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Giardia duodenalis multi‑locus genotypes 
in dogs with different levels of synanthropism 
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Abstract 

Background:  In dogs, infections with Giardia duodenalis are mainly caused by assemblages C and D, but also by 
the potentially zoonotic assemblages A and B. The aims of this study were to assess differences in assemblages (i) 
between dogs living mainly in close proximity to humans (synanthropic dogs) versus dogs living mainly among other 
dogs, (ii) between samples of dogs with or without loose stool, and (iii) related to the amount of cysts shedding.

Methods:  One hundred eighty-nine qPCR Giardia positive fecal samples of dogs originating from four groups 
(household, sheltered, hunting, and dogs for which a veterinarian sent a fecal sample to a diagnostic laboratory) were 
used for genotyping. For this, multi-locus genotyping of beta-giardin, triose phosphate isomerase, and glutamate 
dehydrogenase and genotyping of SSU rDNA gene fragments were performed. Fecal consistency was scored (loose or 
non-loose stool), and cysts per gram of feces were determined with qPCR.

Results:  Assemblage D was the most prevalent in all groups, followed by the other canid assemblage C. Also, mixed 
C/D was common. In two (synanthropic) household dogs, the potentially zoonotic assemblage AI was present. 
Although occurrence of assemblage AI in household dogs was not significantly different from dogs living among 
other dogs (sheltered and hunting dogs), it was significantly higher compared to dogs for which a sample was sent 
to a diagnostic laboratory. Dogs with assemblage D shed significantly more cysts than dogs with other assemblages 
(except for mixed C/D results) or dogs in which no assemblage could be determined. None of the assemblages was 
significantly associated with loose stool.

Conclusion:  Not only do dogs mainly shed the canid Giardia duodenalis assemblages D and/or C, the numbers of 
cysts per gram for the canid assemblage D were also higher than for the potential zoonotic assemblage AI. Based on 
the assemblages shed by dogs, the risk to public health posed by dogs is estimated to be low, even though the dogs 
that shed AI were synanthropic household dogs. Loose stool in infected dogs was not associated with any particular 
Giardia assemblage.
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Background
Giardia duodenalis (synonyms G. intestinalis and G. 
lamblia) is a common gastrointestinal parasite in humans 
and animals worldwide. This species can be further 
divided into eight assemblages denoted with letters A to 
H, based upon substantial sequence differences [1, 2].
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Assemblages C to H are thought to have narrow host 
ranges, even though recent reports suggest that their 
host specificity might be broader than originally thought 
[3, 4].

Assemblages A and B are detected in humans in addi-
tion to several animal species, allowing for G. duodena-
lis to be considered a zoonotic agent [5]. Due to more 
recent insights into multi-locus genotypes (MLG), which 
further divide assemblages A and B in sub-assemblages 
with varying host ranges, the zoonotic importance of G. 
duodenalis is currently considered to be lower than pre-
viously thought [6–9].

Assemblages C and D are canid-specific. However, 
other assemblages, particularly A and B, can also be 
found in dogs [10–13]. The relative contribution of 
assemblage AI in synanthropic animals (defined as ani-
mals that live in close contact with humans), including 
dogs, can be as high as in humans themselves [6]. In con-
trast to this, other studies report predominantly canid 
assemblages in synanthropic dogs [8, 14, 15]. Use of mul-
tiple loci for detection of G. duodenalis has shown that 
mixed assemblage infections occur regularly in humans 
and many animals, including dogs [8, 16–19].

Although Giardia infections can cause gastrointes-
tinal disease in dogs, there is no significant association 
of Giardia-positive fecal samples with diarrhea or loose 
stool [20–23]. However, the relation between fecal con-
sistency and Giardia positivity has not been assessed as 
assemblage-specific. Also, the amount of cyst shedding 
has not been assessed assemblage-specifically, so it is 
not clear whether infections with canid assemblages C 
and D have a different host-pathogen interaction in dogs 
than infections with other assemblages, such as A and 
B. Results from an experimental study showed that dogs 
inoculated with trophozoites and cysts of human isolates 
developed no symptoms. However, dog numbers were 
low, and the isolates were not molecularly characterized 
[24].

