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Abstract 

Background:  Glyphosate-based herbicides are one of the most commonly used compounds to control peren-
nial weeds around the world. This compound is very persistent in the environment and tends to filter into aquatic 
ecosystems, affecting non-target species such as mosquito larvae. Aedes aegypti mosquitoes are vectors of multiple 
arboviruses such as dengue and Zika. Glyphosate can be degraded into non-harmful environmental compounds by 
Lysinibacillus sphaericus, a spore forming bacterium which can also kill Ae. aegypti larvae. In this study, we assessed the 
effect of glyphosate concentrations, typically used in Colombia, on the entomopathogenic activity of L. sphaericus 
against Ae. aegypti larvae.

Methods:  Bioassays and toxicity curves were performed to compare the larval mortality between different treat-
ments with and without bacteria and glyphosate (Roundup 747®). Larvae were exposed to both bacteria and glypho-
sate by adding the compound on chloride-free water. Comparisons were made using both probit regression and 
ANOVA analysis.

Results:  ANOVA showed a significant difference in larval mortality when adding glyphosate and L. sphaericus at the 
same time. Thus, a positive synergic effect on larval mortality was found when L. sphaericus and glyphosate were 
mixed. According to probit analysis, median lethal dose (LD50) for bacterial mixture was of 106.23 UFC/ml and for 
glyphosate was 2.34 g/l.

Conclusions:  A positive synergic effect on the mortality of larval Ae. aegypti when exposed to L. sphaericus mixture 
and glyphosate was found. Molecular studies focusing on the toxin production of L. sphaericus are required to under-
stand more about this synergistic effect.
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Introduction
Glyphosate-based herbicides are one of the most com-
monly used compounds around the world to control 
perennial weeds [1]. Traces of glyphosate, and its main 
metabolite aminomethylphosphonic acid (AMPA), have 
been found in the drinking water and human urine of 

farmers in Mexico [2], in water from soybean crops 
in Argentina and water samples of Mideast USA [3, 4]. 
Glyphosate and AMPA are persistent in the environment 
and are toxic to non-targeted organisms including mos-
quito larvae [5].

In Colombia, glyphosate is used not only for agricul-
ture but also for massive aerial aspersions to eliminate 
the illicit coca crops [6]. Since 1999, the “Plan Colombia” 
policy increased the ratio of fumigation events which not 
only failed to control the amount of coca crops, but also 
endangered other non-target species in the process [6–9]. 
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The contamination of water ecosystems by glyphosate 
and AMPA are events of great environmental concern in 
Colombia.

Biodegradation of glyphosate on the environment is 
reported to take place by two metabolic pathways: C-N 
oxidase and C-P lyase [10]. The C-N oxidase pathway 
produces AMPA and glyoxylate and is a common path-
way for the mineralization of glyphosate in both soils 
and water ecosystems. On the other hand, the C-P 
lyase pathway breaks down the C-P bond producing 
orthophosphate ion and glycine, which are non-toxic 
compounds [11].

Furthermore, little is known about the interaction of 
glyphosate with organisms other than plants. Some stud-
ies demonstrated that glyphosate had an impact on small 
populations of bees and mosquito larvae, making them 
more susceptible to neurological damage and resistant to 
insecticides [12, 13]. These findings suggest that further 
investigation is needed to establish the effect of glypho-
sate and AMPA on non-target species that have more 
significant roles in trophic chains and public health.

In Colombia, Aedes aegypti is the principal vector of 
multiple arboviruses such as dengue, Zika and chikun-
gunya [14]. These mosquitoes are very important vectors 
due to their diurnal activity and preference for human 
blood. Aedes aegypti larvae are found in water in both 
domestic and peridomestic environments, and the mos-
quito resistance to insecticides seems to be increasing 
[15]. La Mesa-Cundinamarca is a well-known zone in 
Colombia due to its temephos-resistant mosquitoes. This 
compound is commonly used as a control method for Ae. 
aegypti larvae even though more than 70% of Ae. aegypti 
populations in Colombia are resistant to it [16]. Other 
insecticides may be toxic or cause secondary effects on 
non-target organisms. Hence, it is crucial to search for 
complementary control interventions such as biological 
agents that are environmentally friendly.

