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Whole blood and blood components 
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formation in three species of anautogenous 
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Abstract 

Background:  Most female mosquitoes are anautogenous and must blood feed on a vertebrate host to produce 
eggs. Prior studies show that the number of eggs females lay per clutch correlates with the volume of blood ingested 
and that protein is the most important macronutrient for egg formation. In contrast, how whole blood, blood frac-
tions and specific blood proteins from different vertebrates affect egg formation is less clear. Since egg formation is 
best understood in Aedes aegypti, we examined how blood and blood components from different vertebrates affect 
this species and two others: the malaria vector Anopheles gambiae and arbovirus vector Culex quinquefasciatus.

Methods:  Adult female mosquitoes were fed blood, blood fractions and purified major blood proteins from different 
vertebrate hosts. Markers of reproductive response including ovary ecdysteroidogenesis, yolk deposition into oocytes 
and number of mature eggs produced were measured.

Results:  Ae. aegypti, An. gambiae and C. quinquefasciatus responded differently to meals of whole blood, plasma or blood 
cells from human, rat, chicken and turkey hosts. We observed more similarities between the anthropophiles Ae. aegypti 
and An. gambiae than the ornithophile C. quinquefasciatus. Focusing on Ae. aegypti, the major plasma-derived proteins 
(serum albumin, fibrinogen and globulins) differentially stimulated egg formation as a function of vertebrate host source. 
The major blood cell protein, hemoglobin, stimulated yolk deposition when from pigs but not humans, cows or sheep. 
Serum albumins from different vertebrates also variably affected egg formation. Bovine serum albumin (BSA) stimulated 
ovary ecdysteroidogenesis, but more weakly induced digestive enzyme activities than whole blood. In contrast, BSA-
derived peptides and free amino acids had no stimulatory effects on ecdysteroidogenesis or yolk deposition into oocytes.

Conclusions:  Whole blood, blood fractions and specific blood proteins supported egg formation in three species of 
anautogenous mosquitoes but specific responses varied with the vertebrate source of the blood components tested.
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Background
Mosquitoes vector a number of bloodborne pathogens, 
including the causative agents of malaria, dengue fever 
and yellow fever, that annually result in > 200 million 

human infections and 725,000 deaths worldwide [1]. 
Adult mosquitoes of both sexes can subsist entirely on 
nutritional resources such as nectar or fruit juices that 
primarily contain carbohydrates [2]. Plant sugars pro-
vide energy for maintenance, allow for metabolic reserve 
replenishment, extend life span and are used directly to 
fuel flight [3]. However, most species are also anautog-
enous, which means that females cannot produce eggs 
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without consuming blood from a vertebrate host [4]. The 
ability to blood feed and produce eggs in consecutive 
cycles over a lifespan of 4–8 weeks further underlies how 
anautogenous mosquitoes acquire and transmit patho-
gens among vertebrate hosts [4].

Mature eggs develop in the ovaries from primary egg 
chambers comprised of an oocyte, nurse cells and envel-
oping follicle cells [5]. Primary egg chambers remain 
developmentally arrested until consumption of a blood-
meal, which activates the vitellogenic phase of oogenesis 
[6]. The processes regulating the vitellogenic phase are 
currently best understood in Aedes aegypti where con-
sumption of a bloodmeal stimulates the release of two 
types of peptide hormones, ovary ecdysteroidogenic 
hormone (OEH) and insulin-like peptides (ILPs), from 
the brain [6]. OEH and ILP family members such as 
ILP3 bind distinct but related receptor tyrosine kinases 
named the insulin (IR) and OEH (OEHR) receptors [7–
9]. Ligand binding activates the IR and OEHR on ovary 
membranes, which activates the division of follicle cells 
and endoreplication of nurse cells [5]. OEH strongly 
stimulates follicle cells to produce ecdysteroid hormones, 
chiefly ecdysone (ECD) [8–11], while ILP3 is required 
for expression of trypsin-like enzymes in the midgut that 
digest the bloodmeal [12–15]. ECD released from folli-
cle cells is converted to 20-hydroxyecdysone (20E) in fat 
body adipocytes, which together with nutrient signaling 
via the target of rapamycin (TOR) pathway stimulates the 
synthesis of vitellogenin (Vg) and other yolk components 
[16]. Mature eggs are formed upon completion of yolk 
uptake and deposition of a chorion (egg shell) by follicle 
cells [17, 18]. Females then lay up to 120 eggs in a single 
clutch by 72 h post-bloodmeal [4].

Whole vertebrate blood is a colloidal suspension of 
predominantly red blood cells (erythrocytes) in plasma. 
Whole blood also consists primarily of protein by dry 
weight, with only small amounts of lipid, carbohy-
drate and trace elements [19]. However, hematological 
parameters also vary among vertebrates with significant 
differences observed among species in red blood cell 
diameter, hematocrit (packed cell volume), hemoglobin 
level, plasma protein content and salt, mineral and 
micronutrient concentrations [20–22]. Intraspecific vari-
ation is also observed among individual hosts because 
factors such as age, sex and health influence hematologi-
cal properties [23]. These sources of variation in blood 
composition have potentially important consequences 
for mosquitoes since the nutritional quality of blood 
has been previously implicated in reproductive fitness 
[24–26].

