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Abstract 

Background:  Dengue, chikungunya and Zika viruses (DENV, CHIKV and ZIKV) are transmitted in sylvatic transmission 
cycles between non-human primates and forest (sylvan) mosquitoes in Africa and Asia. It remains unclear if sylvatic 
cycles exist or could establish themselves elsewhere and contribute to the epidemiology of these diseases. The 
Caribbean island of St. Kitts has a large African green monkey (AGM) (Chlorocebus aethiops sabaeus) population and is 
therefore ideally suited to investigate sylvatic cycles.

Methods:  We tested 858 AGM sera by ELISA and PRNT for virus-specific antibodies and collected and identified 9704 
potential arbovirus vector mosquitoes. Mosquitoes were homogenized in 513 pools for testing by viral isolation in cell 
culture and by multiplex RT-qPCR after RNA extraction to detect the presence of DENV, CHIKV and ZIKVs. DNA was 
extracted from 122 visibly blood-fed individual mosquitoes and a polymorphic region of the hydroxymethylbilane 
synthase gene (HMBS) was amplified by PCR to determine if mosquitoes had fed on AGMs or humans.

Results:  All of the AGMs were negative for DENV, CHIKV or ZIKV antibodies. However, one AGM did have evidence 
of an undifferentiated Flavivirus infection. Similarly, DENV, CHIKV and ZIKV were not detected in any of the mosquito 
pools by PCR or culture. AGMs were not the source of any of the mosquito blood meals.

Conclusion:  Sylvatic cycles involving AGMs and DENV, CHIKV and ZIKV do not currently exist on St. Kitts.

Keywords:  Sylvatic cycles, Dengue, Chikungunya, Zika, Arboviruses, Non-human primates, Mosquitoes, Arboviruses, 
Blood-meal analysis

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Parasites & Vectors

*Correspondence:  mvalentine@students.rossu.edu
1 One Health Centre for Zoonoses and Tropical Veterinary Medicine, Ross 
University School of Veterinary Medicine, West Farm, Basseterre, St. Kitts 
and Nevis
Full list of author information is available at the end of the article

Background
Chikungunya, dengue and Zika are arboviral diseases 
that are transmitted by the anthrophilic mosquitoes, 

Aedes aegypti and/or Aedes albopictus in an urban trans-
mission cycle resulting in epidemics and pandemics in 
tropical and subtropical regions of the world [1–3]. The 
aetiological chikungunya (CHIKV), dengue (DENV) 
and Zika viruses (ZIKV) evolved in non-human pri-
mates (NHPs) and sylvatic mosquitoes in the forests of 
Africa in the case of CHIKV and ZIKV, and Asia in the 
case of DENV [4–6]. In the forests, primatophilic forest 
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mosquitoes maintain the viruses in sylvatic (NHP-mos-
quito-NHP) transmission cycles which continue to this 
day [3, 7–9]. It remains an outstanding question whether 
sylvatic cycles of these arboviruses are present elsewhere 
in the world where there are similar non-human primate 
vertebrate hosts and mosquitoes [8, 10–12]. Further-
more, some researchers have identified tropical islands as 
‘hotspots’ for arboviral emergence [13].

On the Caribbean island of St. Kitts there is a large 
population of wild and captive African green monkeys 
(AGMs) (Chlorocebus aethiops sabeus). People on the 
island were affected by the chikungunya pandemic in 2014 
and the Zika pandemic in 2016 [14, 15]. Dengue is hyper-
endemic in the region and there are periodic outbreaks 
on St. Kitts, most recently in 2008 [16]. While there are 
no accurate seroprevalence data on arboviral infections of 
people on St. Kitts, studies from nearby islands show very 
high CHIKV exposure rates of 16.9% [17] on St. Maarten 
and 25% in Puerto Rico [18]. Similar exposure rates have 
been suggested for ZIKV [19]. The confirmed presence 
of arboviral disease in people, a suitable vertebrate host 
(AGMs) and a diverse mosquito community [20] suggests 
there is potential for sylvatic transmission on St. Kitts.

