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Abstract 

Background: Larval development in an intermediate host gastropod snail of the genus Biomphalaria is an obligatory 
component of the life-cycle of Schistosoma mansoni. Understanding of the mechanism(s) of host defense may hasten 
the development of tools that block transmission of schistosomiasis. The allograft inflammatory factor 1, AIF, which is 
evolutionarily conserved and expressed in phagocytes, is a marker of macrophage activation in both mammals and 
invertebrates. AIF enhances cell proliferation and migration. The embryonic cell line, termed Bge, from Biomphalaria 
glabrata is a versatile resource for investigation of the snail-schistosome relationship since Bge exhibits a hemocyte-
like phenotype. Hemocytes perform central roles in innate and cellular immunity in gastropods and in some cases 
can kill the parasite. However, the Bge cells do not kill the parasite in vitro.

Methods: Bge cells were transfected by electroporation with plasmid pCas-BgAIFx4, encoding the Cas9 nuclease 
and a guide RNA specific for exon 4 of the B. glabrata AIF (BgAIF) gene. Transcript levels for Cas9 and for BgAIF were 
monitored by reverse-transcription-PCR and, in parallel, adhesion of gene-edited Bge cells during co-culture with of 
schistosome sporocysts was assessed.

Results: Gene knockout manipulation induced gene-disrupting indels, frequently 1–2 bp insertions and/or 8–30 bp 
deletions, at the programmed target site; a range from 9 to 17% of the copies of the BgAIF gene in the Bge population 
of cells were mutated. Transcript levels for BgAIF were reduced by up to 73% (49.5 ± 20.2% SD, P ≤ 0.05, n = 12). Adher-
ence by BgAIF gene-edited (ΔBgAIF) Bge to sporocysts diminished in comparison to wild type cells, although cell 
morphology did not change. Specifically, as scored by a semi-quantitative cell adherence index (CAI), fewer ΔBgAIF 
than control wild type cells adhered to sporocysts; control CAI, 2.66 ± 0.10, ΔBgAIF, 2.30 ± 0.22 (P ≤ 0.01).
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Background
Evolution endowed the schistosomes with a complex 
life-cycle that includes both a freshwater gastropod inter-
mediate host and a definitive mammalian host. Several 
species of the freshwater snail genus Biomphalaria are 
the intermediate host for Schistosoma mansoni. The Neo-
tropical species, Biomphalaria glabrata has been studied 
extensively with respect to host-parasite relationship and 
coevolution with S. mansoni, especially on mechanisms 
of susceptibility and/or resistance to the compatible par-
asites [1, 2]. Genetic variation is evident among isolates 
and strains of B. glabrata, both in the laboratory and in 
the field, resulting in a spectrum of the susceptibility of 
infection with S. mansoni [3]. Considerable advances 
have been made in the exploration and characterization 
of mechanisms of the internal defenses system (IDS) of 
the snail that determine susceptibility and resistance to 
schistosome [4–11]. The resistance phenotype is under-
pinned by a complex genetic trait, where the schistosome 
larva fails to develop as the consequence of innate and 
cellular immune responses. Hemocytes of resistant snails 
encapsulate and destroy the sporocyst [11–18].

Biomphalaria glabrata embryonic cell line (Bge) [19] 
remains to date the only established cell line from any 
mollusk. The cell line originates from 5-day-old embryos 
of B. glabrata susceptible to infection with S. mansoni. 
The Bge cell line has been studied extensively to inter-
rogate the host-parasite relationship because the Bge cell 
exhibits a hemocyte-like behavior that includes encapsu-
lation of the larval parasite, but does not kill the parasites 
[20–28].

The genome sequence of B. glabrata has been 
reported [29], along with ongoing transcriptome 
and proteome catalogues that include factors par-
ticipating in immunological surveillance, phagocy-
tosis, cytokine responses, and pathogen recognition 
receptor elements including Toll-like receptors and 
fibrinogen-related proteins [30–36]. An orthologue 
of the evolutionary conserved allograft inflamma-
tory factor (AIF) is an evolutionary conserved protein 
typically expressed in phagocytes and granular leuko-
cytes in both vertebrate and invertebrate. Functions 
demonstrated for AIF include macrophage activation, 
enhancement of cellular proliferation and of migration 

in mammalian and invertebrate cells; protostomes and 
deuterostomes [37–41]. AIF also plays a key role in the 
protective response by B. glabrata to invasion by schis-
tosomes [8, 9]. BgAIF, the orthologue in B. glabrata is 
expressed in hemocytes, which participate in phago-
cytosis, cellular proliferation, and cellular migration. 
Elevated expression of BgAIF is a characteristic of the 
resistance of B. glabrata to schistosome infection and 
has been considered as a marker of hemocyte activa-
tion [8, 9].

