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Abstract 

Background:  Aedes aegypti is an efficient vector of several arboviruses of public health importance, including Zika 
and dengue. Currently vector management is the only available avenue for disease control. Development of efficient 
vector control strategies requires a thorough understanding of vector ecology. In this study, we identified households 
that are consistently productive for Ae. aegypti pupae and determined the ecological and socio-demographic factors 
associated with the persistence and abundance of pupae in households in rural and urban Kenya.

Methods:  We collected socio-demographic, environmental and entomological data monthly from July 2014 to June 
2018 from 80 households across four sites in Kenya. Pupae count data were collected via entomological surveillance 
of households and paired with socio-demographic and environmental data. We calculated pupal persistence within 
a household as the number of months of pupal presence within a year. We used spatially explicit generalized additive 
mixed models (GAMMs) to identify the risk factors for pupal abundance, and a logistic regression to identify the risk 
factors for pupal persistence in households.

Results:  The median number of months of pupal presence observed in households was 4 and ranged from 0 to 35 
months. We identified pupal persistence in 85 house-years. The strongest risk factors for high pupal abundance were 
the presence of bushes or tall grass in the peri-domicile area (OR: 1.60, 95% CI: 1.13–2.28), open eaves (OR: 2.57, 95% 
CI: 1.33–4.95) and high habitat counts (OR: 1.42, 95% CI: 1.21–1.66). The main risk factors for pupal persistence were 
the presence of bushes or tall grass in the peri-domicile (OR: 4.20, 95% CI: 1.42–12.46) and high number of breeding 
sites (OR: 2.17, 95% CI: 1.03–4.58).

Conclusions:  We observed Ae. aegypti pupal persistence at the household level in urban and rural and in coastal and 
inland Kenya. High counts of potential breeding containers, vegetation in the peri-domicile area and the presence of 
eaves were strongly associated with increased risk of pupal persistence and abundance. Targeting households that 
exhibit pupal persistence alongside the risk factors for pupal abundance in vector control interventions may result in 
more efficient use of limited resources.
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Background
Aedes (Stegomyia) aegypti (Diptera: Culicidae), a mos-
quito well adapted to human settlements [1], is an effi-
cient vector of several arboviruses of public health 
concern [2, 3] such as dengue, chikungunya and Zika 
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viruses. Infections caused by these viruses pose a signifi-
cant public health risk in tropical and sub-tropical coun-
tries. Dengue and chikungunya have been reported in 
Kenya recently [4–9], particularly along the coast, where 
prevailing climatic, environmental and socio-demo-
graphic factors favor the proliferation of vector popula-
tions [10–13].

Traditionally, determination of the risk of dengue, Zika, 
and chikungunya disease outbreaks in high risk regions 
has been based on larval surveillance and Stegomyia indi-
ces [14–17]. However, recent studies have shifted focus 
to include pupae in the surveillance of Aedes spp. imma-
tures as a measure of disease outbreak risk [18–20] as 
pupae are a reliable proxy for adult mosquito abundance 
[21–24]. Lack of viable vaccines and effective therapies 
for dengue and other emerging arboviral infections leaves 
vector control as the only known disease control measure 
[25–27]. Given the suitability of domestic breeding habi-
tats for Ae. aegypti, mosquito management within house-
holds remains central to the control of DENV and other 
arboviruses. As such, adequate knowledge of the factors 
driving abundance and persistence of Ae. aegypti in and 
around household areas is vital to the design and imple-
mentation of effective vector control strategies.

Aedes aegypti mosquitoes primarily breed in water-
holding containers. Various factors influence infestation 
of containers in domestic areas with Ae. aegypti imma-
tures. These include container characteristics such as 
location (indoors vs outdoors, shaded area vs non-shaded 
area), type of container (car tires, vehicle parts or drums) 
and size of containers [12, 20, 28, 29]. The ecology of con-
tainers such as the presence of detritus in water, water 
temperature and surrounding habitat (type of vegeta-
tion) increases risk of mosquito infestation [21, 30–32]. 
Human behavior and socio-demographic characteristics 
such as socio-economic status and water management 
methods further influence risk of infestation by Aedes 
immatures [16, 29, 30, 33–35].