To investigate this possibility, we used previously estab-
lished techniques [7, 21–24] involving serology to deter-
mine exposure of the island’s AGMs to arboviruses, and 
RT-qPCR and viral isolation in cell culture to determine 
the presence of arboviruses in potential vector mosquito 
genera. Additionally, DNA extracted from blood meals of 
engorged female mosquitoes was analyzed by PCR and 
sequenced to determine which mosquitoes had fed on 
AGMs and/or people.

Methods
Study area
St. Kitts is a 168 km2, geographically isolated, volcanic, 
Caribbean island located in the Lesser Antilles (17.33°N, 
62.75°W). It has a population of approximately 40,000 
people mostly inhabiting urban Basseterre, the capi-
tal, and a string of small village communities distrib-
uted along the main coastal road that circles the island. 
Rainforest covers the uninhabited, steep volcanic slopes 
in the center of the island, surrounded by lower gentler 
slopes consisting mostly of abandoned sugar cane fields 
or arable farmlands. The south east of the island is pri-
marily an arid peninsula covered mainly in scrub with 
beaches, mangroves, and salt-ponds. AGMs were intro-
duced to the island in the 1700s during the slave trade 
and are abundant with an estimated population of 55,000 
[25–27]. Due to changes in land use and their adaptable 
and opportunistic nature they are now widely distrib-
uted, commonly encountered, a tourist attraction and 
also a problem for local farmers whose crops suffer from 

their destructive behaviour [25]. They are semi-arbo-
real, roosting in trees at night, but highly mobile on the 
ground during the day when they forage through many 
of the ecosystems on the island [28]. While foraging for 
food and water, which can be over large areas depending 
on availability that varies with season, it would be antici-
pated that AGMs should come into contact with, and 
potentially host a wide variety of mosquitoes although we 
know of no data on the species involved.

Determining the infection status of the AGMs
Between January 2013 and March 2019, we obtained 
851 convenience samples of sera from AGMs undergo-
ing routine health screening after being trapped using 
accepted procedures [26, 27] for two primate research 
facilities on St. Kitts. We also obtained seven sera from 
AGMs trapped and immediately released by professional 
monkey trappers for our study (Additional file 1: Text S1). 
Monkeys were captured across five different land covers 
that we identified on the island: agricultural; mangrove; 
urban; rainforest; and scrub (Fig. 1 and Table 1) [20].

Sera from 268 of the AGMs captured prior to the Zika 
outbreak in 2016 were screened for IgG to DENV and 
CHIKV with commercial ELISA kits (Panbio Dengue 
IgG Indirect Elisa. Standard Diagnostics Inc., Yongin-si, 
Republic of Korea; Anti-Chikungunya virus ELISA (IgG). 
Euroimmune AG, Lübeck, Germany) following the man-
ufacturer’s instructions. They were also tested for IgG to 
DENV and CHIKV at the National Reference Centre for 
Arboviruses in Marseille, France (IL-G) with an in-house 
ELISA for with peroxidase labelled anti-monkey IgG 
(KPL, Gaithersburg, MD, USA) as a secondary antibody. 
The remaining 590 sera were also screened for antibod-
ies to DENV and CHIKV with the commercial ELISA kits 
described above and additionally for ZIKV IgG antibod-
ies (Monkey Zika Virus IgG (ZV-IgG) ELISA Kit, MyBio-
Source, Inc., San Diego, CA, USA). Sera with positive or 
equivocal ELISA results were repeated and then tested by 
Plaque Reduction Neutralization Test (PRNT) [29–31] 
on Vero cells (ATCC #CCL-81) with a cutoff value of 90% 
(PRNT90). Neutralization curves were generated using 
GraphPad Prism software, and the resulting data were 
analyzed by nonlinear regression to estimate the dilu-
tion of serum required to inhibit 90% of infection. We 
considered an animal to have a confirmed ZIKV expo-
sure if ZIKV PRNT90 was at least 20 and a ratio of ZIKV 
PRNT90 to DENV PRNT90 titre of at least 4.

