspective of a vector control organiza-
tion include the following. First, populations within 20 
kilometers of each other are likely to have similar IICC 
frequencies, particularly if these sites have similar land-
scape features. This means that if resistance is detected 
at one site, neighboring locations should be assumed to 

have similar measures, and alternative control strategies 
should be deployed. A second important point is that 
some areas in Florida have higher than expected frequen-
cies of the wild-type genotype, meaning these popula-
tions are still susceptible to pyrethroids. These control 
districts may have developed programmes that curtail 
the development of resistance. This highlights the impor-
tance of sharing information between control districts on 
integrated pest management practices that are effective, 
sustainable, and culturally acceptable within the context 
of Florida. Finally, we found that pyrethroid use by con-
trol districts was negatively associated with the outcome 
of high IICC frequencies. While there were limitations to 
this dataset, as discussed above, this indicates that other 
forms of insecticide treatments, either by landowners or 
commercial companies, may contribute to selection for 
kdr alleles, particularly at local scales, as has been shown 
elsewhere [45]. Vector control districts should be aware 
of the extent to which these largely unregulated applica-
tions may be impacting the populations they are aiming 
to control, and further work should be done to identify 
and quantify those impacts.

Importantly, all of the above analyses relied on fre-
quencies or counts of the genetic mutations in the volt-
age-gated sodium channel associated with pyrethroid 
resistance, rather than the actual phenotype of resist-
ance. While other mechanisms related to the outcome of 
resistance in this and related species have been identified 
[16], variation in resistance status in the Ae. aegypti pop-
ulations studied here is highly correlated with frequen-
cies of these mutations, as was shown in Estep et al. [18], 
where the authors found a Pearson correlation coefficient 
of 0.905 between frequencies of the IICC genotype and 
the permethrin resistance ratio [3].

Conclusions
The objectives of this study were to determine the scale of 
spatial dependency and identify significant clusters of kdr 
genotypes in Florida Ae. aegypti mosquitoes, as well as 
develop a model explaining the variation in kdr genotype 
frequency at sampling sites throughout the state. Our 
findings indicate that neighboring sites can inform esti-
mates of insecticide resistance at unknown locations, but 
significant clusters of resistant and susceptible genotypes 
can be found within a single county, meaning conclusions 
on resistance status should be informed by sampling at 
multiple locations whenever possible. While landscape 
variables had significant associations with the outcome 
of IICC frequency, the exact mechanism by which these 
factors modulate insecticide resistance should be inves-
tigated further.
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