Expression of AIF is also seen during hemocyte acti-
vation in oysters [36, 38, 42, 43] and during hepatic 
inflammation during murine schistosomiasis [44, 
45]. We hypothesized that BgAIF was involved in cell 
mediated immune response(s) by B. glabrata through 
activation of hemocyte cell adhesion and/or migration 
after the schistosome miracidium has penetrated into 
the tissues of the snail. We addressed this hypothesis 
by using CRISPR/Cas9-based programmed genome 
editing to interrupt the BgAIF gene of B. glabrata in 
the Bge cell line, following reports that indicated the 
utility of using CRISPR-based programmed gene 
knockout approach in other mollusks including the 
Pacific oyster, Crassostrea gigas and the slipper limpet, 
Crepidula fornicata and the gastropod, Lymnaea stag-
nalis [46–48]. As detailed below, we demonstrated the 
activity of programmed genome editing in Bge cells, 
with gene knockout at the BgAIF locus.

Methods
Gene editing construct
The gene encoding the allograft inflammatory fac-
tor of B. glabrata, BgAIF (2226  bp; accession number 
BGLB005061, https ://www.vecto rbase .org/) includes five 
exons interrupted by four introns (Fig. 1a). A guide RNA 
(gRNA) for Cas9-catalyzed gene editing specific for the 
target B. glabrata gene locus, BgAIF, was identified in the 
BGLB005061 sequence using the ‘CHOPCHOP’ v3 tool, 
https ://chopc hop.cbu.uib.no/, with default parameters 
compatible for the protospacer adjacent motif, NGG, of 
Cas9 from Streptococcus pyogenes [49–51] and screened 
for off-target sites against the B. glabrata genome [29]. 
Based on the guidance from the CHOPCHOP analysis, 
we chose the top ranked guide RNA (gRNA), AGA CTT 

Conclusions: The findings supported the hypothesis that BgAIF plays a role in the adherence of B. glabrata hemo-
cytes to sporocysts during schistosome infection in vitro. This demonstration of the activity of programmed gene 
editing will enable functional genomics approaches using CRISPR/Cas9 to investigate additional components of the 
snail-schistosome host-parasite relationship.

Keywords: Biomphalaria glabrata embryonic cell line, Bge, CRISPR/Cas9, Gene editing, Allograft inflammatory factor, 
Cell adhesion
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TGT TAG GAT GAT GC, specific for exon 4 of the AIF 
gene, with predicted high CRISPR/Cas9 efficiency for 
double-stranded cleavage in tandem with an absence of 
off-target activity in the genome of B. glabrata (Fig. 1a). 
A CRISPR/Cas9 vector encoding the gRNA targeting 
exon 4 of BgAIF under the control of the mammalian 
U6 promoter and encoding Cas 9, with nuclear localiza-
tion signals 1 and 2, driven by the human cytomegalo-
virus (CMV) immediate early enhancer and promoter 
was assembled using the GeneArt CRISPR nuclease 
vector system (Thermo Fisher Scientific, Waltham, MA, 
USA), according to the manufacturer’s protocol. Briefly, 
the 20 nt of either target (including ‘GTTTT’ on the 3′ 
end) or complementary to target (including ‘CGGTG’ 
on the 3′ end) sequences were synthesized commercially 
(Integrated DNA Technology, IA, USA), and annealed 
according to manufacturer’s protocol. The annealed dou-
ble-strand DNA (dsDNA) was ligated into the linearized 
GeneArt® CRISPR Nuclease vector via BamHI and 
BsmBI restriction sites, respectively, and the construct 
was termed pCas-BgAIFx4 (Fig.  1b). (The sequence of 
GeneArt CRISPR nuclease vector backbone is available 
at https ://www.therm ofish er.com/order /catal og/produ ct/
A2117 4#/A2117 4). Chemically competent TOP10, E. coli 

cells (Invitrogen, Thermo Fisher Scientific) were trans-
formed with pCas-BgAIFx4 by the heat shock method 
and cultured on LB-agar supplemented with ampicillin 
at 100  µg/ml. Subsequently, the integrity of the recom-
binant plasmids from several single colonies of ampi-
cillin-resistant E. coli transformants was confirmed by 
amplicon PCR-based Sanger direct nucleotide sequence 
analysis using a U6 gene-specific primer for gRNA liga-
tion and orientation (Fig. 1b).

