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Abstract 

Background:  Ornithodoros turicata is an important vector of both human and veterinary pathogens. One primary 
concern is the global spread of African swine fever virus and the risk of its re-emergence in the Americas through 
potential transmission by O. turicata to domestic pigs and feral swine. Moreover, in Texas, African warthogs were intro-
duced into the state for hunting purposes and evidence exists that they are reproducing and have spread to three 
counties in the state. Consequently, it is imperative to develop strategies to evaluate exposure of feral pigs and African 
warthogs to O. turicata.

Results:  We report the development of an animal model to evaluate serological responses of pigs to O. turicata 
salivary proteins after three exposures to tick feeding. Serological responses were assessed for ~ 120 days by enzyme-
linked immunosorbent assay and immunoblotting using salivary gland extracts from O. turicata.

Conclusions:  Our findings indicate that domestic pigs seroconverted to O. turicata salivary antigens that is founda-
tional toward the development of a diagnostic assay to improve soft tick surveillance efforts.
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Background
Ornithodoros turicata Duges is a nidicolous, cavity dwell-
ing argasid tick found in the southwestern USA, Mexico, 
and Florida [1–3]. This soft tick species is recognized as 
a vector of human relapsing fever, caused by the spiro-
chete Borrelia turicatae [4, 5]. Additionally, laboratory 
studies documented the potential role of O. turicata as a 
vector of other pathogens including African swine fever 

virus (ASFV) [6]. ASFV is a highly contagious pathogen 
of swine and recognized as a select agent by the USDA. 
First discovered in 1920 in Kenya, ASFV was found to 
have a sylvatic cycle that principally involves two species 
of African warthogs, Phacochoerus aethiopicus Pallas and 
Phacochoerus africanus Gmelin (both Artiodactyla: Sui-
dae) [7]. These species also serve as hosts for O. moubata, 
the argasid vector. ASFV moved into Spain, in the 1960s 
and remained enzootic in the region sustained in part by 
the vector O. erraticus, until it was eradicated [8]. Recent 
expansions of ASF through the Caucasus region, into 
Europe, and most recently to Asia have increased con-
cerns of a global threat to the swine industry [9]. Impor-
tantly, in the USA, African warthogs were imported into 
Texas as wild game. Recently, the animals have escaped 
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and been spotted in three counties within the state 
(Fig. 1) and are reproducing. This signifies an ecological 
setting for the emergence of ASFV in the USA.

The sylvatic cycle of ASFV in Africa produces little to 
no clinical manifestations among infected warthogs, or 
the limited feral swine that recover from infection [9, 10]. 
However, both ASFV-infected vectors and the sylvatic 
hosts can transmit ASFV to domestic swine, Sus scrofa 
domesticus Erxleben (Artiodactyla: Suidae) populations 
with devastating consequences [9]. Infected swine shed 
ASFV directly and mortality rates approach 100% by 
acute hemorrhagic fever [10]. Meat and animal by-prod-
ucts from infected swine can provide sources of spread 
through global trade and human transport and a pos-
sible source of introduction to the western Hemisphere 
[11]. The USA is the world’s third-largest producer of 
pork products. In 2015, the USA produced more than 
110 metric tons of pork products valued at $22  billion 
and supporting 550,000 USA jobs [12, 13]. Therefore, an 
introduction of ASFV to the USA could induce severe 
economic consequences and risk potential establishment 
in O. turicata populations. The global spread of ASFV 
poses the risk of its re-emergence in the Americas, and 
the potential transmission by O. turicata to domestic pigs 
(Sus scrofa domesticus) and feral swine (Sus scrofa scrofa).

The host range of O. turicata remains to be fully under-
stood. Larvae, nymphs and adults of O. turicata acquire 
a blood meal rapidly as compared to hard ticks [14], 
and are rarely discovered feeding on hosts. The host list 
includes many diverse animals when considering the 
extensive fauna frequenting cavity environments where 
O. turicata has been collected [2]. Recent serological evi-
dence of sampled feral swine indicated the animals were 
exposed to B. turicatae, providing indirect evidence of 
O. turicata blood-feeding on feral swine in Texas [15]. 