The role of microclimate and larger scale human 
housing factors in determining container infestation 
has also been examined [29, 36, 37], and households 
surrounded by vegetation were consistently found to 
host Ae. aegypti immatures. In addition, several stud-
ies found that Ae. aegypti abundance exhibits spatial 
heterogeneity within neighborhoods and specific lar-
val habitats within those neighborhoods produce more 
pupae than others [38–40]. Spatial clustering of pupae 
and the persistence of such clusters at the household 
level has also been examined [41] where abundance 
trends were found to be highly focal (~30 m radii) and 
unstable over time.

Incidence of consistently positive households 
(households with at least one container having Ae. 

aegypti immatures) during every inspection cycle sug-
gests the existence of certain factors unique to such 
locations that warrant further investigation. Moreo-
ver, data on the household characteristics responsible 
for persistence of immature Ae. aegypti mosquitoes, 
particularly pupae, in Kenya are lacking. Understand-
ing factors that drive pupal persistence in the house-
hold environment will contribute valuable information 
to the design of efficient and targeted vector control 
strategies by policy makers. In this study, we identi-
fied households that are consistently productive for 
Ae. aegypti pupae (i.e. persistent households) and 
determined the ecological and socio-demographic fac-
tors associated with the persistence and abundance of 
pupae in households in rural and urban Kenya.

Methods
Data collection
We used data collected from a total of 80 households in 
four sites in Kenya. In order to capture a range of pos-
sible human and environmental factors that influence 
vector ecology, sites were chosen based on urbanicity 
(rural and urban) and region (coastal and inland). Data 
were collected from 20 households per site in Chulaimbo 
(0°2′8.592″S, 34°37′15.6″E), a rural inland site, Kisumu 
(0°5′15.22478″S, 34°46′22.3284″E), an urban inland site, 
Msambweni (4°28′0.0114″S, 39°28′0.12″E), a rural coastal 
site and Ukunda (4°17′59.9994″S, 39°34′59.8794″E), 
an urban coastal site (Fig.  1). The four study sites were 
described in previous studies [12]. Demographic, envi-
ronmental and entomological data were collected 
monthly from each household over a period of approxi-
mately four years beginning in July 2014 and ending in 
June 2018, full data description following. Climate in the 
regions of Kenya sampled is generally characterized as 
having a long-dry season (January–March), a long-rainy 
season (April–June), a cool-dry season (July–September) 
and a short-rainy season (October–December). As such, 
the monthly resolution and longitudinal nature of data 
collection allow observation of both within-year seasonal 
variation and overall across year variation in pupal per-
sistence and abundance.

Household and demographic data
Household and demographic data collection was con-
ducted by trained teams. Data collectors sampled 20 
houses per site per month during the study period. The 
initial set of households included in the study within each 
site were chosen using random sampling of households 
within the study area from a 2014 census enumeration 
list. Each household chosen was contacted in order to 
obtain consent from the head of the household. If con-
sent was obtained, the household was visited monthly 
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throughout the duration of the study. If a sampled house-
hold did not consent to participate in the study, the most 
immediate neighbor was contacted. If a household that 
had been sampled and included in the study was una-
vailable for data collection at a given point in the study, 
the closest adjacent household was sampled in its place 
as a substitute. In instances where data collectors were 
unable to survey a given household multiple times, an 
attempt was made to survey the same substitute house-
hold, though this was not always possible. A household 
and its substitutes were treated as a single household 
in all analyses. Analyses were repeated with substituted 
time points for these houses excluded to test the sensitiv-
ity of our model to these substitutions (Additional file 1: 
Text S1).

During demographic surveys information was collected 
from households using paper forms (Additional file  1: 
Text S2). Variables surveyed include use of bed nets, use 
of mosquito repellent coils, presence of open eaves, pres-
ence of grass or bushes outside the house and number 
of household occupants on the night prior to sampling. 
Where applicable, data collectors attempted to observe 
the relevant variable as opposed to recording a reported 
response.

Pupae surveillance via entomological surveys
Aedes aegypti pupae counts were obtained from surveyed 
households via monthly entomological surveillance pro-
tocols (Additional file 1: Text S3). The entomological sur-
veillance protocol for pupal counts is described in detail 
elsewhere [12]. Briefly, to estimate the total number of 
pupae in the household area, data collectors searched 
the areas inside the households and in the peri-domicile 
area for containers that could contain pupae, e.g. coconut 
husks, plastic containers, tree-holes, water troughs, jerry 
cans, and tires. Each container was documented (size and 
type) and surveyed to identify any pupae present. If any 
pupae were observed, the species and genus were cata-
logued. The number of containers per household, as well 
as the number of pupae per container were recorded. 
The total number of pupae during a household visit in a 
given month is used as the pupae count for the house-
hold, while the number of containers sampled is a proxy 
for habitat availability and the sampling effort applied.