Biomphalaria glabrata embryonic (Bge) cell line culture
The Bge cell line was provided by the Schistosomiasis 
Resource Center (SRC), Biomedical Research Institute 
(BRI), Rockville, MD, USA. Historically, the Bge cell line 
was sourced by the SRC from the American Type Culture 
Collection (Manassas, VA, USA), catalog no. ATCC CRL 
1494, and thereafter maintained at BRI for > 10  years. 
Bge cells were maintained at 26 °C in air in ‘Bge medium’, 
which is comprised of 22% (v/v) Schneider’s Drosophila 
medium, 0.13% galactose, 0.45% lactalbumin hydro-
lysate, 0.5% (v/v) phenol red solution, 20  µg/ml genta-
mycin, and supplemented with 10% heat-inactivated 
fetal bovine serum [24, 52]. Bge cells were grown to 80% 
confluence before transfection by electroporation with 

Fig. 1 Schematic diagram of BgAIF gene structure, CRISPR/Cas9 vector and expression in Bge cell. a Gene structure of B. glabrata allograft 
inflammatory factor (BgAIF), accession number BGLB005061 and gene editing target locus (red box) on exon 4. BgAIF gene composed of 5 exons 
and 4 introns. The green arrows indicate the location of primers flanking expected double-strand breaks (DSB) which were used in PCR to generate 
the on-target amplicon for INDELs estimation. b Map of the pCas-BgAIFx4 vector which includes the Pol III-dependent mammalian U6 gene 
promoter (red arrow) to drive transcription of the guide RNA targeting exon 4 of BgAIF gene (red arrow) and the CMV promoter to drive expression 
of the S. pyogenes Cas9 nuclease (blue arrow). Primer pairs specific for the guide RNA and for Cas9 are indicated (green arrows). c Expression of Cas9 
and of BgActin (as the reference gene) transcripts as established by semi-quantitative RT-PCR in pCas-BgAIF-transfected (right) and control (left) Bge 
cells from days one to nine following transfection. The amplicons of the expected sizes are as indicated: 23 bp for Cas9 and 214 bp for BgActin. All 
RNA samples were positive for the BgActin reference gene; the 214 bp band

https://www.thermofisher.com/order/catalog/product/A21174#/A21174
https://www.thermofisher.com/order/catalog/product/A21174#/A21174
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pCas-BgAIFx4. The Bge cells were free of contamina-
tion with Mycoplasma, as established with a PCR-based 
test (LookOut® Mycoplasma PCR Detection Kit, Sigma-
Aldrich, St. Louis, MO, USA).

Transfection of Bge cells by square wave electroporation
Bge cells were harvested using a cell scraper, washed 
twice in Bge medium, counted, and resuspended at 
20,000 cell/µl in Opti-MEM medium (Sigma-Aldrich). 
Two million cells were transferred into 0.2  mm path 
length electroporation cuvettes (BTX Harvard Appara-
tus, Hollister, MA, USA) containing 6 µg pCas-BgAIFx4 
in ~ 100 µl Opti-MEM. The cells were subjected to elec-
troporation using one pulse at 125 V for 20 ms, using a 
square wave pulse generator (ECM 830, BTX Harvard 
Apparatus). Immediately thereafter, the Bge cells were 
maintained in 12-well plates (Greiner Bio-One, NC, 
USA) at 26  °C. The mock control included Opti-MEM 
only for electroporation. The presence of transcripts 
encoding the B. glabrata actin and the Cas9 was moni-
tored daily for 9 days following transfection by electropo-
ration (Fig. 1c).

Sequential isolation of total RNA and genomic DNA
To monitor the transfection of Bge cell by pCas9-
BgAIFx4, we investigated the expression of Cas9 in Bge 
cells by reverse transcription PCR (RT-PCR). Both total 
RNA and genomic DNA were extracted sequentially 
from cell pellets, as described [53, 54]. In brief, each sam-
ple of total RNA sample was extracted using RNAzol® 
RT reagent (Molecular Research Center, Inc., Cincinnati, 
OH, USA) according to the manufacturer’s protocol. Sub-
sequently, the DNA/protein pellet retained after recovery 
of RNA was resuspended in DNAzol® solution (Molec-
ular Research Center, Inc), from which total DNA was 
recovered. The RNAs and DNAs were dissolved in nucle-
ase-free water and their concentration and purity estab-
lished by spectrophotometry (Nanodrop 1000, Thermo 
Fisher Scientific).

Expression of Cas9 in Bge cells
To investigate transcription from the pCas-BgAIFx4 
vector following transfection of Bge cells, levels of tran-
scribed Cas9 were investigated by semi-quantitative RT-
PCR. The Cas9-specific primers were Cas9-F (5′-AGC 
ATC GGC CTT GAT ATC GG-3′) and Cas9-R (5′-AGA 
AGC TGT CGT CCA CCT TG-3′) (Fig. 1b). Total RNA 
from the non-transfected m ock (Opti-MEM electropo-
rated-), and pCas-BgAIFx4 DNA electroporated-Bge 
cells were treated with DNase I (Ambion, Thermo Fisher 
Scientific) to digest any residual vector pCas-BgAIFx4 

DNA and contaminating genomic DNAs. The RNAs 
were reverse transcribed to cDNA using ProtoScript II 
reverse transcriptase with oligo dT and random primers 
(First Strand cDNA Synthesis Kit, New England Biolabs, 
Ipswich, MA, USA). RT-PCRs specific for the Cas9 or 
actin gene of B. glabrata, BgActin (GenBank: U53348.1) 
were undertaken, with BgActin serving as the positive 
control for RNA integrity. The primer pairs used for the 
BgActin coding sequences were termed actin-F (5′-AAG 
CGA CGT TTT CTT GGT GC-3′) and actin-R (5′-ACC 
CAT ACC AAC CAT CAC ACC-3′). Amplicons and 
molecular size standards were separated by electropho-
resis through Tris–acetate-EDTA-buffered agarose 1% 
stained with ethidium bromide (Fig. 1c).