Many microorganisms are used as biological agents 
against plagues; for example, the mycoparasite fungus 
Trichoderma harzianum is used against phytopathogenic 
species, and the entomopathogenic bacterium Bacillus 
thuringiensis is applied to crops [17, 18]. Recently, Colom-
bian strains of Lysinibacillus sphaericus, a well-known 
entomopathogenic gram-positive innocuous bacterium, 
have been shown to demonstrate strong activity against 
Culex, Aedes and Anopheles larvae [19, 20]. Lysinibacillus 
sphaericus is not only a very effective biocontrol agent for 
mosquito larvae, but it is also capable of removing toxic 
metals from water, promoting plant growth, and metaboliz-
ing glyphosate by a pathway that does not produce AMPA 
but glycine and orthophosphate ion instead [21–25].

In this study, we examined the effect of glypho-
sate concentrations typically used in Colombia on the 

entomopathogenic activity of L. sphaericus against teme-
phos-resistant Ae. aegypti larvae.

Methods
Lysinibacillus sphaericus strains
The strains of L. sphaericus used in this study were the 
WHO reference strain 2362 and L. sphaericus III(3)7, 
a Colombian strain isolated from a native oak tree 
(Quercus humboldtii) [26]. This mixture was previously 
shown to be the most lethal for Ae. aegypti larvae [27].

Aedes aegypti maintenance
Aedes aegypti third-instar larvae were collected from La 
Mesa Cundinamarca (4°38′05.9″N, 74°27′45.4″W), a well-
known area for temephos-resistant mosquitoes. Larvae 
were kept at 28 ± 0.03 °C and a relative humidity of 70% 
under 12:12  h light/dark photoperiod. The experiments 
were initiated 24 h after collecting the larvae.

Formulation of test agents and synergistical bioassay 
conditions
Lysinibacillus sphaericus strains were grown in nutritive 
agar (CM0003; Oxoid, Thermo Fisher Scientific, Hamp-
shire, UK) for 15  h at 30  °C. Cells were collected and 
resuspended in 10  ml of distilled sterile water followed 
by a series of dilutions to set the initial inoculum accord-
ing to the concentrations established. To determine the 
median lethal dose 50 (LD502362+III(3)7) of the bacterial 
mixture on the larvae, a toxicity curve was performed. 
In total, five different concentrations of bacterial inocu-
lum were used: 105  UFC/ml; 106  UFC/ml; 107  UFC/ml; 
108 UFC/ml; and 109 UFC/ml.

Monsanto’s glyphosate formulation Roundup 747® was 
used as the only source of glyphosate. To determine the 
median lethal dose 50 (LD50gly) of the larvae to glypho-
sate exposure, five different concentrations were used: 
0.5 g/l; 1.0 g/l; 1.69 g/l; 2.0 g/l; and 2.5 g/l. LD50 probit 
analysis was applied to both in order to establish the con-
centrations to conduct the bioassays (bioassay treatments 
are described in Table 1).

Table 1  Description of treatments implemented in the study

Key: +, added; -, not added

Note: Lysinibacillus sphaericus strains were 2362 and III(3)7

Treatment Ae. 
aegypti 
larvae

L. sphaericus 
(2362 
+III(3)7)

Glyphosate 
(1.69 g/l)

Control + − −
Larvae + (2362 + III(3)7) + + −
Larvae + glyphosate + − +
Larvae + 2362 + III(3)7 + glypho-

sate
+ + +
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The bioassays and LD50 were set-up following the 
procedure described by Rojas and Dussán [19]: 20 Ae. 
aegypti third-instar larvae were placed into glass flasks 
(7.1 × 7.1 × 7.8 cm) containing 30 ml of chloride-free tap 
water. Additionally, 300  µl of bacterial suspension was 
added to reach the final concentration in each test. Simi-
larly, glyphosate was added until the final concentration 
was reached. Larvae were maintained at 28 ± 0.3  °C, a 
relative humidity of 70% and a 12/12 h light/ dark pho-
toperiod. Mortality was reported after 24 h and 48 h of 
exposure; larvae with no response to physical stimuli or 
unable to attach to the surface were counted as dead. 
Each experiment was tested in triplicate, and all bioassays 
and LD50 determinations were replicated.