Environmental data collection
Climate data was recorded hourly by hobo-loggers. Two 
temperature loggers (HOBO® Onset data loggers, Onset 
Computer Corporation, 470 Bourne, MA, USA) were 

Fig. 1  Locations of the four data collection sites in Kenya. Data were collected from 20 households per site in Chulaimbo (a rural inland site), 
Kisumu (an urban inland site), Msambweni (a rural coastal site) and Ukunda (an urban coastal site)
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installed under the eaves of two houses within each of the 
four study areas. Daily temperature means were obtained 
from the land logger data and missing data were taken 
from logger data obtained from the paired site where pos-
sible and otherwise imputed with publicly available data 
from Weather Underground (www.wunde​rgrou​nd.com; 
weather station codes for the coastal and western sites 
are HKMO and HKKI respectively) [42]. Missing data 
were imputed by adjusting available data from the paired 
site or Weather Underground by the slope and intercept 
of a linear regression equation based on the relationship 
between the two datasets. For rainfall, all measurements 
were taken from the National Oceanic and Atmospheric 
Administration (NOAA) Africa Rainfall Climatology 
(ARC) data at 0.1° × 0.1° spatial resolution [43]. The ARC 
dataset is produced using a combination of rainfall gauge 
measurements and METEOSAT satellite data to provide 
gridded rainfall estimates.

Data analysis
Pupal persistence and spatial analysis
Households were defined as persistent within a year if 
any pupae were found in the household in at least 3 of the 
12 months surveyed within that year. A cut-off of 3 con-
secutive/non-consecutive months was chosen based on 
an examination of the annual pupal presence data. Data 
were collected over 4 years (July 2014-June 2018). This 
resulted in persistence data corresponding to 320 house-
years, i.e. 4 years per household for 80 households.

Aedes aegypti mosquitos’ average dispersal range has 
been found to be approximately 50 m to 100 m [44–46]. 
We used the Moran’s I statistic to test for spatial autocor-
relation of pupae counts due to possible movement of 
adult Ae. aegypti between households [42]. This allows us 
to evaluate spatial correlation of pupae counts between 
neighboring households. The Moran’s I was conducted 
using household latitude and longitude values and a 
distance-based neighbor approach. Households were 
defined as neighbors if they were within a 150 m radius 
of one another. We tested for spatial autocorrelation 
amongst houses in overall pupae counts (pupae collected 
over the entire data collection period) as well as seasonal 
pupae counts (long-dry season 2014, short-rainy sea-
son 2014, etc. for a total of 16 seasons). We conducted a 
sensitivity analysis of this test by testing a range of radii 
around the house of 50 m to 250 m (Additional file  1: 
Text S4).

Identifying risk factors for pupal persistence and abundance
We used a generalized additive mixed model (GAMM) 
framework to model the risk factors of pupal persistence 

and abundance in households in Kenya [47]. GAMMs 
allow modeling of linear and non-linear effects using 
penalized regression splines. GAMMs were used to 
investigate the possible non-linear effect of seasons, as 
well as other factors such as habitat counts, temperature 
and rainfall. We built separate GAMMs to evaluate pupal 
persistence and pupal abundance. In the abundance 
model we used a proportional-odds model framework 
[48, 49]. The outcome was monthly pupae count catego-
rized into one of four groups: zero (0 count); low (0–15 
count); intermediate (15–30 count); or high (> 30 count).