Additionally, photographic and field evidence confirmed 
feral swine visitations to O. turicata infested caves and 
rodent burrows. Parasitism of feral swine moving across 
the USA-Mexico transboundary region provides a poten-
tial pathway for the emergence of ASFV in the USA [43].

Argasid ticks, including O. turicata, may be found in 
peridomestic and domestic settings [1, 16], with their 
habitats overlapping that of feral swine. However, the 
extent of feral swine exposure to O. turicata in the USA 
is unknown. The omnivorous behavior, habitat associa-
tion, and landscape usage of feral swine suggest there are 
opportunities for O. turicata-feral swine interactions 
[17–20]. Importantly, direct interaction between feral 
swine and domestic swine occurs [19, 21], which poses 
a concern for the spread of emerging pathogens in the 
USA. Therefore, it is important to develop approaches 
that will aid in surveillance efforts.

A knowledge gap exists in the antibody response gener-
ated in pigs after exposure to blood-feeding by O. turi-
cata. Defining the humoral response against tick salivary 
proteins will facilitate surveillance studies to estimate 
exposure of feral swine to O. turicata feeding. In this 
study, we documented the feeding success of O. turi-
cata on domestic pigs and evaluated antibody responses 
against tick salivary proteins. Animals were exposed to 
100 ticks in each of the three challenges. IgG responses 
were assessed by enzyme-linked immunosorbent assay 
(ELISA) and immunoblotting to salivary gland extracts 
(SGE) from dissected ticks. Our findings indicated that 
domestic pigs seroconverted to O. turicata salivary pro-
teins. These results suggest that a serological assay could 
be implemented for surveillance studies to determine the 
exposure of domestic pigs and feral swine to O. turicata.

Methods
Ornithodoros turicata colony
Adult and late-instar O. turicata nymphs used in this 
study originated from specimens collected in a natural 
cavern in Travis County, Texas, USA, in 1992 and are 
maintained in colony at the Tick Research Laboratory 
at Texas A&M AgriLife Research, College Station, TX, 
USA. Ticks were reared on young cockerels (Gallus gal-
lus) as blood-meal host, and maintained under a 14:10 
h (light:dark) photoperiod, temperature of 25.0 ± 3.0  °C, 
and relative humidity of 80–85%. Prior to feeding cohorts 
of O. turicata on pigs, they were starved for seven 
months.

Host preparation
Four weaned domestic pigs (S. s. domesticus) weigh-
ing 15–20  kg were acquired from a commercial swine 
producer. The pigs were maintained at the Texas A&M 
University Veterinary Medical Research Park for the 

Fig. 1  Photographic images of two African warthogs taken using a 
Moultrie game camera. Images were taken in La Salle County, Texas, 
USA
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duration of the study in accordance with IACUC-
approved AUP No. 2015-0089. This facility was spe-
cifically designed to maintain an ectoparasite free 
environment other than the ticks used in the study. 
Pigs were quarantined for two weeks during which they 
received standard veterinary preventative treatment in 
accordance with operating procedures of the research 
facility. Pigs underwent two positive reinforcement 
training sessions for acclimation to a sling apparatus. 
This method facilitated tick feeding and venous blood 
collection from the pigs.