Herewith, we aimed to determine whether synan-
thropic dogs are more likely to shed non-canid assem-
blages than dogs living among other dogs and whether 
infection with non-canid assemblages results in similar 
symptoms and numbers of cysts that are excreted. For 
this, G. duodenalis-positive dog fecal samples from four 
groups of dogs with different levels of synanthropism and 
differences in clinical signs were genotyped and the level 
of cyst shedding was determined.

Methods
Dogs and diagnostic tests
For this study, 189 G. duodenalis qPCR-positive dog sam-
ples obtained from previous studies were used. For more 
details about the study population, fecal sampling, DNA 

isolation, qPCR, rapid enzyme immunochromatographic 
assay (IDEXX SNAP® Giardia), direct immunofluores-
cence (DFA, Merifluor) and centrifugation sedimentation 
flotation (CSF) coproscopical analysis, we refer to those 
studies [20, 25]. The household dogs (n = 47) were con-
sidered synanthropic dogs, whereas the sheltered (n = 48) 
and hunting dogs (scent hounds; n = 30) were considered 
group-housed dogs, living predominantly among other 
dogs. The dogs for which a sample was sent to the Vet-
erinary Microbiological Diagnostic Center (VMDC) of 
the Faculty of Veterinary Medicine of Utrecht University 
(n = 64) were left out of the synanthropic group, because 
detailed information about living conditions was not 
available for all dogs. This group will be further referred 
to as ‘clinical dogs.’ Fecal samples of the clinical dogs 
were submitted for parasite testing to diagnose a possible 
parasitic cause of clinical symptoms (mostly gastrointes-
tinal), but also, to a lesser extent, for control of antipara-
sitic therapy or routine monitoring. Fecal samples were 
scored for consistency and classified as loose or non-
loose as described [20].

Multilocus genotyping
MLG of gdh (glutamate dehydrogenase), bg (beta-
giardin), and tpi (triose phosphate isomerase) and geno-
typing of SSU rDNA (small subunit ribosomal DNA) gene 
loci was performed on the fecal samples by nested PCRs. 
See Additional file  1: Table  S1 for primer sequences, 
amplicon size, and references. The nested PCRs on single-
copy loci were performed with DreamTaq DNA polymer-
ase (Thermo Scientific) as described below, with several 
adjustments for optimization reasons. Nested PCR on 
gdh was performed as described [26] with the following 
modifications: bovine serum albumin (0.5  mg/ml) was 
included in the PCR mixture, and the annealing temper-
atures were 57.5  °C and 60.0  °C for the first and second 
amplification, respectively. Nested PCR on bg was per-
formed as described [27] with an annealing temperature 
of 65.0 °C and 50.0 °C for the first and second amplifica-
tions, respectively. The first amplification of nested PCR 
on the tpi locus was performed as described [28], but 
with annealing temperature of 60.0 °C. The second ampli-
fication was assemblage-specific. Assemblage A-specific 
tpi amplification was achieved as described [19], but 
with an annealing temperature of 60.0  °C. Assemblage 
B-specific tpi amplification was achieved as described 
[29], but with an annealing temperature of 60.0  °C. The 
nested PCR on the SSU-rDNA locus was performed with 
Phusion Hot Start II DNA Polymerase (Thermo Scien-
tific) with the buffer for GC-rich templates and the inclu-
sion of 8% DMSO. The primers were those described 
[30], and the annealing temperature was 65.0  °C. In all 
PCRs, positive and negative control templates were 
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included. Templates from both assemblage A and B were 
included in both assemblage-specific PCRs. All ampli-
cons were Sanger-sequenced at BaseClear (Leiden, The 
Netherlands). The sequences were aligned and a phylo-
genetic tree was constructed in DNASTAR Lasergene 14, 
together with reference sequences from all assemblages 
[6]. Based on the grouping with the reference sequences, 
the assemblage was determined.