We built a separate regression model to evaluate the 
risk factors for pupal persistence. The persistence model 
evaluates the risk factors for continued pupal pres-
ence in a household (> 3 months of pupal presence in a 
year). We used GAMMs to perform logistic regression 
to model the risk factors for within-year pupal persis-
tence. We included house and site in all models as nested 
random effects. We accounted for spatial autocorrela-
tion by including a spatial term modeled via geosplines 
on the latitude and longitude of the households [50–
52]. For the abundance models, we specified an overall 
model using data from both the coastal (Msambweni 
and Ukunda) and inland (Chulaimbo and Kisumu) loca-
tions, and additional separate models for the coast and 
inland locations to account for any potential differences 
between the two regions. We included average habitat 
count, and other demographic risk factors such as num-
ber of rooms and roofing material as terms in all mod-
els. All the factors listed below were included as potential 
predictors in all models so as to evaluate their influence 
of pupal abundance and persistence. For the abundance 
models, we also tested models including a 1-month lag 
in pupal abundance term. This term was not included in 
the final model. The authors reasoned that any correla-
tion in pupal abundance at the household level would be 
captured by the house random effect. Model fit statistics 
(AIC and BIC) and residual analysis were used to select 
which variable (temperature/rain or month) best cap-
tured environmental trends (Additional file 1: Table S1). 
Additional details on model building are included in the 
supplementary materials (Additional file 1: Text S1).

Statistical tools
All statistical analyses were conducted in the R program-
ming language [53]. Moran’s I tests were conducted using 
the spdep R package [54]. Preparation and visualization 
of spatial data was conducted in ArcGIS (Version 10.8). 
We used the BayesX software package, via its interface 
R2BayesX, to build GAMMs and examine their output 
[52].

http://www.wunderground.com
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Results
Demographic, environmental and entomological data 
were collected from 80 households in four sites (Fig.1, 
Table  1) from July 2014 to June 2018. Characteristics 
of the households included at baseline in the study are 
shown in Table  2. There were some differences in the 
household characteristics of the coast and inland house-
holds at baseline. Notably more houses in the west had 
mud walls compared to those at the coast. The distri-
bution of the number of rooms per house was similar 
between both locations. Iron sheet roofing was more 
common at the coastal site (32/40 houses) than the 
inland site (18/40 houses). Most houses in both sites indi-
cated bed net use (40/40 in the inland and 38/40 in the 
coast sites). Insecticide and mosquito repellent coil use 
were relatively low in both locations.

The total number of Ae. aegypti pupae collected across 
all sites was 9647. Of these 3294 pupae were collected 
from Msambweni (20 households, rural, coastal site) 
with a median of 43 (IQR 153) total pupae per household, 
2147 pupae were collected from Ukunda (20 households, 
urban, coastal site) with a median of 54 (IQR 124), 1813 
from Chulaimbo (20 households, rural, western site) 
with a median of 43 (IQR 99), and 2393 from Kisumu 
(20 households, urban, western site) with a median of 85 
(IQR 118) (Fig. 2).

The median number of months in which pupae were 
observed in households was 4 and ranged from 0 to 35 
(Fig.  3). Of the 80 households sampled 6/80 (7.5%) had 
no pupae observed throughout the entire study period. 
Within-year pupal persistence was defined as the pres-
ence of any pupae within a household for at least 3 
months in the year. We observed 85 house-years of 
pupal persistence from 40 unique households; 16 from 
Kisumu, 11 from Chulaimbo, 7 from Ukunda and 6 from 
Msambweni (Fig. 2). Four households in each of Kisumu 
and Chulaimbo were persistent for all study years. We 
found no evidence of spatial autocorrelation from the 
Moran’s I test on total pupae counts or seasonal pupae 
counts (Additional file 1: Text S4, Table S2, Table S3).

Tables  3 and 4 show the results of the GAMMs for 
the risk factors of pupal persistence and abundance. 
The presence of tall grass or bushes around the houses 

increases odds of pupal abundance by 60% (OR: 1.60, 95% 
CI: 1.13–2.28), while presence of eaves (gap between the 
wall and roof ) is associated with a 157% increase in the 
odds of increasing pupal abundance (OR: 2.57, 95% CI: 
1.33–4.95) and increasing habitat counts (breeding con-
tainers) are associated with an increase in the odds of 
pupal abundance (OR: 1.42, 95% CI: 1.21–1.66). Firewood 
use in a household is associated with a 43% decrease in 
the odds of pupal abundance (OR: 0.57, 95% CI: 0.37–
0.88). The main risk factors for pupal persistence are the 
presence of bushes/tall grass in the peri-domicile (OR: 
4.20, 95% CI: 1.42–12.46) and high habitat counts (OR: 
2.17, 95% CI: 1.03–4.58). Figure  4 shows the influence 
of month on pupal abundance and suggests that risk of 
pupal abundance due to seasonality is highest during the 
April-June season (long rainy season) (Additional file  1: 
Figure S1). Increasing rainfall and decreasing tempera-
ture were associated with increasing risk of pupal abun-
dance (Figs. 5, 6). Year of data collection did not have a 
strong influence on risk of abundance (Fig. 7, Additional 
file 1: Figure S2). Results for the separate west and coast 
models are shown in the Additional file 1: Table S4.