Finally, an aliquot of water at 0 h, 24 h, 48 h was taken 
in order to perform plating assays and confirm bacteria 
behaviour after addition in every treatment. Plating was 
performed on nutrient agar, incubating for 12 h at 30 °C.

Statistical analysis
All statistical tests were carried out using the R 3.1.2 sta-
tistical package [28] and a significance level of P < 0.05 was 
chosen for every test. To determinate the difference in larval 
mortality between bioassays, ANOVA tests were performed.

Results and discussion
LD50 for the mixture of L. sphaericus 2362 and 
III(3)7 was found to be 106.23  UFC/ml (R2 = 0.9934; 
y = 12.829x − 18.566). According to these results and previ-
ous studies, we decided to use a constant concentration of 

107 UFC/ml [27]. Given these results, all bioassays were also 
calibrated to that concentration. After the measurements of 
larval mortality, we observed that the LD50gly was 2.34 g/l 
(R2 = 0.947; y = 3.452x + 1.6483). This result allows us to use 
field concentrations of glyphosate (1.69 g/l). This concentra-
tion was established based on the way Colombian farmers 
prepare glyphosate for usage, in which an entire contents of 
Roundup 747® package is dissolved in 20 l of water.

Furthermore, as far as we know, the maximum concen-
tration tested on Ae. aegypti was 0.2 g/l [29], which is 10 
times less than the concentration used in this study. With 
this information, we can assume that the resistance of the 
larvae from La Mesa-Cundinamarca to glyphosate is due 
to their exposure to higher concentrations of glyphosate 
and other organophosphate compounds such as teme-
phos or other insecticides. Temephos is not only relevant 
for this study, but also reflects the real exposure of non-
target species to the indiscriminate use of both insecti-
cides and glyphosate in rural Colombia.

A significant difference was observed in the mortality 
of Ae. aegypti larvae exposed to glyphosate and the bac-
terial mixture compared to the treatments and control at 
the same measurement time (Fig. 1). At 24 h, the larval 
mortality in the bacterial mixture with glyphosate was 
4-fold higher that what was observed in the other treat-
ments (ANOVA: F(3, 44) = 67.87, P < 0.0001; average larval 
mortality in the bacterial mixture: 23.3%; average larval 
mortality in glyphosate: 20%; and average larval mortality 
in the glyphosate and bacterial mixture: 79.44%).

Fig. 1  Larval mortality for the different treatment assays. Boxes represent quartile range, crosses inside the plot represent the media of the assays 
(average larval mortality in bacterial mixture at 24 h, 23.3%; average mortality in glyphosate at 24 h, 20%; average mortality in glyphosate and 
bacterial mixture at 24 h, 79.44%) Significant differences between Glyphosate+2362+III(3)7 and the other treatments on the same time of larval 
mortality 24 and 48 h was found (***P < 0.00001). Additionally, there were significant differences between the control and the treatments with only 
bacteria or glyphosate (**P < 0.007). No significant differences were found between the treatments with only bacteria or only glyphosate
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There were significant differences in larval mortality at 
48 h between treatment and control experiments, when 
compared to L. sphaericus and glyphosate experiments 
(ANOVA: F(3, 44) = 47.37, P < 0.0001; average larval mor-
tality in the bacterial mixture: 42.2%; average larval mor-
tality in glyphosate: 22.2%; and average larval mortality in 
the glyphosate and bacterial mixture: 90%).

These results indicate that the addition of glyphosate to 
L. sphaericus can produce a synergic effect on larvicidal 
activity. To verify whether the L. sphaericus titer was 
affected by glyphosate (Roundup 747®) addition, plating 
assays were performed at 0, 24 and 48 h after inoculation 
(Fig. 2). In this case, the bacterial titer did not change, yet 
the sporulation was faster in the assays with glyphosate.

In this study, we found a synergetic behaviour on 
mosquito larval mortality when glyphosate (Roundup 
747®) was added to the bacterial mixture. As reported 
by González and Dussán [25], the sporulation was stimu-
lated at 9 hours after the addition of glyphosate. And, as 
mentioned before, sporulation is stimulated by glypho-
sate which means that BinA/B production must have 
increased. If this production had any effect on larval mor-
tality, mortality should have been visible at least at 9 to 
10 hours of the setup of the bioassays, yet mortality was 
observed after 20 hours, which may suggest that BinA/B 
production may not be the main cause of larval mortal-
ity. Furthermore, these results are intriguing to observe 
because Ae. aegypti larvae are immune to toxins BinA/B 
produced primarily in the sporulation process of L. spha-
ericus [30]. Thus, the expected reaction would be to see a 
decline of larval mortality once the sporulation process of 
the bacteria has been completed in no more than 9 hours, 
yet, our results showed a different behaviour.