Nucleotide sequence accession numbers
Giardia sequences generated in this study were depos-
ited in the NCBI GenBank database under the follow-
ing accession numbers: MW138896-MW138913 (gdh), 
MW138914-MW138934 (bg), and MW138935 (tpi).

Statistical analyses
Differences in occurrence of the different assemblages 
between dog groups were assessed using two-sample 
tests on the equality of proportions. The cysts per gram 
(CPG) were determined by qPCR with a calibration curve 
ranging from 3 × 106 to 300 CPG [25]. The relationship 
between CPG and assemblages was assessed using nega-
tive binomial regression. A cluster-correlated robust vari-
ance estimator was included in the analyses to adjust for 
clustering of dogs at the household, shelter, or hunting 
dog group level, as described [20]. Statistical analysis was 
performed using STATA 16 (StataCorp LP, College Sta-
tion, TX, USA).

Results
Diagnostic tests and multilocus genotyping
Of the 189 samples, 107 (56.6%) samples yielded nega-
tive MLG or SSU rDNA genotyping results. Raw data 
for Giardia results including qPCR Cp, CPG, IDEXX 
SNAP® Giardia, DFA, and CSF test for all samples are 
provided in Additional file  2: Table  S2. CSF results of 
endoparasites in general are beyond the scope of this 
article and can be found in Uiterwijk et al. [20]. Table 1 
shows detailed results of the 82 samples with gdh, bg, 
tpi, and/or SSU rDNA positive PCR results. Mixed C/D 
samples are defined as samples that showed double 
peaks in the sequences. This was shown with the loci 
SSU rDNA (n = 8) and bg (n = 1). Combined mixed C/D 
results are defined as samples containing assemblage C 
based on one locus and assemblage D based on another 
locus, or mixed C/D. Of the 14 combined mixed C/Ds, 
8 showed double peaks at the SSU rDNA locus at the 
position where assemblage C and D differ (see Addi-
tional file 3: Figure S1), and 6 showed assemblage C with 
1 locus and assemblage D with another, including 1 C/D 
at the bg locus (Additional file  2: Table  S2). The SSU-
rDNA sequences without a double peak are identical to 
the GenBank sequences GU126431 (assemblage AI), 

GU126436 (assemblage C), and GU126442 (assemblage 
D).

In three dog groups, assemblage D was most prevalent. 
In the hunting dogs, both assemblage D and C/D were 
highly present. Assemblage AI was only present in two 
household dogs (Table 2).

Association of assemblage AI with synantropism
When considering only the samples for which an 
assemblage was determined and adjusting for clus-
tering, the difference in occurrence of assemblage AI 
between synanthropic dogs (household dogs; 18.2%, 
95% CI 4.0–5.4%, n = 11) compared to dogs liv-
ing among other dogs (sheltered and hunting dogs; 
0.0%, 95% CI 0.0–10.0%, n = 35) was not significant 
(P = 0.131). However, the occurrence of AI was signifi-
cantly higher among household dogs compared to clin-
ical dogs (0.0%, 95% CI 0.0–9.7%, n = 36, two-sample 
test, Z = –2.5813, P = 0.010).

Association of assemblages with loose stool
Considering only the dogs with loose stool, there was no 
significant difference in the occurrence of AI between the 
dog groups. Indeed, none of the assemblage groups was 
significantly associated with loose stool. In the samples in 
which no assemblage could be determined, the CPG was 
significantly lower in the samples with loose stool (4.6 
× 103, 95% CI 2.7 × 103–6.5 × 103) than in the samples 
with no loose stool (1.0 × 104, 95% CI 3.6 × 103–1.7 × 
104, Z = –2.23, P = 0.026).