Discussion
Aedes aegypti is an anthropophilic, urban mosquito spe-
cies, and a vector for several arboviruses of public health 
concern. Understanding the influence of human fac-
tors on vector abundance is crucial to planning effec-
tive vector control interventions. In this study we use 
demographic, environmental and entomological data to 
evaluate the hypothesis that pupal productivity is driven 
by a small subset of households that exhibit repeated 
infestation or pupal persistence, and also evaluate the risk 
factors for pupal persistence and abundance. In this study 
we report the existence of households that exhibit pupal 
persistence and identify vegetation in the peri-domicile 
area and high counts of breeding containers as the main 
risk factors for pupal persistence.

The use of Stegomyia indices and surveillance of imma-
tures, as proxies for adult abundance in Ae. aegypti vec-
tor ecology is well established [55–57]. While these 
measures can be useful, they do not account for other 

Table 1  Overall site characteristics. General environmental and demographic characteristics of the 4 data collection sites

Site Households Urban/rural Coastal/inland Population density 
(no./km2)

Elevation (m) Coordinates

Kisumu 20 Urban Inland 15,000 1100 0°5′15.22478″S, 34°46’22.3284″E

Chulaimbo 20 Rural Inland 500 1328 0°2′8.592″S, 34°37′15.6”E

Ukunda 20 Urban Coast 2000 8 4°17′59.9994″S, 39°34′59.8794”E

Msambweni 20 Rural Coast 460 4 4°28′0.0114″S, 39°28′0.12″E
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epidemiologically important factors and fail to accurately 
correlate with disease risk [22, 58, 59]. This study estab-
lishes the existence of specific household premises that 
are repeatedly infested with pupae, i.e. persistent house-
holds. While pupal persistence or repeated infestation 
has received little attention in the literature, it may pro-
vide a more precise measure of vector abundance. Fur-
ther, numerous studies have evaluated the influence of 
environmental and human risk factors on pupal presence 
and abundance [19, 20, 28]. We found that while persis-
tence and abundance are two different measures, their 
risk factors are largely similar. Houses that consistently 
have high pupal counts can be considered key premises 
and possible super spreader premises and they may play 
an important role in maintaining vector populations in 
the study areas. Identifying households with pupal per-
sistence can inform precise and targeted vector control 
efforts, which would maximize efficiency with limited 
resources compared to blanket interventions.

Vegetation around houses, high counts of breed-
ing containers and presence of open eaves were signifi-
cantly associated with risk of pupal abundance. Majority 
of households (79%) in our study sites had open eaves. 
House designs with open eaves are preferred as a means 
to regulate house temperature by promoting air circula-
tion, since the region is characterized by hot and humid 
conditions particularly at the coast. Moreover, use of 
wood fuel in some households makes it necessary to 
have open eaves for adequate ventilation. However, 
open eaves can be exploited by female mosquitoes to 
access human hosts and oviposition sites in and around 
the houses. Since Ae. aegypti is a known endophilic and 
anthropophagic species that can also be found resting 
around human dwellings [11, 60–62] and remains close 
to breeding sites [45, 46, 63], houses with open eaves and 
suitable breeding sites are ideal for their development 
and survival. Although improvement in house designs 
to include closed eaves plays a critical role in prevent-
ing house entry by malaria vectors [64–67], the role 
of open eaves on house entry and exit behavior by Ae. 
aegypti which is principally a day-biting mosquito has 
received little attention. The results of this study suggest 
that houses with closed eaves may play an important role 
in regulating Ae. aegypti house entry and exit behavior 
particularly in houses with screened doors and windows 
that are recognized as main entry points for the culicine 
mosquitoes [68, 69]. Closed eaves may have an impact on 
Ae. aegypti breeding activity by limiting access to poten-
tial breeding sites and human hosts. Aedes aegypti obtain 
blood meals mostly from people inside a given household 
[70] where they may also find resting places after blood 
feeding [61]. Gravid mosquitoes exploit indoor and out-
door wet containers for oviposition, hence the need for 
house entry and exit routes which may include open 
eaves [68].