Analysis of programmed mutation of the allograft 
inflammatory factor gene of B. glabrata
Genomic DNA samples from the mock-transfected and 
pCas-BgAIFx4-transfected cells were amplified by PCR 
using the primers AIF-F (5′-GCA GAT TTG CAA TTC 
AAC ACT TA-3′) and AIF-R (5′-TGC CAG CTA GCT 
TAC TGC AT-3′) that flank the CRISPR/Cas9 pro-
grammed double-stranded break (DSB) site (Fig.  1a). 
Amplicons of 568 nt in length (from residues 489 to 
1056 of the BgAIF_BGLB0055061 gene) were obtained 
using the AIF-F and -R primer pair. Amplicons were iso-
lated from the agarose gel using the PCR cleanup and gel 
extraction kit (Takara Bio, Mountain View, CA, USA) 
and the nucleotide sequence of amplicons determined 
by Sanger direct sequencing (GENEWIZ, South Plain-
field, NJ, USA). Chromatograms of the sequence reads 
from the control and experimental groups in each repli-
cate experiment were subjected to online analysis using 
the TIDE algorithm, https ://tide.deskg en.com/ [55, 56] 
and also using the Inference of CRISPR v2 Edits analy-
sis (ICE) software, https ://ice.synth ego.com/#/ (Synthego 
Corporation, Redwood City, CA, USA) [57]. Estimates of 
CRISPR efficiency, insertion-deletion (INDEL)-substitu-
tion percentages, and the nucleotide sequence of mutant 
alleles were obtained using both the TIDE and the ICE 
platforms [55, 56] (Fig. 2a, b).

Quantitative real time PCR analysis of transcription 
of BgAIF
To evaluate the differential levels of the BgAIF tran-
script among the control and experimental groups, total 
RNAs were extracted and treated with DNase I, as above. 
DNase I treated-RNA (200 ng) was reverse transcribed to 
cDNA, followed by quantitative RT-PCR, using the ViiA7 
real time PCR system (Applied Biosystems, MA, USA), 
and the SSoAdvanced Universal SYBR Green Supermix 
reagents (Bio-Rad, CA, USA), according to the manu-
facturer’s recommendations. The following nucleotide 

https://tide.deskgen.com/
https://ice.synthego.com/#/
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primers used BgAIF gene-specific primers amplify 119–
257 nt of BgAIF GenBank accession number EX001601.1: 
BgAIF-rt-F (5′-CCT GCT TTT AAC CCG ACA GA-3′) 
and BgAIF-rt-R (5′-TGA ATG AAA GCT CCT CGT 
CA-3′). Differential BgAIF gene expression was calcu-
lated after normalizing with BgActin (primers as above) 
and comparison with the non-treated (control) cells. The 
ΔΔCt method was used to calculate the differential gene 
expression [58], with assistance of the GraphPad Prism 8 
software (San Diego, CA, USA) (Fig. 2c).

Schistosome sporocysts
Miracidia of the NMRI strain of S. mansoni were hatched 
from eggs recovered from livers of schistosome infected 
mice (SRC, Biomedical Research Institute, Rockville, MD, 
USA) under axenic conditions [28], primary sporocysts 

were transformed from the miracidia in  vitro, as previ-
ously described [26]. Briefly, miracidia were immobi-
lized by chilling on ice for 25 min, followed by pelleting 
using centrifugation, 500×g at 4  °C, 60  s. The miracidia 
were washed with ice cold Chernin’s balanced salt solu-
tion (28  mM NaCl, 0.5  mM  Na2HPO4, 2  mM KCl, 
1.8  mM  MgSO4.7H2O, 0.6  mM  NaHCO3 and 3.6  mM 
 CaCl2.2H2O) with 1 mg/ml glucose, trehalose, and antibi-
otic, 10  µl/ml of 100 × penicillin/streptomycin (Thermo 
Fisher Scientific), termed  CBSS+. Approximately 5000 
miracidia per well of a 24-well plate were cultured in 
CBSS + at 26 °C for 24 h, after which the sporocysts were 
washed to remove shed ciliated epidermal plates and 
other debris, followed by transfer to a 1.5 ml microcen-
trifuge tube [26].