Tick challenge and blood collection
Prior to feeding O. turicata on pigs, a pre-challenge 
serum sample was obtained from each animal. Ticks 
were fed three times on pigs in 2-week intervals 
(Table 1). Prior to each tick feeding, a blood sample was 
obtained from each animal. After the third tick feeding, 
a blood sample was collected from each animal weekly 
for four weeks. The final two blood samples were col-
lected 28  days apart (Table  1). For each tick feeding, 
100 unfed ticks that had completed four molts (adult 
and/or late-instar nymphs) were placed in a feed-
ing chamber then randomly assigned to a pig subject. 
Feeding-chamber design was adapted from previous 
experiments where the chambers were constructed by 
removing the bottom of a 250 ml wide-mouth Nalgene 
bottle (Thermo Fisher Scientific, Waltham, MA, USA) 
to 4.5 cm from the top and sealing it with fabric hav-
ing a mesh size of 2 mm through which the ticks could 
feed [22, 23] (Fig.  2). Feeding chambers were secured 
onto the backs of the pig subjects for 60 min using 3M 
VetRap (3M, Oakdale, MN, USA).

Ten ml blood samples from each pig were collected 
over the course of the study (Table  1). The pre-chal-
lenge blood sample collected served as the control 
(baseline). The collected blood samples were allowed to 
clot at room temperature and centrifuged using a Vari-
seal Model Vs6c centrifuge (Vulcan Tech, New York, 
NY, USA) at a 600×g for 10 min. The isolated serum 
samples were stored at − 20 °C until used for analyses.

Table 1  Summary of the experimental timeline and procedures

Experimental day Procedure

01 Pre-challenge blood sample collection

08 Tick challenge #1

21 Post-challenge blood sample #1

22 Tick challenge #2

35 Post-challenge blood sample #2

36 Tick challenge #3

49 Post-challenge blood sample #3

56 Post-challenge blood sample #4

63 Post-challenge blood sample #5

70 Post-challenge blood sample #6

98 Post-challenge blood sample #7

126 Post-challenge blood sample #8

Fig. 2  Feeding chambers used for Ornithodoros turicata challenges. One hundred O. turicata were fed on each pig. Ticks were placed in one of 
four feeding chambers (a) then randomly assigned to each pig subject. The feeding chamber was sealed with fabric (mesh size 2 mm) (b), through 
which the ticks could feed. Scale-bars are shown at the bottom of each image
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Preparation of tick SGE
We used SGE as the antigen to assess pig serological 
responses. Dissected ticks were flat (unfed) late stage 
nymphs and were reared similar to ticks used for para-
sitizing pigs. Also, SGE were generated using the modi-
fied methods derived from Canals et  al. [24]. Each O. 
turicata specimen was placed into phosphate-buffered 
saline (PBS) with 5 mM magnesium chloride (MgCl2) 
and dissected using an Axio Stemi microscope (Zeiss, 
Munich, Germany). Salivary glands were removed using 
forceps and washed with PBS and 5 mM of MgCl2. Sali-
vary glands were placed in 1.5 ml tube containing 100 µl 
of PBS and 5 mM of MgCl2, homogenized using a poly-
propylene pestle (Bel-Art Products, Wayne, NJ, USA), 
and centrifuged at 10,000×g for 5 min. Protein con-
centration of SGE supernatants were determined using 
Epoch Microplate Spectrophotometer and Gen5 Data 
Analysis software version 2.00.18 (BioTek, Winooski, VT, 
USA) with bovine serum albumin (Bio-Rad, Hercules, 
CA, USA) as a standard. SGE supernatants were stored at 
− 4 °C until needed.

Enzyme‑linked immunosorbent assay (ELISA)
ELISA using SGE was performed to evaluate serological 
responses over the duration of the study and to deter-
mine endpoint titers. Pre- and post-tick challenge serum 
samples were compared for each animal. For all assays, 
96-well flat bottom Immulon 2 HB plates (Thermo 
Electron, Milford, MA, USA) were coated with 100 μl 
of coating buffer with 1 μg of SGE protein per well and 
incubated overnight at 4  °C. Plates were washed three 
times with PBS Tween-20 (1× PBS, 0.05% Tween-20). 
Each plate was blocked using ELISA diluent (PBS, 0.5% 
horse serum, 0.05% Tween-20, 0.001% dextran sulfate) at 
100 μl per well and incubated for 1 h at room tempera-
ture. Plates were washed three times, 100  μl of pig sera 
from tick challenges were added to wells at a dilution of 
1:100, and plates were incubated at room temperature 
for one hour. Each plate was washed three times as stated 
above, and 100  μl of the secondary antibody, anti-pig 
IgG Fc-HRP (Thermo Fisher Scientific, Waltham, MA, 
USA), was added to each well at 1:5000 dilution. After an 
hour of incubation at room temperature, each plate was 
washed three times, and 100 μl ELISA HRP substrate was 
added to each well and incubated at room temperature 
for 15 min. The optical density of each plate was evalu-
ated at 405  nm absorbance using the Epoch Microplate 
Spectrophotometer and Gen5 Data Analysis software 
version 2.00.18 (BioTek, Winooski, VT, USA).