The presence of vegetation such as bushes or tall grass 
in the area around the household is also a strong risk fac-
tor for both pupal abundance and persistence. Two of our 
study sites are located in a rural setting where presence 
of vegetation in the peri-domicile environment is com-
mon due to small scale farming practices that promote 
vegetation growth in the proximity of houses. This cou-
pled with inadequate environmental hygiene practices in 
some of the urban households especially those located 
in the low income-unplanned settlements, contribute to 
the occurrence of vegetation around households. In this 
region unplanned urban settlements are characterized by 
poor hygiene, inadequate water, sewer and waste man-
agement systems. Investigations have shown that micro-
environmental conditions such as those provided by 
locations sheltered from sunlight affect the suitability of 
wet containers as breeding sites for Ae. aegypti [28, 71]. 

Table 2  Household characteristics at the baseline

Note: The table shows the characteristics of the data collection households at 
the baseline (July 2014, first month of data collection for data included in the 
study) with respect to demographic features, and environmental variables. Data 
were collected using paper surveys by trained data collectors

Household characteristic Overall
(N = 80)
n (%)

West
(N = 40)
n (%)

Coast
(N = 40)
n (%)

House wall material

 Mud 41 (51) 24 (60) 17 (43)

 Cement 39 (49) 16 (40) 23 (58)

House roof material

 Iron sheet 50 (62) 32 (80) 18 (45)

 Grass 22 (28) 1 (3) 21 (53)

 Asbestos/tile 8 (10) 7 (18) 1 (3)

No. of rooms

 < 3 24 (30) 12 (30) 12 (30)

 3–4 33 (41) 16 (40) 17 (43)

 ≥ 5 23 (29) 12 (30) 11 (27)

No. of sleepers

 < 4 22 (28) 13 (33) 9 (23)

 4–6 35 (44) 20 (50) 15 (38)

 ≥ 7 23 (29) 7 (18) 16 (40)

Firewood use 35 (44) 11 (28) 24 (60)

Insecticide/coil use 11 (14) 0 (0) 11 (28)

Bed net use 78 (98) 40 (100) 38 (95)

Eaves open 63 (79) 27 (68) 36 (90)

Room ceilings 19 (24) 10 (25) 9 (23)

Bushes/tall grass 47 (59) 32 (80) 15 (38)

Habitat count (± SD) 8.6 ± 3.48 10.35 ± 2.80 6.9 ± 3.23

Temperature, °C (± SD) 24.97 ± 1.58 23.74 ± 0.95 26.19 ± 1.05

Total rainfall, mm (± SD) 87.07 ± 35.91 58.26 ± 1.66 105.87 ± 38.04
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Vegetation in proximity to potential breeding containers 
increases the suitability of breeding containers for infes-
tation by providing shade and decreasing rates of evapo-
ration. Although temperature has been considered as the 
primary driver of development and survival of mosquito 
immatures [72], water in containers under direct expo-
sure to sunlight may reach temperatures that are lethal to 
Ae aegypti immatures. Water temperatures above 35  °C 
have significant impact on larval development [73, 74]. 
In addition, vegetation contributes organic nutrients for 
aquatic organisms such as larvae which feed on aquatic 
microorganisms and provides resting sites for adult mos-
quitoes. Previous work has found that presence of trees 
or organic matter results in better survival and faster 
development of larvae and pupae [21, 74].

Temporal variation in pupal abundance within house-
holds across months was consistent with several other 
studies [20, 28, 29, 75]. Peak pupal abundance was 
observed in the months of April-June, coinciding with 
the long rainy season. Climatic variables such as rainfall, 
humidity and temperature are strongly associated with 
transmission of arboviruses due to their effect on vec-
tor abundance [76–78]. Heavy rainfall appears to favor a 
rapid increase in the abundance of mosquito vectors and 
may also extend the transmission period of arboviruses 
[79, 80]. In addition to providing ideal climatic conditions 
for vector breeding, heavy rainfall is associated with pro-
liferation of rain fed artificial and natural breeding con-
tainers [12, 79]. We also observe a slight increase in the 
abundance of pupae from 2014–2018 (Fig. 7, Additional 