Fig. 2 Establishment of BgAIF-knockout lines of Bge cells. a Representative examples of frequent gene insertions-deletions (1–2 bp insertions 
and 8–30 bp deletions, straddling the programmed CRISPR/Cas9-induced double-stranded break in exon 4, as determined by ICE software-based 
analysis. b TIDE algorithm-based violin plot of insertion-deletion percentages (% INDEL) computed using the amplicon sequence traces from the 
12 biological replicates of pCas-BgAIF-transfected Bge cell populations. c Reduction of BgAIF transcription by about 50% following programmed 
genome editing of Bge cells (∆BgAIF-Bge) in comparison to control Bge cells. Mean transcript reduction, 49.55 ± 20.22% (SD), P ≤ 0.0001**** (n = 12) 
(unpaired Student’s t-test)
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Sporocyst‑Bge cell binding assay and cell adhesion index 
(CAI)
To investigate the if BgAIF would affect the ability of 
cell adhesion to S. mansoni sporocysts, we co-cultured 
the non-transfected Bge cell or non-selected-, trans-
fected-pCas-BgAIFx4 cells (BgAIF depleted-cells named 
‘ΔBgAIF-Bge’) with in vitro transformed sporocysts, then 
the cell adhesion index (CAI) was calculated as previ-
ously described [26, 59]. A limitation of this study was 
that we were not be able to select or enrich for BgAIF 
edited-cells, and hence the ΔBgAIF-Bge cell populations 
can be considered to be a population of gene mutated 
mixed with non-modified (wild type) cells. CAI is a semi-
quantitative method of cell adhesion to primary sporo-
cysts using four categories of scores ranging from one 
to four—lower to higher numbers of cells adherent to 
the parasite’s surface. In brief, we mixed single cell sus-
pensions of 500,000 Bge cells with 200 freshly-prepared 
sporocysts (total volume 200  µl of  CBSS+) in sterile, 
siliconized tubes (Bio Plas, Thomas Scientific, Swedes-
boro, NJ, USA). The Bge cell-sporocyst co-culture was 
maintained at 26  °C for 24  h. Cellular morphology and 
adhesion of the cells to the surface of the sporocysts was 
monitored and recorded using an inverted microscope, at 
20× magnification (Zeiss Axio Observer A1, Carl Zeiss 
LLC, White Plains, NY, USA) after gently transferring the 
parasite-cell suspension to a tissue culture plate (Greiner 
Bio-One). Scoring of the adherence index was carried 
out in a blinded fashion to the investigator reading the 
score; ≥ 50 sporocysts from each experimental group 
were counted each time, and triplicates of each treatment 
group were scored. Seven independent biological repli-
cates of this CAI-based sporocyst-Bge cell binding assay 
were carried out. In total, ≥ 400 sporocysts were exam-
ined from each treatment and control group. Averages 
for the CAI values were calculated from the cell adhesion 
scores ranging from 1 to 4 (examples presented in Fig. 3a) 
according to the formula, CAI = total binding value per 
number of sporocysts [26].

Results
Cas9 nuclease transcribed in transfected Bge cells
Total RNA was extracted from non-transfected cell (wild 
type; WT), mock control and pCas-BgAIFx4-transfected 
Bge cells to assess the expression of Cas9 (Fig.  1b). The 
cDNAs from either controls or pCas-BgAIFx4-trans-
fected Bge cells were employed as the template in PCRs 
using two primer pairs, one specific for Cas9 and the 
other for BgActin, the actin gene of B. glabrata that 
served as the reference gene (Fig.  1b, c). Transcripts 
encoding Cas9 in transient pCas-BgAIFx4 transfected-
Bge cells were detected at 24  h after transfection and 
expression was maintained for the 9  days of the assay. 

The specific amplicon of Cas9 mRNA (277  bp) was 
observed from pCas-BgAIFx4 transfected cells, but was 
absent from the non-transfected cells (Fig. 1c). Our find-
ings supported previous findings that revealed a CMV 
promoter driven by luciferase in Bge cells [60]. Expres-
sion of the control reference BgActin was observed at a 
214  bp amplicon in both the controls and experimental 
samples (Fig. 1c).