To determine endpoint titers, ELISA was performed 
using serum samples at a 1:100 to 1:512,000 dilution. 
Pre-challenge serum samples diluted 1:100 were also 

used. All samples were tested in triplicate and means and 
standard deviations determined. Samples were consid-
ered statistically significant if their mean optical density 
was more than three times the standard deviation of the 
mean of the pre-tick challenge serum sample, as previ-
ously reported [25, 26].

Sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS‑PAGE) and immunoblotting
Proteins were separated by SDS-PAGE and immunob-
lotting was performed to determine seroconversion, as 
described [27]. Three µg of SGE supernatant was electro-
phoresed on Mini-Protean TGX precast gels (Bio-Rad) at 
80 volts for 90 min. Proteins were transferred to polyvi-
nylidene fluoride (PVDF) membranes (Millipore, Biller-
ica, MA, USA) using 100 volts for 60 min in a Mini Trans 
Blot system (Bio-Rad). PVDF membranes were blocked 
overnight with I-Block Protein-Based Blocking Reagent 
(Life Technologies, Grand Island, NY, USA). Immuno-
blots were probed with pig serum samples as primary 
antibodies at a 1:200 dilution for one hour. Membranes 
were washed with I-Block for one hour and anti-pig 
IgG-HRP (Life Technologies) was used as the secondary 
antibody at a 1:4000 dilution. Serological reactivity was 
determined with the Amersham Enhanced Chemilumi-
nescence (ECL) Western Blotting System (GE Healthcare 
Bio-Science Corp., Piscataway, NJ, USA).

Statistics
The statistical program JMP Pro 12 statistical software 
(SAS Co., Cary, NC, USA) was used. ANOVA and a 
Tukey’s honest significant difference (HSD) post-hoc 
test based on an alpha level of 0.05 were performed for 
all pairwise combinations to determine significant dif-
ferences in total tick fed and post-blood-feeding weight 
increase between challenges, feeding chamber, and pig 
subjects.

Results
Evaluation of tick feeding
Ornithodoros turicata readily fed on pigs. For tick cohorts 
that fed on the four animals, we observed between a 2.01- 
to 5.85-fold change in weight after feeding (Fig.  3). The 
proportion of ticks that fed, and the weight increase per 
cohort were similar among the four pigs used in these 
experiments (F(3, 8) = 1.556; P = 0.2739 for total ticks fed, 
and F(3, 8) = 0.9568; P = 0.4584 for weight increase per 
cohort). Similarly, the fraction of ticks that fed, and the 
weight increase per cohort were not significantly different 
according to feeding chamber (F(3, 8) = 1.8209; P = 0.2214 
for total tick fed, and F(3, 8) = 0.20901; P = 0.8873 for 
weight increase per cohort). The percent weight increase 
was not significantly different based on challenges (F(2, 
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9) = 3.7277; P = 0.0662). However, the total number of 
ticks fed significantly differed between challenge dates 
(F(2, 9) = 5.1758; P = 0.0319). Specifically, total ticks that 
fed during challenge 3 were significantly different from 
those of challenge 1 (Tukey’s HSD P = 0.0261). A propor-
tional decrease in ticks fed of 14%, 14%, 16% and 7% for 
pigs 1 to 4, respectively, was noted between the first and 
third challenges. These findings suggest that repeated 
tick exposure to pigs may impact tick feeding success.