Fig. 2  Monthly pupae counts for each household by site. Each study site is represented as a panel: a Kisumu, b Ukunda, c Chulaimbo, d 
Msambweni. For each panel: the main figure (bottom left) shows the number of pupae counted in that month for the given household (darker 
colors indicate more pupae). The right marginal figure shows the total number of pupae collected from each household in each site over the 4-year 
data collection period. The top marginal figure shows the total number of pupae collected in each month. Data were collected by trained data 
collectors who looked around the household and checked breeding containers for any pupae. Pupal persistence within a year (e.g. 2015–2016) was 
defined as having three or more months in which at least one pupae was found in the household
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file 1: Figure S2). This increase is stronger in the western 
sites than the coastal sites. This trend suggests that there 
may be factors increasing the suitability of these sites for 
pupal productivity over time. Further work is required to 
identify what factors may be acting and what interven-
tions would work best to stop or reverse the trend.

The presence of large numbers of potential breeding 
containers is a strong risk factor for pupal abundance 
and persistence. This relationship is well documented 
for both Aedes and Anopheles mosquitoes [38, 81–83]. 
Potential breeding containers accumulate as a result 
of human activities within the domestic environment 
such as water storage and management of solid waste 
[33]. Due to inadequate water supply systems in most 
households in our study sites, storage of water in 
diverse containers is common. This coupled with poor 
management of solid waste promote the proliferation of 
potential breeding containers for Ae. aegypti. Manage-
ment of containers has been found to be highly variable 
in time and space depending on their function, several 
interventions focus on reducing the number of contain-
ers available for breeding. Factors contributing to the 
infestation of containers with Aedes immatures, such as 

shade and water temperature, have also been examined 
[28, 74, 84]. Reducing breeding containers remains one 
of the most important general vector control interven-
tions available.

Firewood use was found to have a protective effect on 
pupal abundance. Use of wood fuel is common in poor 
households in rural areas and low income-urban settle-
ments as observed in some households in our study sites. 
Smoke from domestic fuels may have repellent effect on 
mosquitoes however, it may not provide effective pro-
tection against mosquitoes and has been linked to some 
health concerns due to indoor air pollution [85].

Patterns of pupal persistence were found to differ 
across the different sites with the two inland sites hav-
ing more persistent households than the two coastal 
sites. The effect of location in our model (inland vs 
coast) was also relatively high, though not statisti-
cally significant. This suggests that there may be some 
important differences between the inland and coastal 
locations that contribute to pupal persistence that may 
warrant further investigation. However, inland and 
coastal sites included in our study generally exhibit dif-
ferent patterns of dengue endemicity with the coastal 

Fig. 3  Total number of months of pupal presence over four years by site. The total number of months in which at least one individual pupa was 
found in a household, in each site is shown. The total number of months present range from 0 to 35
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region being endemic to dengue since 1982 [86]. More-
over, in this study more pupae (56%) were collected 
from coastal sites than in the western sites (44%), 
a finding that is consistent with a recent study in the 
region [12].

Pupal abundance and persistence did not exhibit any 
spatial correlation. Previous work has shown that pupal 
productivity in premises has highly focal spatial correla-
tion within approximately 30 m [41]. This corresponds 
to the known Ae. aegypti range of about 50–100 m. 
The households included in our study were relatively 
sparsely distributed (more than 100 m apart), and this 
may be why we observe no spatial effect on total pupae 
counts or seasonal pupae counts (Additional file 1: Text 
S4, Tables S3, S4). To identify spatial correlation of pro-
ductivity and potential productivity hotspots, a more 
precise study including large numbers of adjacent house-
holds (within 30–50 m of one another) would need to be 
conducted.

Table 3  Odds ratios for risk factors for pupal abundance in 
households in the overall model

Note: The table shows the coefficients for the risk factors for pupal abundance in 
the overall multivariate models
a  Use of vector control measures. Was a coil or insecticide used in the household

*P < 0.05, **P < 0.01, ***P < 0.001

House characteristic Overall model

OR 95% CI

Rooms

 < 3 Ref

 3–4 0.94 0.51–1.71

 ≥ 4 1.01 0.46–2.25

No. of sleepers

 < 4 Ref

 4–6 0.90 0.51–1.60

 ≥ 7 0.74 0.40–1.36

House wall

 Mud Ref

 Cement 1.01 0.55–1.85

House roof

 Iron sheet Ref

 Grass 0.62 0.30–1.25

 Tile/asbestos 1.19 0.42–3.38

Room ceilings 1.22 0.61–2.44

Bushes/tall grass 1.60* 1.13–2.28

Firewood use 0.57* 0.37–0.88

Eaves open 2.57** 1.33–4.95

Habitat count 1.42*** 1.21–1.66

Insecticide/coila 0.76 0.32–1.77

Location 0.88 0.15–5.11

Urban 1.67 0.31–8.96

Table 4  Odds ratios for risk factors for pupal persistence in 
households in the overall model