Programmed mutation of BgAIF confirmed functional 
CRISPR/Cas9 activity in Bge cells
Genomic DNAs from wild type Bge, medium-transfected 
(mock) and pCas-BgAIFx4-transfected cells were used as 
the template for PCRs with the primer pair, AIF-F and 
AIF-R, flanking the programmed Cas9 cleavage site on 
BgAIF, exon 4 (Fig. 1a, green arrows; amplicon size, ~ 200 
nt). The red arrow indicates the predicted site of the 
Cas9-catalyzed double-strand break (DSB) within the 
BgAIF locus (Fig.  1a). The nucleotide sequence of the 
amplicons was determined by Sanger direct sequenc-
ing using the same primers. Both forward and reverse 
Sanger direct sequencing reads from the same amplicon 
were estimated for insertion-deletion (INDELs) by the 
ICE and the TIDE algorithms [55, 56]. The reads from 
the Bge cells transfected with the pCas9-BgAIFx4 con-
tained INDELs at or around the programmed CRISPR/
Cas9 cleavage site. The percentage of reads that included 
INDELs ranged from 8.9% to 17.1%, in the 12 biologi-
cal replicates that were carried out (Fig. 2a, b). Notably, 
the mutation profile in the vicinity of the predicted DSB 
in BgAIF was similar among these 12 replicates, which 
were undertaken independently. Commonly observed 
INDELs at the DSBs site as revealed by the ICE analysis 
included deletions of 8 to 30  bp and insertions of 1 or 
2 bp (Fig. 2a). These mutations were predicted to result 
in frameshift mutations, the consequent loss of the open 
reading frame, and hence and permanent knockout of 
BgAIF in the gene-edited Bge cell. The profile of the fre-
quency of mutations observed in each biological repli-
cate was used to plot the curve (Prism 8 software; https 
://www.graph pad.com/) presented in Fig. 2b. These find-
ings demonstrated that programmed genome editing 
using CRISPR/Cas9 was active in Bge cells, and that the 
non-homologous end-joining (NHEJ) pathway [61] was 
active in B. glabrata for the repair of programmed dou-
ble-stranded breaks, leading to targeted gene knockout.

Programmed mutation interrupted expression of BgAIF
The aims of the study included the investigation of 
the activity of CRISPR/Cas9 gene editing in the Bge 
cell line and addressing the hypothesis that AIF func-
tions in the activation of a macrophage like phenotype 
by the Bge cell. Accordingly, Bge cells were transfected 

https://www.graphpad.com/
https://www.graphpad.com/
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with pCas9-BgAIFx4 plasmid DNA. The experimental 
approach did not include drug resistance and/or reporter 
gene markers in order to enrich for transfected Bge cells. 
However, even without enrichment for transfected cells, 
there was a highly statistically significant reduction in lev-
els of BgAIF transcripts in the transfected Bge cell popu-
lation. Expression of BgAIF transcripts were assessed 
using RNAs from the cells at 9  days post-transfection. 
Comparison of the experimental and control groups 

revealed significantly reduced levels of the BgAIF in the 
pCas-BgAIFx4-transfected cells, mean 49.55 ± 20.22%, 
range 28.1 to 86.3% (n = 12) compared to the wild type 
Bge (normalized sample, 100% expression), mock control 
cells (unpaired t-test and F-test to compare variances; 
F(11, 11) = 294.7, P < 0.0001) (Fig.  1b). An inverse correla-
tion between the percentage of INDELs and reduction in 
transcript levels was not apparent (not shown).

Fig. 3 Programmed knockout of BgAIF in Bge cells caused reduced adherence to primary sporocysts. a Representative micrographs of primary 
sporocysts co-cultured with Bge cells in our laboratory to profile the semi-quantitative scoring of the cell adhesion index (CAI): 1, no cells adhering 
to the surface of the sporocyst; 2, ≤ 10 cells adhering to the sporocyst; 3, > 10 cells < half of the sporocyst surface covered by cells or clumps of 
cells; 4, > half the sporocyst surface covered by Bge cells. b Representative micrographs indicate the reduced levels of ∆BgAIF-Bge cells adherence 
(right panel) in comparison to control, mock-transfected Bge cells (left panel) to the co-cultured sporocysts. c Bar chart to present the CAI values 
from control (mock-transfected) ∆BgAIF-Bge cells during co-culture with primary sporocysts at a co-culture ratio of one sporocyst to 100 Bge 
cells; CAI = 2.66 ± 0.10 (mean ± SD; 476 sporocysts in total scored) for the mock-transfected Bge and 2.31 ± 0.23 for the ∆BgAIF-Bge cells (424 
sporocysts in total scored); P = 0.0033, unpaired Student’s t-test; n = 7 biological replicates. d The cell adhesion score ranging from 1 to 4 of 
individual sporocysts. Cell adhesion scores 1, 2, 3 and 4 from mock cells were 2.5 ± 1.58 (SE), 29.28 ± 4.06, 20.85 ± 2.15 and 13.14 ± 2.55, respectively, 
whereas in the ∆BgAIF-Bge cells cell adhesion scores 1, 2, 3 and 4 were 8.86 ± 1.57, 31.42 ± 4.07, 13.28 ± 2.51 and 13.13 ± 2.55, respectively. There 
was a higher amount of sporocyst from the BgAIF edited-mixed cell population scored as ‘1′ than control cells with statistic significant by t-test (t 
ratio = 3.98, P = 0.001). Also, there was a lower amount of sporocysts scored as ‘3′ in ∆BgAIF-Bge cells compared with the control cells (t ratio = 2.40, 
P = 0.004)