Determining the infection status of potential arboviral 
vector mosquito species
Mosquito collections
From September 2017 to March 2019 we conducted 
a comprehensive mosquito survey [20] and captured 
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mosquitoes each month for a 48-h period (excluding 
December 2017, April 2018, and December 2018) in all 
five land covers described above using carbon dioxide 

(CO2) baited CDC light traps (J.W. Hock, Gainesville, FL, 
USA) and/or Biogents Sentinel 2 traps (BGS) (Biogents 
AG, Regensburg, Germany) to capture a broad range of 

Map data ©2020 Google
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Fig. 1  Approximate capture locations by parish and land cover of AGMs on St. Kitts. Numbers of AGMs captured in each land cover indicated by a 
coloured pie chart. Key: brown, agricultural; light blue, mangrove; light green, rainforest; dark yellow, scrub; light grey, urban. Parish boundaries are 
indicated by a grey line

Table 1  Capture locations of AGMs on St. Kitts by parish and land cover

St. Kitts Parish Agricultural Mangrove Rainforest Scrub Urban Total

Christ Church Nichola Town 177 3 35 0 1 216

Saint George Basseterre 0 0 0 143 5 148

Saint John Capisterre 48 0 7 0 0 55

Saint Mary Cayon 92 2 3 0 1 98

Saint Paul Capisterre 26 0 6 0 0 32

Saint Peter Basseterre 4 15 2 0 135 156

Saint Thomas Middle Island 0 0 27 0 47 74

Trinity Palmetto Point 0 0 0 0 2 2

Saint Anne Sandy Point 1 0 0 0 0 1

Total 348 20 80 143 191 782
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mosquito species and target host-seeking mosquitoes 
which are most likely to have fed on mammals [20]. Since 
it was not possible for us to trap mosquitoes in the often 
inaccessible areas where AGMs sleep and forage, which 
both vary considerably, we used sites described in the 
mosquito survey [20] and these were set within 100–200 
m of known AGM trapping locations where possible. 
Trapped mosquitoes were transported to the research 
laboratory of Ross University School of Veterinary Medi-
cine (RUSVM), Basseterre, St. Kitts, and stored at − 80 
°C for later identification. Potential arbovirus vector 
mosquito species (Aedes aegypti, Aedes taeniorhynchus, 
Culex quinquefasciatus and unidentified Aedes and Culex 
spp.) were identified using standard morphological keys 
[32–34]. For arboviral testing (below), 1–50 individuals 
of each species were pooled according to location where 
they were trapped, month, and sex.

Mosquito processing
Mosquito pools were homogenized in a 2 ml microcen-
trifuge tube containing 3–4, sterile, steel ball bearings (4 
mm in diameter) with 600 µl of minimum essential media 
(MEM, Gibco, Waltham, MA, USA) with 1% penicillin 
and streptomycin (Penicillin-Streptomycin, 10,000 U/ml, 
Gibco Waltham, MA, USA) and agitated for 5 min using 
a vortex. Homogenates were clarified by centrifugation 
(5 min at 14,000× rpm) at 4 °C and the supernatant, 
approximately 300–500 µl, filtered (0.22 µm syringe filter 
Millipore Millex™ Sterile Syringe Filters. Merck KGaA, 
Darmstadt, Germany) and stored at − 80 °C.

RNA extraction and RT‑qPCR
After thawing at room temperature, RNA was extracted 
from 100 µl of the mosquito lysate using the RNEasy 
Mini Kit (Qiagen, Hilden, Germany) and analyzed by RT-
qPCR using the ZDC (Zika, Dengue and Chikungunya) 
Multiplex RT-PCR assay (Bio-Rad, Hercules, CA, USA) 
according to the manufacturer’s instructions on an ABI 
7500 Fast Dx Real-Time PCR system (Applied Biosys-
tems, Hercules, CA, USA).