Pig serological responses following O. turicata feeding
To evaluate serological responses to tick salivary pro-
teins, we dissected intact salivary glands from O. turi-
cata (Fig.  4) and used them to generate SGE. Within 
13 days after the first tick challenge (day 21 of the 
experimental design, Table  1), ELISA assays detected 

statistically significant (P ≤ 0.003) IgG responses from 
all pigs compared to the respective mean pre-challenge 
serum samples from each pig (Fig. 5a–d). Elevated IgG 
responses were detectable for a majority of the study 
(Fig.  5a–d). Pig 1 generated the most prolonged IgG 
response for the duration of the study (Fig.  5a) with 
statistically significant (P ≤ 0.003) detection occur-
ring with the final serum sample tested. IgG responses 
of pig 2 were above the pre-challenge serum sample 
cut-off for 27  days after the third tick challenge, after 
which antibody responses were undetectable (Fig.  5b). 
Pig 3 generated a statistically significant (P ≤ 0.003) 
IgG response for 34 days after the third tick challenge 
(Fig.  5c). Pig 4 generated a prolonged IgG response 
that was above the pre-challenge cut-off until day 98 
(Fig.  5d). At day 126, pig 4’s serological response rose 
above the pre-challenge cut-off. Endpoint titers were 
determined using post-challenge sera with the high-
est OD reading. Pig 2 generated the strongest response 
with a titer of 1:16,000, while pig 4 had the weakest 
response with a titer of 1:4000.

The antigenic profile detected in pig serum samples 
was further assessed by immunoblotting using SGE 
from O. turicata (Fig.  6). Reactivity using serum sam-
ples prior to tick challenge was compared to serum 
samples collected 13  days after the third tick feed-
ing, indicating the antigenicity of salivary secretions. 
Salivary antigens with molecular masses of ~ 15 to 
~ 100 kDa were identified. All the pigs showed a strong 
IgG response to salivary proteins with a molecular 
weight of ~ 25  kDa. These results indicated that O. 
turicata salivary secretions were antigenic in domestic 
pigs.

Fig. 3  Fold weight change after feeding cohorts of 100 ticks on 
a given animal. Change in weight was determined by weighing 
pre- and post-fed tick cohorts. Shown are challenge 1 (black fill), 2 
(grey fill) and 3 (white)

Fig. 4  Dissection of Ornithodoros turicata salivary glands. Ticks were dissected, removing the midgut, which exposed the salivary glands (a). Salivary 
gland sets were excised and rinsed to remove residual midgut content (b). Scale-bars are shown in the bottom left of each image
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Discussion
Our study reports serological responses of pigs to O. 
turicata salivary antigens after repeatedly exposing 
the animals to the ticks. The animals seroconverted 
to O. turicata salivary proteins that ranged from ~ 15 
to 100  kDa and this was sustained between 27 to 90 
days after the third tick challenge. In previous work, 
humoral response of rabbits was evaluated after O. 
turicata feeding [28]. Wozniak et  al. [28] reported an 
increase of IgG production in rabbits that were chal-
lenged with several Ornithodoros species. They fed 
O. turicata, O. talaje and O. coriaceus on rabbits bi-
weekly and evaluated IgG responses to SGE by ELISA 
and immunoblotting. Each feeding involved 150 ticks 
from each Ornithodoros species, and the rabbits were 
exposed four times. Salivary gland proteins recognized 
by the rabbit antibodies ranged from ~ 15 to ~ 130 kDa, 
and endpoint titers were ~ 1:5120. However, the lon-
gevity of IgG responses after the fourth tick challenge 
were not reported. Similar to our findings, rabbits also 
developed serological responses to a salivary protein of 
~ 25 kDa [28], but it is unknown whether these proteins 
are the same.