Page 8 of 12Coelho et al. Parasites Vectors          (2020) 13:511 

Programmed knockout of BgAIF interfered with adherence 
of Bge cells to schistosome sporocysts
Single-cell suspensions of Bge cells in the mock-treated 
and ΔBgAIF groups were co-cultured for 24  h in sili-
conized tubes with primary S. mansoni sporocysts. At 
that point, the numbers of cells that had adhered to each 
sporocyst were scored. This was accomplished by exami-
nation of at least 5 discrete sites of the well of the 24-well 
plate with ≥ 50 sporocysts of each group. The cell adhe-
sion index (CAI) were scored from 1 to 4, with a score 
of 1 indicating few or no adherent cells and a score of 4 
indicating that cells or clumps of cells covered more than 
half the tegumental surface of the sporocyst, as defined 
in earlier reports [26] (Fig.  3a). Cells from the mock-
transfected control group mostly adhered in clumps 
or singly to the surface of the parasite (representative 
images in the upper panels of Fig. 3b), with CAI values 
that ranged from 2 to 4. By contrast, fewer cells adhered 
to the surface of the sporocysts in the ΔBgAIF-Bge group 
(representative images, lower panels in Fig. 3b), with CAI 
values ranging from 2 to 3. Only ~ 20% of the ΔBgAIF-
Bge cells adhered to the surface of the sporocysts and 
most of the cells retained remained spread singly on 
the surface of the well of tissue culture plate (Fig.  3b). 
The CAI values ascertained from the seven biological 
replicates (> 50 parasites in each replicate) with more 
than 400 parasites in total were scored). The average 
CAI were 2.66 ± 0.10 (range: 2.53–2.78) and 2.25 ± 0.22 
(range, 2.08 to 2.55) in the mock-treated and transfec-
tion control group, respectively. The average of CAI 
value from control group was significantly higher than 
the ΔBgAIF group (Fig.  3c) (unpaired t-test: t = 3.661 
df = 12, P = 0.0033). More specifically, the CAI category-
specific CAI values for mock-treated cells averaged from 
the cell adherence to single sporocysts, were 2.5 ± 1.58 
(SE), 29.28 ± 4.06, 20.85 ± 2.15, and 13.14 ± 2.55 for 
categories 1, 2, 3 and 4, respectively. For the ∆BgAIF-
Bge cells, the CAI values were 8.86 ± 1.57, 31.42 ± 4.07, 
13.28 ± 2.51, and 13.13 ± 2.55 for categories 1, 2, 3 and 
4, respectively. Although we observed CAI scores of 1 
to 4 in both mock control cells and ΔBgAIF cells, none-
theless there were statistically significant higher num-
bers of sporocysts with the lowest adherence, scored as 
‘1′, in the ΔBgAIF group compared with the mock con-
trol group as confirmed using a multiple t-test (t = 3.98, 
df = 12, P = 0.001). By contrast, there were significantly 
higher numbers of sporocysts scored as ‘3′ in the control 
compared with the ΔBgAIF group (t = 3.52032, df = 12, 
P = 0.004) (Fig. 3d). Finally, morphological changes were 
not apparent between the ΔBgAIF and the control group 
Bge cells.

Discussion
This report describes a novel use of programmed genome 
editing by the CRISPR/Cas9 approach in the embryonic 
cell line from the g astropod snail, B. glabrata, an inter-
mediate host snail of the human blood fluke, S. mansoni. 
The Bge cell line is an informative tool in investigation 
of snail-schistosome, host-parasite interactions. A key 
attribute of the Bge cell is its hemocyte-like phenotype, 
given the central role of the snail hemocyte in innate and 
cellular immunity. However, even though Bge cells adhere 
to the schistosome, the parasite is not killed by these cells 
in  vitro. The allograft inflammatory factor 1 (AIF) is a 
conserved calcium-binding protein typically expressed 
in phagocytic and granular leukocytes and is a marker 
of macrophage activation [38, 41, 45, 62–65]. An ortho-
logue, termed BgAIF, is highly expressed in isolates of B. 
glabrata that are resistant to infection with S. mansoni 
and this gene may be linked to hemocyte activation [8, 9]. 
Here, we targeted the AIF gene of B. glabrata embryonic 
cell line using programmed gene knockout to further 
interrogate its role in the intermediate host- schistosome 
interaction. We constructed a plasmid vector encoding 
the CRISPR/Cas9 nuclease and a guide RNA targeting 
exon 4 of BgAIF gene and the Cas9 nuclease from Strep-
tococcus pyogenes. Bge cells were transfected with the 
gene-editing construct by square wave electroporation. 
Transcript levels of BgAIF were significantly reduced 
by up to 71.9% following transformation. In parallel, 
sequence reads of amplicons spanning the locus targeted 
for programmed gene knock-out revealed on-target 
mutation on the BgAIF gene, that had been repaired by 
non-homologous end joining leading to gene-inactivat-
ing insertions and deletions. In addition, the adherence 
of gene-edited Bge cells to sporocysts was significantly 
impeded in comparison to control cells, as ascertained 
using a semi-quantitative, cell adherence index. In our 
study, the % INDELs (8.9–17.1%) resulting from NHEJ 
after CRISPR/Cas9 gene editing on BgAIF exon 4 locus 
did not correlate with its transcript reduction (~ 50%) in 
all experimental samples. Nonetheless, alternative mech-
anisms could be used as the fusion of suppressors with 
a ‘dead’ Cas9 which enables gene regulation and increase 
the level of repression of the target gene [66].