Cell culture for viral isolation
Mosquito lysates (100 µl) were inoculated into 24 well 
cell culture plates seeded with approximately 5 × 104 
Vero cells in 0.5 ml of MEM with 1% Fetal Bovine Serum 
(Gibco), 1% Penicillin-Streptomycin (Gibco), 1% glu-
tamine (Gibco) and 0.1 % Amphotericin B (Gibco). Fol-
lowing gentle agitation on a rocker for 1 h to allow virus 
adsorption, 1ml of MEM (as above) was added to each 
well and the plates incubated at 37  °C for 7–10 days. 
Every day the cells in each well were monitored for cyto-
pathic effects with an inverted microscope (CKX53, 
Olympus, Tokyo, Japan).

Blood‑meal analysis
Engorged blood-fed female mosquitoes (n = 122) were 
retained individually and their abdomens aseptically 
separated from the head and thorax by sharp dissection. 
Their DNA was extracted using a DNEasy Blood Mini 
Kit (Qiagen, Hilden, Germany) and used in a qPCR with 
primers designed to anneal to the hydroxymethylbilane 
synthase (HMBS) gene as described by Wei et  al. [35]. 
DNA extracted from the whole blood of five AGMs were 
used as positive controls and their sequences (ELIM 
BIOPHARM, Hayward, CA, USA) aligned with Clustal 
Omega [36] to obtain a 222 nucleotide sequence for the 
HMBS gene of Chlorocebus aethiops sabeus (Additional 
file  2: Text S2) (BankIt2363830 AGM_seq MT742560). 
Amplicons obtained from the blood-fed mosquitoes 
were also sequenced and raw sequence data was com-
pared with the AGM HMBS (BankIt2363830 AGM_seq 
MT742560) and human HMBS sequences NG_008093 
on GenBank using Clustal Omega.

Results
Serology of AGMs
The 268 sera tested with an in-house ELISA in France and 
with commercial ELISA test kits for antibodies to DENV 
and CHIKV all gave negative results. The remaining 590 
samples tested with the commercial kits for antibodies to 
DENV, CHIKV and ZIKV were all negative except for 10 
(1.7%) that were positive for ZIKV IgG. On subsequent 
confirmatory testing by PRNT all ten tested negative for 
ZIKV and DENV neutralizing antibodies using PRNT90.

Arbovirus detection
We captured 9704 individual mosquitoes representing 10 
of the 14 mosquito species across all 6 genera previously 
documented on the island [20, 37] (Additional file  3: 
Table  S1). Approximately half (3000–4000 individuals, 
190 pools) of the mosquitoes from non-urban land cov-
ers were trapped within 100–200 m of where AGMs were 
blood-sampled for serology. All the 513 pools of mosqui-
toes (Tables 2, 3) tested by RT-qPCR for CHIKV, DENV 
and ZIKV were negative. Furthermore, all virus isolation 
attempts in Vero cell cultures were negative.

Blood‑meal analysis
Of the 122 blood meals we tested with the HMBS PCR, 
we obtained useable sequence data from 106 sequences 
(including 13 from Ae. aegypti, the only known vec-
tor of DENV, CHIKV and ZIKV recorded on St. Kitts) 
that aligned in the polymorphic 286 base pair (bp) tar-
get region of the AGM consensus sequence and human 
HMBS reference gene (NG_008093.1) [31] containing 
5 reliable single nucleotide polymorphisms (SNP) and 
2 deletions (Additional file  2: Text S2). Of these, one 
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blood meal from Ae. taeniorhynchus caught in scrub land 
cover (mosquito 106) had 100% sequence match (227 bp) 
with the human reference HMBS gene (NG_008093.1) 
compared with a 95.5% (213 bp) with the AGM HMBS 
gene sequence we produced (BankIt2363830 AGM_seq 
MT742560). Similarly, we also considered 3 more blood 
meals with lower sequence matches (83.25–97.64%) from 
a Culex spp. in the mangrove (mosquito 43) and two uni-
dentifiable urban mosquitoes (mosquitoes 64 and 65) to 
match best with the human reference gene (Additional 
file 2: Text S2).

