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Abstract 

Background: Enterocytozoon bieneusi is a zoonotic gastrointestinal pathogen and can infect both humans and 
animals. The coypu (Myocastor coypus) is a semi-aquatic rodent, in which few E. bieneusi infections have been reported 
and the distribution of genotypes and zoonotic potential remains unknown.

Methods: A total of 308 fresh fecal samples were collected from seven coypu farms in China to determine the infec-
tion rate and the distribution of genotypes of E. bieneusi from coypus using nested-PCR amplification of the internal 
transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene.

Results: Enterocytozoon bieneusi was detected with an infection rate of 41.2% (n = 127). Four genotypes were 
identified, including three known genotypes (CHN4 (n = 111), EbpC (n = 8) and EbpA (n = 7)) and a novel genotype 
named CNCP1 (n = 1).

Conclusions: The rare genotype CHN4 was the most common genotype in the present study, and the transmis-
sion dynamics of E. bieneusi in coypus were different from other rodents. To the best of our knowledge, this is the first 
report of E. bieneusi infections in coypus in China. Our study reveals that E. bieneusi in coypus may be a potential infec-
tion source to humans. 
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Background
Enterocytozoon bieneusi is an obligate intracellular patho-
gen, which has been detected in a broad range of hosts, 
including humans, livestock, companion animals, birds 
and wildlife [1, 2]. Hosts can be infected by ingesting 
infective spores through food-borne and water-borne 
routes or direct contact with infected humans or ani-
mals [3]. To date, over 500 genotypes of E. bieneusi were 
identified in the world by molecular genotyping based on 

internal transcribed spacer (ITS) region of the ribosomal 
RNA (rRNA) gene [1, 4]. These genotypes were divided 
into 11 distinct groups (groups 1 to 11) in a phylogenetic 
analysis [5]. The majority of the zoonotic genotypes are 
clustered in Group 1 [5]. Meanwhile, more and more 
reports show that some genotypes (I, J, BEB4 and BEB6) 
in Group 2 can also infect humans, indicating a low host 
specificity and zoonotic inherence of this group [1, 6, 7]. 
Other groups mostly contain host-adapted genotypes [6].

Previous studies indicated that at least 63 E. bieneusi 
genotypes have been identified in more than 20 rodent 
species, including zoonotic ones (BEB6, C, D, EbpA, 
EbpC, H, Peru8, Peru11, Peru16, PigITS5, S6 and Type 
IV) [1, 8, 9]. In a previous study, the zoonotic transmis-
sion of E. bieneusi occurred between a child and guinea 
pigs in Peru [10]. About 40% to 50% of the mammalian 



Page 2 of 8Yu et al. Parasites Vectors          (2020) 13:578 

species are rodents, which are distributed throughout 
the world except the Antarctic and a handful of islands 
[11]. Because of their abundant population and broad 
active range, rodents infected with E. bieneusi pose an 
unneglectable threat to public health. The coypu (Myo-
castor coypus) is a large rodent adapted to amphibi-
ous environments; nowadays coypus are being widely 
raised in farms as important fur-bearing animals. How-
ever, there is limited information about the infection 
rate and genetic characteristics of E. bieneusi in coy-
pus worldwide. Therefore, this study aimed to deter-
mine the genotypes and infection rate and assess the 
zoonotic potential of E. bieneusi from coypus in China.

Methods
Sample collection
A total of 308 fresh fecal samples were collected from 
asymptomatic coypus from seven farms in Anyang and 
Kaifeng in Henan Province, Yongzhou in Hunan Province, 
Laibin in Guangxi Zhuang Autonomous Region, Baoding 
in Hebei Province, Chengdu in Sichuan Province and Gan-
zhou in Jiangxi Province in China (Table  1, Fig.  1). Each 
farm was sampled on one occasion from August 2018 to 
March 2019. In each farm, about 2–4 coypus were kept 
in one accommodation, which was surrounded by 80 cm-
high walls to fence the animals off from each other. The 
ground of the accommodation was hardened with cement. 
An accommodation is typically composed of a piece of 
vacant land as the playground and a pool in which the 
coypus can swim. The samples were collected when the 
handlers finished the ground using a high-pressure water 
gun. All the fecal samples were collected immediately 
after they excreted using sterile polyethylene gloves and 
marked with animal information. To avoid duplicate sam-
pling of animals, only one fecal sample was collected from 
one location of the ground in each accommodation, and 
all deposits from each accommodation pooled as a single 
sample. All the samples were transferred to the laboratory 
in a cooler with ice packs within 36 h and stored at 4 °C.