Association of assemblages with CPG
The CPGs of the samples with assemblages C, combined 
mixed C/D, or D (Table 2) were significantly higher than 
the CPG of the samples with undetermined assemblage 
(P = 0.000). CPGs of samples with assemblage D were 
significantly higher than the samples with assemblage 
C (P = 0.006), AI (P = 0.005), and the undetermined 
(P = 0.000) samples, but not with combined mixed C/D.

Table 1  Distribution of the assemblages AI, C, mixed C/D, and D 
of MLG (gdh, bg, and tpi loci) and SSU rDNA, and combined results

AI C C/D D Total

gdh 1 6 0 11 18 (9.5%)

bg 1 6 1 13 21 (11.1%)

tpi 1 0 0 0 1 (0.5%)

SSU rDNA 2 17 8 55 82 (43.4%)

Combined 2 17 14 49 82
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Discussion
To determine the (sub)assemblages of G. duodenalis 
shed by dogs and their association with synanthropism, 
clinical signs, and cyst shedding, we performed MLG 
and SSU rRNA PCR on qPCR-positive fecal samples 
from four groups of dogs. In 43.4% of the G. duodenalis 
qPCR-positive samples (n = 189), genetic characteriza-
tion was successful. Due to the high sensitivity of the 
multicopy SSU rDNA, this locus yielded most posi-
tive results of the four loci. Canid assemblages C and 
D were the most prevalent in all dogs groups, which is 
in accordance with previous findings where dog-spe-
cific assemblages were most prevalent in household 
and sheltered dogs [14, 31–34]. The potential zoonotic 
assemblage AI is mainly found in pets and livestock, 
and to a lesser extent in humans [2]. Our findings are 
therefore also in accordance to reports in which AI 
was found in dogs [35], even though this assemblage 
was not most prevalent in our study. Assemblage AI 
was only detected in the synanthropic household dogs. 
Because spatiotemporal epidemiological and molecu-
lar information on humans and animals needs to be 
combined to demonstrate zoonotic transmission in a 
household [36, 37], the sources of AI in those two dogs 
remain unclear. The dogs may have contracted this 
genotype directly or indirectly from various sources, 
e.g. from humans, other dogs, or other animals. In 
turn, the dogs may infect other animals and people, 
even though only one dog was shown to have a patent 
infection (Additional File 2: Table S2). Molecular detec-
tion of an assemblage in stool could be due to a patent 
infection or merely mechanical passage. To detect pat-
ent infections, mRNA assays can be used [38] or cysts 
or cyst wall proteins can be detected in stool samples 
[25]. In our study, three assays to detect cysts or cyst 

wall proteins were performed; DFA, CSF, and IDEXX 
SNAP® Giardia. In general, samples which tested posi-
tive with DFA, CSF, and/or IDEXX SNAP® Giardia 
showed higher CPG because of the lower sensitivities of 
these tests compared to qPCR [25]. This means that for 
samples with relatively lower CPGs, such as from the 
one AI dog, in many cases it could not be determined 
whether there was a true infection or merely passage.

The occurrence of assemblage AI was significantly 
higher among household dogs compared to the (pre-
dominantly synanthropic) clinical dogs. Both house-
hold dogs that shed AI did not have loose stool. But 
since none of the assemblage groups was significantly 
associated with loose stool, this does not indicate 
that dogs infected with assemblage AI may show less 
or more symptoms than with assemblages C and/or 
D. We found significant differences in CPG shed for 
the different assemblages. Lower sensitivity of MLG 
and SSU rDNA nested PCRs compared to qPCR most 
likely accounts for the significant difference in CPG 
between MLG/SSU rDNA-negative and -positive sam-
ples. Assemblages D and combined mixed C/D showed 
the highest CPG compared to the other assemblages. 
This may indicate that infections with AI, C, C/D, and 
D behave differently in dogs with regard to cyst pro-
duction. Possibly, canid-assemblages C and especially 
D are better adapted to dogs, thus leading to higher 
CPGs and relatively more often positive MLG and SSU 
rDNA results. This might have led to an underreport-
ing of samples with sub-assemblage such as AI. Also, 
this may contribute to the relatively more reports of 
canid-assemblages in dogs compared to non-canid 
assemblages mentioned above [6, 14, 31–35]. Use of 
Next Generation Amplicon Sequencing might resolve 
the problem of underreporting of certain assemblages, 