Discussion
Our data do not provide robust evidence for sylvatic 
transmission of CHIKV, DENV or ZIKV between AGMs 
on St. Kitts. By capturing and testing both AGMs and 
sympatric mosquitoes for evidence of arboviral infections 

we emulated studies from Africa and Asia [7, 21–24] that 
have produced reliable (and some of the original) data 
on the existence of sylvatic transmission cycles of these 
arboviruses [4]. It is of note, however, that some studies 
on sylvatic cycles relied solely on antibody detection in 
NHPs [11, 38–42] to provide evidence of arboviral expo-
sure. In other cases, evidence for these cycles has only 
been based on the presence of arboviruses in mosquitoes 
captured from sylvatic habitats [3, 7, 21, 43, 44].

The actual population of AGMs on St. Kitts is 
unknown, but estimates are up to 55,000 [25, 26]. Cal-
culations show that detecting a 1% disease prevalence 
in this highest population estimate of 55,000 animals 
at a 95% confidence level requires a sample size of 332 
(assuming 100% test sensitivity and specificity) [45, 46]. 
Our convenience sample of 858 monkey sera would then 
appear to have been more than adequate to detect low 
seroprevalences.

Our inability to detect significant levels of antibodies to 
CHIKV, DENV, and ZIKV provides strong evidence that 
the AGMs on St. Kitts are not, or only very infrequently, 
exposed to these viruses. We contemporaneously sam-
pled AGMs during chikungunya (2014) and Zika (2016) 
epidemics and it would seem reasonable to assume this 
would have given us a good opportunity to detect AGM 
infections if there was spillover.

Although the PRNT remains the gold standard serolog-
ical test for the diagnosis of infections with the different 
arboviruses, it is time consuming, requires highly trained 
staff, live viruses, reliable controls and a BSL-2 laboratory 
(BSL-3 in the case of CHIKV). The IgG ELISAs we used 
for screening produce reliable negative results and are 
frequently used in experimental arboviral vaccine models 
involving NHPs to prove freedom from exposure [47–50]. 
They have proved to be reproducible and sensitive [51] in 
arboviral studies involving various NHPs in Africa, Asia 

Table 2  Land cover of mosquito pools tested for DENV, CHIKV 
and ZIKV by multiplex RT-qPCR and numbers of individual blood-
fed mosquitoes tested by qPCR for mammalian DNA (blood-meal 
analysis) from each land cover between September 2017 and 
March 2019

Abbreviations: CHIKV, chikungunya virus; DENV, dengue virus; qPCR, quantitative 
polymerase chain reaction; RT-qPCR, reverse transcriptase quantitative 
polymerase chain reaction; ZIKV, Zika virus

Land cover Pools of mosquitoes tested 
for DENV, CHIKV and ZIKV

Individual blood-fed 
mosquitoes tested in blood-
meal analysis

Agricultural 58 11

Mangrove 236 42

Rainforest 15 4

Scrub 77 20

Urban 124 42

Unidentified 3 3

Total 513 122

Table 3  Pooled mosquito species tested for DENV, CHIKV and ZIKV by multiplex RT-qPCR and species of individual blood-fed 
mosquitoes tested by qPCR for mammalian DNA (blood-meal analysis) between September 2017 and March 2019

Abbreviations: CHIKV, chikungunya virus; DENV, dengue virus; NT, not tested; qPCR, quantitative polymerase chain reaction; RT-qPCR, reverse transcriptase quantitative 
polymerase chain reaction; ZIKV, Zika virus