When we evaluated serum samples of each pig, differ-
ences between the serological assays were observed. For 
example, while serological responses from each animal 
were similar when assessed by ELISA, immunoblotting 
indicated differing reactivity between animals. Specifi-
cally, when we tested serum samples collected 13 days 
after the third challenge, pig 1 reacted with more anti-
gens from SGE compared to the other animals. While not 
determined in our study, the haplotypic diversity of pig 
1 may have affected the antigen repertoire recognized by 
this animal.

After the tick third challenge, we observed a weight 
loss between O. turicata ticks that fed compared to 
cohorts from the first two feedings due to fewer ticks 
feeding. A decline in successful tick feeding on repeat-
edly exposed animals is an indicator of acquired immu-
nity against arthropods [29–32]. Riek et al. [33] reported 
hypersensitivity to Rhipicephalus (Boophilus) micro-
plus salivary secretion elicited by heavy tick infestation, 
which resulted in histological changes of the skin at the 
site of attachment of two species of cattle, Bos taurus 
L. (Artiodactyla: Bovidae) and Bos indicus L. Similarly, 
Szabó & Bechara [34] reported that repeat exposures to 

Fig. 5  ELISA assessment of temporal serological responses to tick SGE. Serum samples from animals 1 (a), 2 (b), 3 (c) and 4 (d) were evaluated prior 
to (day 1) and for 90 days after the third tick challenge. Arrows denote the days of tick feedings. A sample was considered statistically significant 
(P ≤ 0.003) if their mean optical density was more than three times the standard deviation of the mean of the pre-tick challenge serum sample. This 
threshold is represented by a dotted line



Page 7 of 9Kim et al. Parasites Vectors           (2020) 13:66 	

Rhipicephalus sanguineus (s.l.) Latreille (Ixodida: Ixodi-
dae) elicited strong skin inflammatory responses from 
both dogs and guinea pigs. These studies evaluated suc-
cessful feeding of ixodid ticks, which lay cement, attach 
for days, and regurgitate midgut content. Moreover, ixo-
did salivary and midgut proteins are antigenic and have 
been targeted to interrupt tick feeding [35]. In compari-
son, O. turicata engorges within minutes of attachment, 
and it remains unknown if midgut content is regurgitated 
and an immune response induced, which could impact 
feeding success. Moreover, while salivary secretions 
are antigenic in Ornithodoros species, it is unclear as to 
whether the immune response generated against the pro-
teins would impact subsequent tick feedings.

Numerous species of ixodid ticks feed on feral swine 
in Texas [15], however less is known about interactions 
between argasids and feral swine because they are rapid 
feeders that are rarely found attached to the host. Feral 
swine populations have become a serious threat through-
out the southern USA, overlapping the known Florida 
and southwestern distributions of O. turicata [36]. Our 
studies suggest that feral swine could potentially serve as 
sentinels to detect the presence of O. turicata through 

serologic surveillance. This has been demonstrated in 
previous work demonstrating the antigenicity of salivary 
secretions from O. erraticus and O. moubata in swine 
[24, 37]. This approach was also used to measure tick 
exposure in swine populations in the Iberian Peninsula, 
Sardinia, and Madagascar as part of assessing ASFV epi-
demiology and progress toward disease control and elim-
ination [38–41]. Consequently, to improve surveillance 
efforts, it is important to develop an accurate molecular 
assay to differentiate exposure of feral swine to Ornitho-
doros species and ixodid ticks. With the availability of the 
O. turicata salivary gland transcriptome [42], future pro-
teomic work will identify the tick salivary antigens recog-
nized by the vertebrate immune response. This will be an 
important first step toward the development of a specific 
assay to evaluate the exposure of domestic and wild pigs 
to O. turicata salivary proteins.

Conclusions
This study describes a successful animal model to study 
molecular interactions between Ornithodoros ticks and 
pigs that could aid in further development of methods 
to study soft tick ecology, as well as in establishing early 
detection and prevention of ASF entry into the USA 
through wildlife.
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