Table 2  Occurrence (%) and 95% CI (in brackets) of Giardia duodenalis assemblage AI, C, combined mixed C/D, D, and samples for 
which no assemblage could be determined, over the dog population

Mean CPG and 95% CI (in brackets) are provided. CI confidence interval

Dog population AI C C/D D No assemblages determined

Household
n = 47

4.3 (1.0-15.8) 6.4 (2.1–17.9) 0 12.8 (5.7–26.0) 76.6 (62.4–86.6)

Clinical
n = 64

0 15.6 (8.6–26.6) 3.1 (0.8–11.9) 32.8 (22.5–45.1) 48.4 (36.2–60.9)

Sheltered
n = 48

0 6.3 (1.4–24.0) 0 22.9 (13.5–36.1) 70.8 (57.5–81.4)

Hunting
n = 30

0 3.3 (1.1–9.9) 40.0 (29.4–51.6) 36.7 (3.3–40.5) 20.0 (16.5–24.0)

Total
n = 189

1.1 (0.3–4.3) 9.0 (5.4–14.6) 7.4 (2.6–19.4) 25.9 (20.2–32.6) 56.6 (45.6–67.0)

Mean CPG
(95% CI)

3.3x104

(1.1x103–6.4x104)
9.3x104

(2.2x104–1.6x105)
6.5x104

(1.0x104–1.2x105)
4.7x105

(4.3x104–9.8x105)
9.1x103

(3.9x103–1.4x104)
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because with this sequencing method, assemblages 
present in mixed infection can be separately detected. 
Also, infections with lower CPG can be detected [38].

The finding of lower CPG in samples with loose stool 
for which no assemblage could be determined may be 
explained by the fact that nested PCRs showed higher 
sensitivity on purified cysts [25] and possibly also on 
diluted feces (e.g. loose stool). In our study, no assemblage 
B or other subtypes of assemblage A such as AII were 
detected, which have been found in dogs before [12, 39, 
40]. Traub et al. (2009) defined three transmission cycles 
of Giardia assemblages in dogs: anthroponotic, zoonotic, 
and dog-specific [41]. Which assemblage prevails in dogs 
seems to depend on factors related to dogs, such as a 
high level of coprophagic behavior [42], the level of con-
tact with humans and living conditions, factors related to 
the parasite, such as host-specific adaptations of assem-
blages, and factors related to the human population, 
such as Giardia prevalence and circulating assemblages 
[43]. Once an assemblage is introduced, it may circulate 
relatively easily among (groups of) dogs. For example, the 
high prevalence of D and C/D in the hunting dogs in our 
study can be explained by living conditions and behavior 
favorable for feco-oral transmission, introduction of dog-
specific assemblages due to more contact with canids than 
with humans, and the relatively low prevalence of Giardia 
in the Dutch human population [44, 45]. Also, this may 
explain, at least partly, the reports of high versus low risks 
of zoonotic transmission [7, 39, 46, 47].

Conclusions
Giardia infections in both synanthropic and non-synan-
thropic dogs were mainly caused by canid assemblages, 
with the potentially zoonotic assemblage AI in just two 
synanthropic dogs (1.1% of all dogs). Dogs with canid 
assemblages, especially assemblage D, showed much 
higher CPGs. This may suggest that the assemblage AI, 
although capable of infecting dogs, has a different host-
pathogen interaction and is possibly less able to multiply 
in dogs compared to the canid assemblages. Based upon 
our results, the zoonotic risk of Giardia infections in 
dogs is low.
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