This evidence drives us to generate two hypotheses. 
The first is that in the Roundup 747® formulation, there is 
a particularly toxic surfactant used to increase glyphosate 

function, polyethoxylated tallow amine (POEA) [31]. 
Many reports affirm that this compound induces DNA 
damage in zebra fish (Danio rerio) embryos and is lethal 
to all aquatic species of bacteria, algae and amphibians 
[31, 32]. In our study, given the average mortality pre-
sented in the treatments where glyphosate alone was used 
(Fig.  1), we conclude that larval mortality can be partly 
assigned to the adjuvants of the Roundup 747® formula-
tion. However, there may be an interaction between the 
adjuvants and L. sphaericus that dramatically increases 
toxicity to the mosquito larvae. More in-depth studies 
are required to prove this.

Our second hypothesis is that, given the evidence pre-
sented above, L. sphaericus has the capability of degrad-
ing glyphosate into two main molecules, glycine and 
orthophosphate [22], which can both be easily used by 
the larvae and the bacteria in different metabolic path-
ways such as phosphorylation of proteins. Increasing the 
overexpression of different proteins such as the Mtx1-3, 
chitinase, and the S layer protein also increases the toxic-
ity against Ae. aegypti larvae, which may explain the dif-
ference between the mortality rates when L. sphaericus 
and glyphosate are used alone or mixed [33].

To test which molecules have the greatest effect on lar-
vicide activity of the toxins produced by L. sphaericus, 
bioassays with L. sphaericus strains that are not able to 
produce BinA/B toxins can help to understand if syn-
ergy in larval mortality is explained by overproduction 
of said toxins or whether it is due to other proteins such 
as Mtx1-3, sphaericolysin or bacteria chitinases [20, 34]. 
On the other hand, it is necessary to test different com-
pounds and chemical species produced by glyphosate 
degradation by L. sphaericus, in particular glycine and 
orthophosphates.

The toxicity can be mediated by different phenomena 
such as overproduction or changes in the tertiary struc-
ture of the proteins as reported for the Mtx3 protein in 
which small changes to its tertiary structure drastically 
augmented its toxicity [20]. Also, Nishiwaki et  al. [34] 
found that the sphaerycolisin on L. sphaericus A3-2 (a 
non-toxic strain) augmented the toxicity mediated by 
cholesterol-dependent cytolysins.

Conclusions
A positive synergic effect on the mortality of larval Ae. 
aegypti when exposed to L. sphaericus mixture and 
glyphosate was found. The levels of glyphosate, AMPA, 
and glycine need to be measured in order to clarify 
whether the larval mortality is mediated by the metabo-
lism of glyphosate by L. sphaericus or by the effect of the 
adjuvant agents on the metabolism of both the larvae and 
the bacteria. Studies on the production of L. sphaericus 

Fig. 2  Plating assays of the L. sphaericus mixture on the different 
treatments at three time points 0, 24, 48 h, post-addition of 
glyphosate or bacteria (1 ml aliquots of water from the bioassays 
were used to perform this titration)
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toxins to determine the effect of glyphosate, glycine and 
orthophosphate on bacterial metabolism are required. 
Also, measurements on the production of bacterial tox-
ins when exposed to the POEA adjuvant present in the 
Roundup 747® formulation will help gain a better com-
prehension of this synergy effect. Finally, larval tolerance 
to glyphosate is as concerning as it is intriguing, given the 
ability of L. sphaericus to control those populations of 
mosquitoes that are so resistant to different toxic com-
pounds. These results clearly show the need to study the 
present conditions of these vectors as well as the imple-
mentation of mosquito management plans that avoid the 
use of toxic compounds.

Abbreviations
Bin A/B: binary toxin; AMPA: aminomethylphosphonic acid; LD50: amount of 
toxic agent (bacteria or glyphosate) at which 50% of the population dies.
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