DNA extraction and PCR amplification
Genomic DNA (gDNA) was directly extracted from 200 
mg of each sample using E.Z.N.A. Stool DNA Kit (Omega 
Biotek Inc., Norcross, GA, USA) according to the manu-
facturer’s protocol with minor modification.

All samples were tested using a nested PCR that targets 
ITS region (~389-bp fragment) of the rRNA gene of E. 
bieneusi using primers described previously by Sulaiman 
et  al. [12]. Double distilled water and known positive 
DNA derived from a golden snub-nosed monkey (geno-
type D, GenBank: KU604932) were used as negative and 
positive controls, respectively. The secondary PCR prod-
ucts were separated electrophoretically on 1% agarose 
(Life Technologies Corporation, CA, USA) gel stained 
with DNAGreen (Tiandz, Beijing, China) and visualized 
under UV light.

Sequencing and data analyses
Positive secondary PCR products were sequenced bidi-
rectionally by Sangon Biotech Co. Ltd., Shanghai, China. 
The sequences obtained here were assembled and edited 
in the software Lasergene EditSeq version 7.1.0 (https 
://www.dnast ar.com/) and multiple alignment with 
the reference sequences downloaded from GenBank 
was applied in Clustal X version 2.1 (https ://www.clust 
al.org/).

All statistical analyses were performed with IBM SPSS 
Statistics version 19.0 (www.ibm.com/produ cts/spsss 
tatis tics). Difference of prevalence of E. bieneusi among 
different age groups were compared using Fisher’s exact 
test, and the odds ratios (ORs) with the 95% confidence 
interval (CI) were also calculated. A two-sided P-value of 
0.05 or less was set as significant.

To reveal the phylogenetic relationships and zoonotic 
risk of E. bieneusi isolates, a phylogenetic tree was con-
structed by the Neighbor-Joining (NJ) method using 
the Kimura-2-parameter algorithm in MEGA version 
7.0.26 (https ://www.megas oftwa re.net). The robustness 

Table 1 Distribution of E. bieneusi genotypes in coypus from different farms in China

Location No. of sample No. of positive Infection rate (95% CI) (%) Genotype (n)

Anyang 101 73 72.3 (63.0–81.5) CHN4 (73)

Baoding 35 22 62.9 (45.3–80.3) CHN4 (22)

Chengdu 40 6 15.0 (2.7–27.3) CHN4 (6)

Ganzhou 35 7 20.0 (5.3–34.7) CHN4 (7)

Kaifeng 52 16 30.8 (17.3–44.3) CHN4 (2), EbpA (7), EbpC (6), CNCP1 (1)

Laibin 22 2 9.1 (0–23.4) CHN4 (1), EbpC (1)

Yongzhou 23 1 4.3 (0–14.8) EbpC (1)

Total 308 127 41.2 (35.6–46.9) CHN4 (111), EbpA (7), EbpC (8), CNCP1 (1)

https://www.dnastar.com/
https://www.dnastar.com/
https://www.clustal.org/
https://www.clustal.org/
http://www.ibm.com/products/spssstatistics
http://www.ibm.com/products/spssstatistics
https://www.megasoftware.net
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of the nodes was tested by a bootstrap analysis of 1000 
iterations.

Results
Infection rate of E. bieneusi in coypus
Enterocytozoon bieneusi was detected in 127 of 308 coy-
pus with an infection rate of 41.2%. This parasite was 
found in every farm, and the highest infection rate of 
E. bieneusi in coypus was detected in Anyang (72.3%, 
73/101), followed by Baoding (62.9%, 22/35), Kaifeng 
(30.8%, 16/52), Ganzhou (20.0%, 7/35), Chengdu (15.0%, 
6/40), Laibin (9.1%, 2/22) and Yongzhou (4.3%, 1/23) 
(Table 1). The differences in infection rates of E. bieneusi 
in coypus among different farms were statistically signifi-
cant (P < 0.0001).

The highest infection rate (76.9%, 50/65) was detected 
in the < 3-month-old group, followed by the 3–6 month-
old group (51.1%, 24/47) and > 6 month-old group 
(28.5%, 53/186) (Table  2) (P < 0.0001). The correlations 
between age and the infection rates were evaluated by 
calculating the ORs and their 95% CIs, which are shown 
in Table  2. There was a significant negative correlation 

between the infection rate and age in this study, as an 
OR of 0.31 (95% CI: 0.14–0.70, P = 0.005) was associ-
ated with the 3–6-month-old group, and an OR of 0.12 
(95% CI: 0.06–0.23, P < 0.0001) was associated with the > 
6-month-old group.