Several studies indicate that anautogenous mosquitoes 
produce eggs after consuming blood from different ver-
tebrates [26–42] with clutch size correlating with blood 

volume ingested [32, 43–47] and protein being the most 
important macronutrient [48–52]. Reviews of the early 
literature suggest anautogenous mosquitoes produce 
more eggs after blood feeding on amphibians, reptiles or 
birds than on mammals [36, 53]. Amino acid balance and 
the nucleated erythrocytes of amphibians, reptiles and 
birds have both been suggested to be more suitable for 
egg formation than the amino acid composition and anu-
cleate erythrocytes of mammalian blood [31, 36, 54, 55]. 
The packed cell volume of blood has been shown to influ-
ence reproductive fitness, survival and vectorial capac-
ity in mosquito species that undergo prediuresis, i.e. that 
concentrate red blood cells in the midgut and excrete 
plasma continuously while blood-feeding [56–60]. Some 
studies indicate the cellular fraction of blood from differ-
ent host species contributes to or is indispensable for egg 
formation in several anautogenous species including Ae. 
aegypti [36, 49, 55, 58, 61–64]. In contrast, a recent study 
of bovine  blood fractions concluded that only plasma 
supported egg formation by Ae. aegypti [65], and lyophi-
lized plasma forms a suitable artificial diet for Aedes and 
Anopheles mosquitoes [66]. The most abundant protein 
in bovine plasma, serum albumin, has also been shown to 
stimulate high levels of egg formation in Ae. aegypti and 
select other species [65, 67–74].

In assessing the preceding literature, we noted that 
most studies focus on single mosquito species and often 
use differing assay approaches, which could contribute to 
varying conclusions about how blood and blood compo-
nents from different vertebrates affect egg formation. We 
also noted that most studies do not examine how blood 
components affect key physiological processes that reg-
ulate vitellogenesis. Since egg formation is best under-
stood in Ae. aegypti, we revisited how blood and blood 
components from different vertebrates affect this species 
and two others: the malaria vector Anopheles gambiae 
and arbovirus vector Culex quinquefasciatus. In the first 
part of our study, we assessed feeding rates, yolk depo-
sition, the number of eggs laid and hatch rates in these 
three mosquito species when fed whole blood or blood 
fractions from different vertebrates. We then focused 
the second part of our study on Ae. aegypti, where we 
investigated how blood-derived and other proteins affect 
yolk deposition, digestive enzyme expression, and ovary 
ecdysteroidogenesis. Our results indicate that plasma, 
blood cells and particular proteins stimulate mosquito 
egg formation, but outcomes differ with the vertebrate 
source of the components tested.

Methods
Mosquito rearing
The University of Georgia (UGAL) strain of Aedes aegypti 
was established from wild-caught females in Athens, GA, 
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in the early 1970s. Morphological characters identify this 
strain as the subspecies Aedes aegypti aegypti [75], but 
for brevity we henceforth refer to the UGAL strain as Ae. 
aegypti. The G3 strain of Anopheles gambiae was origi-
nally obtained from the Centers for Disease Control and 
Prevention (CDC) in Atlanta and has been maintained 
in our insectary since 2004. The CDC MR4/BEI strain 
of Culex quinquefasciatus has been maintained in our 
insectary since 2011. All mosquitoes were reared under a 
12 h light:12 h dark photoperiod at 26 °C and 70% relative 
humidity. Larvae of each species were reared in pans at 
a density of ~150 larvae per liter of deionized water and 
fed daily until pupation at 6 days post-hatch. Ae. aegypti 
and C. quinquefasciatus were maintained on a larval diet 
consisting of ground rat chow pellets (LabDiet 5001), 
lactalbumin (Sigma) and torula yeast extract (Bio-Serve) 
mixed in a ratio of 1:1:1 by volume, referred to as rat 
chow mix. An. gambiae larvae were maintained on a diet 
of pulverized TetraMin tropical flakes (Tetra). Adult mos-
quitoes were provided water and 10% sucrose in water ad 
libitum. For colony maintenance, adults from each gen-
eration were blood-fed 3–5 days post-eclosion to obtain 
eggs. Ae. aegypti and C. quinquefasciatus were blood-fed 
from an anesthetized male laboratory rat (Sprague Daw-
ley), while An. gambiae was fed defibrinated rabbit blood 
(Hemostat Laboratories) using a membrane feeder.

Membrane feeding
Membrane feeder assays were conducted using a sim-
ple method that has not previously been reported in 
the literature. In brief, meals were pipetted into the 
cut-off caps of 1.7-ml microfuge tubes (Olympus Plas-
tics 22-282), which hold a 200-µl volume. Parafilm® M 

(Millipore Sigma P7543) was stretched over these caps 
to produce small capacity membrane feeders. Four to 
eight caps, depending on the number of mosquitoes 
fed (ranging 15–50), were then placed on the mesh tops 
of small mosquito cages (10 × 8.5 cm), membrane side 
down, and topped with a USB-chargeable hand warmer 
from either Thermotrek© or FourHeart® (Fig. 1). When 
operated at the lowest heating level, these electric 
handwarmers maintain stable temperatures of 40 and 
42 °C, respectively.