Mosquito species Pools of mosquitoes tested for DENV, 
CHIKV and ZIKV

Individual blood-fed mosquitoes tested in blood-meal 
analysis

Aedes spp. 44 8

Aedes aegypti 87 14

Aedes taeniorhynchus 153 12

Culex spp. 106 41

Culex quinquefasciatus 114 37

Psorophora pygmaea NT 1

Unidentified 9 9

Total 513 122



Page 6 of 9Valentine et al. Parasites Vectors          (2020) 13:540 

and the Americas [38–42, 52–54]. The ELISAs are well 
suited for large-scale screening for previous infections in 
field studies because wild infected NHPs mount a robust 
antibody response although only viraemic for 1–7 days 
and show no obvious clinical signs [4]. The IgG antibod-
ies can be detected for years post-infection and the com-
mercial kits for humans are widely available and can be 
adapted for use in NHPs [4]. Our findings confirm the 
reliability of ELISA testing in the general screening of a 
population with all of the randomly selected 268 ELISA 
negative sera also being negative when tested by the 
National Reference Centre for Arboviruses in Marseille, 
France. The problem with ELISAs is a lack of specificity 
because of cross reactivity of antibodies against closely 
related viruses, although this can also be an advantage as 
it increases the kits’ screening potential [55]. Sera from 
the 10 AGMs that were ZIKV IgG antibody-positive by 
ELISA were confirmed ZIKV negative by PRNT90. This 
maybe within the limits of the test specificity or because 
of exposure to another undifferentiated Flavivirus. We 
did not have access to the variety of other flaviviruses 
that occur in the region for more definitive PRNT test-
ing of this sample. The other flaviviruses that have been 
described in the Caribbean region and have high poten-
tial for cross reactivity include West Nile virus (WNV), 
and Spondweni virus (SPONV). WNV has been isolated 
from humans, birds and mosquitoes (suggesting active 
transmission) in Puerto Rico in 2007 [56], and recently 
10.7% of equids on St. Kitts were reported to be seroposi-
tive to WNV [57]. SPONV is difficult to distinguish clini-
cally and serologically from ZIKV infection and had only 
been recorded in Africa until 2016 when it was isolated 
from Cx. quinquefasciatus from Haiti [58]. With respect 
to alphaviruses, Mayaro virus (MAYV) can serologi-
cally cross react with CHIKV and was first discovered in 
Trinidad in 1954 and more recently antibodies have been 
detected in NHPs in Panama and French Guiana [4]. 
Further work is underway in our laboratories to identify 
other arboviruses such as these that might be circulating 
on St. Kitts.

Although our trapping methods would have influenced 
the numbers and diversity of mosquitoes we caught, in 
testing the mosquitoes our trapping selected for, includ-
ing mosquitoes from areas where the monkeys we sero-
surveyed were trapped, we found no evidence for the 
presence of CHIKV, DENV or ZIKV. We used RT-qPCR 
and virus isolation in cell culture to improve detection 
rates as has been done, either singly or in combination, 
to detect arboviruses in mosquitoes in large studies in 
Africa [59, 60]. The RT-qPCR is very specific and sensi-
tive, detecting as little as one infected mosquito in a pool 
of 5000, and enables high throughput rapid results with 
less reliance on a cold chain [60]. Virus isolation is less 

sensitive than RT-qPCR, detecting viable virus which 
requires the presence of a robust cold chain, specialized 
laboratory facilities, skilled labour and time, at least a 
week.