The B. glabrata IDS comprises hemocytes and solu-
ble proteins found in the hemolymph, among them the 
BgAIF [67–69]. The response of resistant mollusks is 
given by the adherence and encapsulation of sporocysts 
by hemocytes, leading to the parasite destruction [70]. 
The AIF-1 was demonstrated to be a pro-inflammatory 
cytokine that regulates immune-related genes of the 
oyster, Crassostrea ariakensis [36]. An orthologue in 
the leech Hirudo medicinalis promotes macrophage-
like migration by a chemotactic activity, in addition to 
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being involved in the innate immune responses as also 
seen in other species [41]. The adherence of the mixed 
populations of BgAIF gene-edited/non-edited-Bge cells 
to sporocysts was significantly impeded in comparison 
to control cells, as ascertained using a semi-quantitative 
cell adherence index. These cells, albeit in a low per-
centage, are less responsive to the S. mansoni parasite. 
These data suggested that, in the presence of S. mansoni, 
the Bge cells need to secrete BgAIF for activating the 
recruitment of more adherent Bge cells. Thus, the BgAIF 
protein appears to play a role in cell recognition, migra-
tion, and/or adhesion, and to participate in the early 
immune response to the parasite. The AIF gene is con-
served broadly among protostomes and deuterostomes, 
including vertebrates, and also in prebilaterian including 
sponges, where it likely performs similar functional roles 
in macrophage activation and migration [71]. In humans, 
the HmAIF1 is an NF-κB pathway regulator, a path-
way that comprises a family of evolutionarily conserved 
proteins, important to the immune system by partici-
pating in the expression of other proteins related to the 
immune system [72, 73]. Although more studies will be 
required to decipher the regulation of these pathways in 
B. glabrata, after the pathogen invasion, the BgAIF possi-
bly acts throughout the activation of the NF-κB pathway, 
leading to the recruitment of hemocytes and consequent 
pathogen elimination [72, 74].

These findings confirmed the tractability of transfec-
tion of Bge cells by electroporation with the genome-
editing construct, pCas-BgAIFx4, and that the CMV 
promoter drove transcription of Cas9 in this snail spe-
cies. Whereas transformation by plasmid DNA of Bge 
cells by square wave electroporation appears to be novel, 
Bge cells have been transformed using DNA complexed 
with cationic lipid-based transfection reagents and with 
polyethyleneimine [23]. Nevertheless, our study has 
some limitations. Thus far we have yet to enrich the 
transfected cells from wild type cells. Future studies using 
a drug selectable marker can be designed to address this 
issue. Other approaches to deliver the CRISPR/Cas gene-
editing cargo can be tried including repeated inoculation 
with ribonuclear protein complexes [75], titration of the 
transfection chemicals [76], titration of electroporation 
parameters [77], and/or transduction by lentiviral viri-
ons encoding the gRNA and S. pyogenes Cas9 nuclease as 
we have demonstrated with eggs of S. mansoni [53, 54]. 
Moreover, CIRCLE-Seq and similar approaches can be 
employed to investigate the off-target mutations [78].

Conclusions
Here we demonstrated CRISPR/Cas-based gene editing 
in a cell line from a medically important taxon of fresh-
water gastropods that are vectors for the transmission of 

schistosomiasis. We showed the functional role of a B. 
glabrata allograft inflammatory factor in the recognition/
attachment of S. mansoni sporocysts in vitro. The dem-
onstration of the activity of CRISPR/Cas9 gene editing 
in Bge cells suggests that genome editing in the germline 
and somatic tissues of intact B. glabrata snails will also 
be functional. Whereas improvements can be anticipated 
in these approaches, an obvious next step will be to gene 
edit the intact snail B. glabrata. Transfection of germline 
cells within the snail using microinjection can be consid-
ered [79]. These findings, together with the first applica-
tion of the CRISPR/Cas technique in the genetic edition 
of the snail Lymnaea stagnalis [48] are a step-change 
since they can favor the creation of a genetically modified 
Biomphalaria line to study the biology and physiology of 
the snail as well the schistosome-intermediate host rela-
tionship. Functional genomics using CRISPR/Cas-based 
genome editing in schistosomes and other trematodes 
responsible for major neglected tropical diseases has 
been reported [53, 54]. The establishment of a functional 
genomic protocols involving programmed gene editing 
to address fundamental questions in this host-parasite 
relationship using genetically modified snails and schis-
tosomes now seems to be feasible.
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