Note: The table shows the coefficients for the risk factors for pupal persistence in 
the overall multivariate models

*P < 0.05, **P < 0.01, ***P < 0.001

Characteristic Overall

OR 95% CI

Rooms

 < 3 Ref –

 3–4 0.77 0.21–2.82

 ≥ 4 1.03 0.17–6.18

No. of sleepers

 < 4 Ref –

 4–6 0.91 0.24–3.51

 ≥ 7 0.49 0.10–2.46

House wall

 Mud Ref –

 Cement 1.18 0.27–5.06

House roof

 Iron sheet Ref –

 Grass 1.81 0.28–11.73

 Asbestos/tile 1.28 0.14–11.82

Room ceilings 0.93 0.22–3.86

Bushes/tall grass 4.20* 1.42–12.46

Firewood use 0.57 0.20–1.65

Eaves open 1.66 0.40–6.84

Habitat count 2.17* 1.03–4.58

Urban 1.48 0.42–5.22

West 3.44 0.53–22.25

Fig. 4  Variation in the risk of increasing pupae abundance by month 
(non-linear term for month in the abundance models). The four main 
seasons are shown by dotted lines. The shaded region is the 95% 
confidence interval
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Limitations
Several other important risk factors for pupal produc-
tivity have been examined including building materi-
als and density of occupants. While these variables are 
included in our model, their effects did not reach sta-
tistical significance. Due to the documented effects of 
these variables this may be a result of the low power of 

our study to detect these effects. In addition, while data 
collectors attempted to always include the same house 
in the surveys, certain houses were only available at 
certain time points. Missing houses were replaced with 
houses in close proximity (Additional file  1: Text S1). 
We conducted a sensitivity analysis to evaluate the influ-
ence of these household replacements and find that they 

Fig. 5  Variation in temperature and rainfall by site for all four years, beginning in July and ending in August of each year. Rainfall and temperature 
data were collected via hobo-loggers at each site. Rainfall data are shown by the blue bars; temperature is shown by the red line
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do not severely alter our main results (Additional file 1: 
Table  S5). The presence of missing data points is also a 
limitation of our analysis. Missing predictor data were 
dealt with by simple imputation.

Households included in our study sample were ran-
domly selected from a census enumeration list. While 
this reduced bias in inclusion of households in our 
study, the sample may still not be representative. This is 
particularly true if urban areas have a larger number of 

households than rural areas. Future work should sample 
households based on the underlying population distribu-
tions. The larger study sites are themselves not represent-
ative of rural/urban areas in Kenya but were chosen to 
include a wide range of environmental and socio-demo-
graphic localities (urban/rural, inland/coastal, etc.). This 
allows us to control for any underlying influence these 
factors have on abundance or persistence. To specifically 
examine the influence of these larger scale geographical 
factors a wider range of areas would need to be sampled.

Conclusions
Efficient vector management of Ae. aegypti is vital to 
the control and management of arboviruses in endemic 
areas. In this study we show the existence of pupal persis-
tence in a subset of households in rural and urban Kenya. 
High counts of potential breeding containers, vegetation 
in the peri-domicile area and presence of open eaves were 
strongly associated with increased risk of pupal abun-
dance and persistence, while firewood use was protec-
tive against high pupae counts. Our results suggest that 
targeting households that exhibit pupal persistence in 
vector control interventions may result in more efficient 
use of limited resources. Furthermore, vector control 
interventions should target risk factors for abundance 
such as vegetation in the peri-domicile area in addition to 
current interventions involving reducing the numbers of 
breeding habitats.

Fig. 6  Effect of temperature and rainfall on risk of increasing abundance in the overall pupal abundance model. The shaded region is the 95% 
confidence interval

Fig. 7  Effect of year of data collection on pupal abundance in 
the overall model. Year was included as a continuous term in the 
abundance model (i.e. year 1, 2, 3 and 4). The shaded region is the 
95% confidence interval
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