Our inability to demonstrate arboviruses in the mos-
quitoes was not unexpected in light of the lack of sero-
positivity in the AGMs and, in the case of the urban 
mosquitoes we tested, the fact that only low numbers of 
dengue, chikungunya and Zika cases have been reported 
in people on St. Kitts. Low viral prevalence in mosqui-
toes makes arboviral detection difficult even during dis-
ease outbreaks [60, 61]. The low infection rates in people, 
although likely to be a gross underestimate [62], suggest 
low infection rates in mosquitoes, decreasing the chances 
of arboviral detection in them. It would also mean fewer 
opportunities for infected urban mosquitoes to feed on 
peridomestic AGMs (‘spillback’ infection from people to 
NHPs) and in the process provide a source of virus for a 
sylvatic cycle as has been similarly investigated in Brazil 
[63–67].

We also found no infected mosquitoes in the more 
rural areas and rainforest where AGMs are more fre-
quent. This is consistent with our finding that AGMs 
from these areas were seronegative and indicates that 
there is no sylvatic cycle on the island. In Africa and 
Asia, only sylvatic Aedes spp. are thought to play a role 
in the maintenance of sylvatic cycles of DENV, CHIKV 
and ZIKV. The only mosquito species we found in non-
urban areas that is known to carry these viruses in a syl-
vatic setting was Ae. aegypti (Additional file 4: Table S2). 
DENV was isolated from these mosquitoes captured in 
forest galleries of Senegal in 1999 [21]. The Ae. aegypti 
mosquitoes we found on St Kitts (257/443; 58%) showed 
no morphological differences to those captured from 
urban environments and most likely represent ‘rewilding’. 
The rewilding was most likely driven by opportunistic 
use of more varied non-urban oviposition sites found in 
the Caribbean such as rock holes, calabashes, tree holes, 
leaf axils, bamboo joints, papaya stumps, coconut shells, 
bromeliads, ground pools, coral rock holes, crab holes 
and conch shells [68, 69]. The presence of Ae. aegypti 
in diverse habitats on St. Kitts suggests alternate non-
human vertebrate blood-meal sources are available to 
them.

Despite high host preference of Ae. aegypti for humans, 
this species of mosquito will bite other available mam-
mals. In Grenada, 28% (9/32) of Ae. aegypti blood meals 
were from non-human mammals (mongooses, domes-
tic dogs and cats) [70] and similarly, on Puerto Rico, up 
to 21% (42/199) of Ae. aegypti blood meals were from 
domestic dogs [71]. Additionally, Ae. aegypti will feed on 
both NHPs and people where they live in close proxim-
ity as is the case on St. Kitts. For example, on the tourist 
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island of Koh Chang in Thailand sampling mosquitoes in 
urban, forested and periurban areas of the national park 
revealed that 70% (21/30) of Ae. aegypti had fed on both 
people and NHPs suggesting less selective feeding behav-
iour in these situations [72].

Our blood-meal analysis showed that only a small per-
centage (3%) of the blood-fed mosquitoes we trapped had 
evidence of having fed on humans. We confirmed that the 
generalist feeder Ae. taeniorhynchus (and probably Culex 
spp.) will feed on humans and, interestingly, in Puerto 
Rico this species has been proven to feed on NHPs [73]. 
Using the specific HMBS gene sequence we determined 
for AGMs (BankIt2363830 AGM_seq MT742560) we 
found no evidence that the mosquitoes we trapped had 
fed on AGMs. This might be because there is a greater 
choice of vertebrate hosts (birds, mammals, reptiles and 
amphibians) in the rainforest and hence no feeding pref-
erence for AGMs. It could also be because we trapped 
mosquitoes only at ground level while sylvatic mosqui-
toes, more active at night [21, 43], might be more preva-
lent in the forest canopy where AGMs sleep.

Conclusions
Overall, we believe we have sufficient evidence to dis-
count the presence of sylvatic cycles of CHIKV, DENV 
and ZIKV on St. Kitts. Using criteria commonly used 
in similar studies [4], mainly seropositivity and infected 
mosquitoes, we found no evidence that AGMs were 
exposed to the viruses or that mosquitoes on the island 
were infected.
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