Enterocytozoon bieneusi ITS genotypes
Four distinct E. bieneusi genotypes, including three pre-
viously reported genotypes [CHN4 (n = 111), EbpC (n 
= 8), EbpA (n = 7)], and one novel genotype (named 
CNCP1, n = 1) were observed. Genotype CHN4 was the 
most common genotype and detected in 6 farms except 
the farm in Yongzhou. Genotype EbpC was distributed in 
Yongzhou, Laibin and Kaifeng, while genotype EbpA and 
novel genotype CNCP1 were only detected in the speci-
mens from Kaifeng.

CHN4 was the only genotype detected in the < 
3-month-old group (n = 50). In the 3–6-month-old 
group, CHN4 was also the predominant genotype, which 
was detected in 16 samples, followed by EbpA (n = 4), 
EbpC (n = 3) and CNCP1 (n = 1). In the age group > 6 

Fig. 1 Map of the Peopleʼs Republic of China showing the sampling locations. The figure was originally designed by the authors under the 
software ArcGIS 10.2. The original vector diagram imported in ArcGIS was  adapted from Natural Earth (https ://www.natur alear thdat a.com)

https://www.naturalearthdata.com
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months, 3 genotypes (CHN4, EbpC and EbpA) were 
detected in 45, 5 and 3 samples, respectively.

Phylogenetic analysis of E. bieneusi
The phylogenetic relationships and zoonotic risk of E. 
bieneusi genotypes were analyzed by the NJ tree. Geno-
type CNCP1 had one single nucleotide polymorphism 
(SNP) at nucleotide position 274 (G to A) compared to 
genotype EbpA (GenBank: MK968834). All the geno-
types identified in this study were clustered in Group 1 
(Fig. 2).

Discussion
The infection rate of E. bieneusi in rodent species var-
ies from 2.5% to 100% worldwide [13, 14]. To the best 
of our knowledge, this is the first report of E. bieneusi 
infections in coypus in China. In the present study, the 
overall infection rate of E. bieneusi was 41.2% in coy-
pus, which is higher than the infection rate of E. bieneusi 
reported in brown rats (7.9%) [8], bamboo rats (5.1%) 
[15], experimental brown rats (4.8%) [16], commensal 
rodents (mouse and brown rat) (4.0%) [14], pet chinchil-
las (3.6%) [17] and red squirrels (19.4%) [18] in China. In 
addition, lower infection rates were also reported in wild 
house mice (10.7%) from a hybrid zone across the Czech 
Republic-Germany border [19], and beavers (15.3%) and 
muskrats (8.4%) from the USA [20]. However, higher 
infection rates of E. bieneusi were reported in chipmunks 
(71.4%) and woodchucks (100%) from USA [13]. Similar 
infection rates of E. bieneusi have been reported in small 
rodents (mouse, bank vole, yellow-necked mouse and 
striped field mouse) (38.9%) from southwestern Poland 
[21], and a laboratory prairie dog colony (37.9%) in the 
USA [22]. The infection rates of E. bieneusi in rodents 
could be influenced by many factors, such as animal 
immune status, age distribution, sample size, detection 
method, feeding environment, management system and 
population density [16]. Because the high infection rate 
detected in coypus in our study, we can draw a prelimi-
nary inference that coypus are more susceptible to E. bie-
neusi than many other rodent species, which should be 
confirmed by more investigations in the future.

A variation of the positive rate of E. bieneusi in coy-
pus was observed in the present study with the highest 
being detected in Anyang (72.3%, 73/101) and the lowest 

in Laibin (9.1%, 2/22). Geographical location-based vari-
ation in the prevalence of E. bieneusi in rodents has been 
reported such as in brown rats in different provinces in 
China, which was ranged between 2.9–14.7% [8, 14, 16, 
23, 24]. This phenomenon has also been reported in other 
animals, for example, in alpacas (Vicugna pacos) in China 
(0–42.9%) [25] and in Asiatic black bear (Ursus thibeta-
nus) in China (0–50%) [26]. The difference may be related 
to geographical environments and feeding density.

In the present study, the dominant genotype of E. bie-
neusi was CHN4, which was detected in six cities except 
Yongzhou, indicating that genotype CHN4 is commonly 
found in coypus in China. This genotype has been identi-
fied in three human and two cattle samples [27] and four 
pre-weaned calf samples [28] from China, and is found 
for the first time in coypus in the present study. These 
findings indicated that genotype CHN4 has a wide range 
of animal reservoirs and potential for zoonotic transmis-
sion. Genotype D was identified in squirrels from China 
[29] and USA [13], chipmunks [30], bamboo rats [15] and 
brown rats [8, 23] from China, house mice from Czech 
Republic-Germany border [19] and striped field mice 
from Poland [21], and genotype WL4 was observed in 
squirrels, chipmunks and muskrats from the USA [13, 
20] (Table  3). EbpA, EbpC, PigEBITS7, S7, Peru16 and 
CHG14 have also been reported as the most common 
genotypes in experimental brown rat, beaver, giant rat, 
guinea pig, guinea pig and brown rat, respectively [10, 14, 
16, 20, 23, 31]. Additionally, in a more recent study of E. 
bieneusi in Himalayan marmots (Marmota himalayana) 
and Alashan ground squirrels (Spermophilus alashani-
cus) revealed that genotype ZY37 was the most com-
mon one [9]. The rare genotype CHN4 was the dominant 
genotype, indicating that the transmission dynamic of E. 
bieneusi in coypus is different from other rodents. This 
may be explained by the unique life habits of coypus as 
aquatic rodents compared to other rodents involved in 
previous studies.

Genotype EbpA and EbpC have been detected in sev-
eral rodent species (squirrel, house mouse, experimental 
brown rat, muskrat, bamboo rat and beaver) worldwide 
[15, 16, 19, 20, 29] (Table  3). They are two of the most 
common genotypes detected in both immunocompetent 
and immunocompromised people worldwide [1]. Mean-
while, genotype EbpA and EbpC have a vast host range, 

Table 2 Occurrence of E. bieneusi in coypus by age

Age (month) No. of samples Infection rate (95% CI) (%) P-value OR (95% CI)

< 3 65 76.9 (65.9–87.9) < 0.0001 1.00

3–6 47 51.1 (35.7–66.4) 0.005 0.31 (0.14–0.70)

> 6 196 27.0 (20.1–33.5) < 0.0001 0.11 (0.06–0.21)
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such as non-human primates (NHPs), livestock (cattle, 
buffalo, sheep and goat), pets (dog and horse), wild ani-
mals (deer, fox, raccoon, bear, panda and otter) and birds 
(pigeon, crane and parrot) [1]. These two genotypes also 
have been observed in lake water [32], river water [33] 

and wastewater treatment plants [34, 35]. According to 
these data, the interspecies transmission of genotype 
EbpA and EbpC pose a zoonotic risk to human or other 
animals, and coypus may serve as a reservoir of EbpA 
and EbpC in the E. bieneusi transmission.

Fig. 2 Neighbor-joining tree of Enterocytozoon bieneusi ITS genotypes. Phylogenetic relationships of Enterocytozoon bieneusi genotypes of this 
study and other genotypes previously deposited in GenBank. Bootstrap values > 50% from 1000 are shown on nodes. Sample names include 
GenBank accession number followed by host and then genotype designation. Known and novel genotypes identified in this study are indicated by 
empty and filled triangles, respectively
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Table 3 Prevalence and genotype distribution of Enterocytozoon bieneusi in rodents worldwide (Li et al. [1])

a Invalid genotype
b One sample was co-infected with Type IV and WL20

Host Location Infection rate (%) 
(No. positive/Total 
no.)

Genotype (n) References

Alashan ground
squirrel

China 3.0 (3/99) HN39 (1), HN96 (1), YAK1 (1) Xu et al. [9]

Chipmunk USA 71.4 (5/7) WL4 (3), Type IV (1), WL23 (1) Guo et al. [13]

China 17.6 (49/279) D (6), Nig7 (4), CHG9 (2), CHY1 (5), SCC-1 (17), SCC-2 (9), 
SCC-3 (5), SCC-4 (1)

Deng et al. [30]

Eastern gray squirrel USA 29.7 (11/37) WL4 (5), Type IV (3), PtEb V (1), WL21 (1), WW6 (2) Guo et al. [13]

Himalayan marmot China 11.8 (47/399) ZY37 (27), YAK1 (17), SN45 (1), XH47 (1), ZY83 (1) Xu et al. [9]

Prairie dog USA 48.3 (14/29) Rowa (14) Roellig et al. [22]

Red-bellied tree squirrel China 16.7 (24/144) D (18), EbpC (3), SC02 (1), CE01 (1), horse2 (1) Deng et al. [29]

China 4.2 (1/24) D (1) Zhao et al. [24]

Red squirrels China 19.4 (61/314) D (27), SCC-2 (18), SCC-4 (12), RS01 (2), RS02 (2) Deng et al. [18]

Woodchuck USA 100 (5/5) Type IV (1)b, WL20 (1), WL4 (2), WL22 (1, WW6 (1) Guo et al. [13]

Asian house rat China 23.1 (31/134) PigEbITS7 (16), D (12), ESH-02 (1), Type-IV (1), EbpA (1) Zhao et al. [24]

Brown rat China 7.9 (19/242) D (17), Peru6 (2) Zhao et al. [8]

China 2.5 (7/277) CHG14(3), BEB6(2), D(1), CHG2(1) Yu et al. [14]

China 17.2 (17/152) D (12), Peru11(3), S7 (1), SCC-2 (1) Wang et al. [23]

China 14.3 (8/56) D (3), PigEbITS7 (1), Type IV (1), Peru 8 (1), HNR-I (1), HNR-II 
(1)

Zhao et al. [24]

China 4.8 (14/291) EbpA (7), EbpC (3), CHY1 (2), N (1), SHR1 (1) Li et al. [16]

Chinese white-bellied rat China 18.2 (6/33) D (3), PigEBITS7 (2), Type-IV (1) Zhao et al. [24]

Deer mouse USA 23.6 (13/55) WL4 (10), WL23 (2), WL25 (1) Guo et al. [13]

Edwardʼs long-tailed rat China 7.9 (3/38) D (2), HNR-III (1) Zhao et al. [24]

House mouse China 3.2 (1/31) D (1) Yu et al. [14]

Czech/
German 
border

10.7 (31/289) D (10), PigEBITS5 (7), CZ3 (4), Peru8 (4), C (2), EbpA (2), H 
(1), S6 (1)

Sak et al. [19]

Poland 28.6 (6/21) WR3 (1) Perec-Matysiak et al. [21]

Indo-Chinese forest rat China 9.3 (5/54) D (3), Type-IV (1), HNR-III (1) Zhao et al. [24]

Lesser rice-field rat China 36.4 (16/44) HNR-VII (15), D (1) Zhao et al. [24]

Striped field mouse Poland 42.9 (79/184) D (6), gorilla 1 (1), WR5 (1), WR8 (2), WR7 (1) Perec-Matysiak et al. [21]

Yellow-necked mouse Poland 30.0 (18/60) D (2), WR1 (1), WR4 (1), WR6 (6), WR9 (1) Perec-Matysiak et al. [21]

White-toothed rat/giant rat China 33.3 (76/228) PigEBITS7 (22), D (14), K (8), Peru8 (2), CQR1 (10), CQR2 
(15), CQR3 (1), GDR1(2), GDR2 (1)

Gui et al. [31]

Bank vole Poland 39.1 (18/46) D (2), WR2 (1), WR6 (2), WR10 (2) Perec-Matysiak et al. [21]

Muskrat USA 8.4 (20/239) WL4 (8), WL15 (4), EbpC (3), D (2), WL10 (1), WL14 (1), WL6 
(1)

Sulaiman et al. [20]

Vole USA 26.7 (4/15) Peru11 (2), WL21(2), type IV (1), WL20 (1) Guo et al. [13]

Bamboo rat China 5.1 (22/435) D (17), J (1), BR1 (1), BR2 (1), EbpA (1), PigEBITS7 (1) Wang et al. [15]

China 15.4 (18/117) D (15), Peru 11 (1), HNR-IV (1), HNR-V(1) Zhao et al. [24]

Beaver USA 15.3 (13/85) EbpC (5), D (4), WL7, WL9, WL12, and WL15 (1 each) Sulaiman et al. [20]

Chinchilla China 3.6 (5/140) D (2), BEB6 (3) Qi et al. [17]

Asiatic brush-tailed porcupine China 7.5 (7/93) D (3), HNR-VI (2), S7 (1), CHG5 (1) Zhao et al. [24]

Guinea pig Peru 14.9 (10/67) Peru16 (10) Cama et al. [10]

China 20.2 (35/173) S7 (30), PGP (5) Wang et al. [23]
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In the phylogenetic analysis, an NJ tree was con-
structed and the novel genotype CNCP1 clustered with 
CHN4, EbpC and EbpA in group 1. The majority of the 
zoonotic genotypes belongs to the Group 1, and geno-
types CHN4, EbpC and EbpA have been reported in 
humans [27, 36, 37], indicating that genotype CNCP1 
maybe has zoonotic potential and the E. bieneusi iso-
lates in coypus detected in this study can be transmis-
sible from coypus to humans, especially the animal 
handlers, or vice versa.

Conclusions
Enterocytozoon bieneusi infection was highly observed in 
coypus from China, with the high prevalence of rare gen-
otype CHN4. The presence of zoonotic genotypes EbpC 
and EbpA revealed the role of coypus as a reservoir of E. 
bieneusi and posed a threat to the public health. To fur-
ther characterize the role of coypus in the transmission of 
microsporidiosis, more intensive research of E. bieneusi 
should be devised and employed.
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