All whole blood, blood fraction and protein meals 
contained ATP at a final concentration of 1 mM, which 
is a potent phagostimulant at this concentration [71, 
76]. Whole bloods used in membrane feeder assays 
were purchased from Hemostat Laboratories (Dixon, 
CA) and contained the anticoagulant sodium citrate 
unless otherwise specified. Due to the rapid expiration 
of bottled blood, whole blood and blood fractions were 
always offered to mosquitoes within 4  days of blood 
shipment arrival. Whole bloods were centrifuged at 
2000 × g for 5 min to produce plasma and cell fractions 
that primarily consisted of erythrocytes. Undiluted 
plasma was put into membrane feeders while cell frac-
tions were triple-washed in phosphate-buffered saline 
(PBS) [65] and then resuspended at a hematocrit of 50% 
in fresh PBS, which approximated the mean packed cell 
volume determined for many mammalian and avian 
species [21]. All proteins, peptides and amino acids 
used in assays were commercially purchased (Sigma 
Aldrich, St. Louis, MO; Difco, Detroit, MI) and fed 
at a concentration of 200 mg/ml in PBS plus ATP. An 
L-amino acid solution containing the 20 amino acids 
present in most eukaryotic proteins was prepared in 

Fill inverted cap Cover with Parafilm Place on cage screen

Rechargeable handwarmer on top

Fig. 1  Schematic illustrating the membrane feeder system used during the study. See "Methods" for details
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PBS at molarities that matched the amino acid content 
of BSA at 200  mg/ml with the exception of tyrosine, 
which was reduced to 50% of BSA to fully solubilize 
(Additional file 1: Table S1).

Bioassays
To estimate the amount of blood mosquitoes consumed, 
4-day post-emergence females were chilled and weighed 
in cohorts of ten using an analytical balance (Ohaus 
DV215CD). The average weight per individual NBF 
female was calculated from this value. Each cohort of ten 
was returned to a cage with access to water for 8 h and 
then presented membrane feeders containing different 
solutions for 30 min. Immediately following blood-feed-
ing, females were then chilled and the replete individuals 
tallied and weighed, which yielded an average bloodmeal 
weight per individual (mg). Bloodmeal weights were 
always taken within 15  min of blood-feeding since Ae. 
aegypti females undergo diuresis and excretion of excess 
blood-derived water during the first hour post-bloodmeal 
[4]. Each treatment was replicated ten times.

To assess clutch size, replete females were isolated 
within 1 h post-meal and individually placed in small 
cages (34 × 30  mm2) containing a paper towel-lined 
glass bowl half-filled with deionized water for ovipo-
sition. Glass bowls were checked for eggs daily and 
retrieved once oviposition had occurred or after 7 days 
post-meal. Clutch size was recorded as the number of 
eggs laid, while viability was calculated as the number of 
viable larvae produced per female. Ae. aegypti females 
laid eggs on the paper towel lining, which was dried and 
kept in a humid container for 10 days prior to hatching. 
C. quinquefasciatus and An. gambiae oviposit directly on 
the surface of the water; eggs from these species hatched 
within 72  h of oviposition at which time larvae were 
counted.

Oocyte maturation as measured by yolk deposition was 
measured using previously established methods [7, 77]. 
Briefly, ovaries were dissected from replete females 48 h 
after feeding, and the length of visible yolk per oocyte 
along the anterior-posterior access was measured using 
an ocular micrometer mounted on a stereomicroscope. 
For each female, measurements were taken for three 
oocytes per ovary pair, and averaged. Yolk deposition per 
female at 48 h post-meal was measured and averaged for 
20–50 individual females per treatment.

Ecdysteroid assays
Total ecdysteroids secreted by ovaries were quantified 
using an enzyme-linked immunosorbent assay (EIA) [10]. 
Ovaries were dissected from females 20 h after feeding, 
which corresponds with when ecdysteroid production 

peaks in ovaries after consumption of rat blood [8]. The 
ovaries from two females were pooled and incubated 
together in 60 µl Beyenbach’s saline [10] on a shaker for 
6 h at 27  °C and ~90% RH. Following this incubation 
period, medium supernatant containing secreted ecdys-
teroids was collected and frozen at –  20  °C. Ecdyster-
oid titer was then determined by EIA using the EAB27 
primary antibody and 20-hydroxyecdysone (Sigma) as a 
standard [78].

Midgut trypsin‑like serine protease activity and relative 
quantitative polymerase chain reaction (rqRT‑PCR) assays
Trypsin-like serine protease activity was measured in 
midguts dissected from females 24 h after feeding using 
an established Nα-benzoyl-L-arginine 4-nitroanilide 
hydrochloride (BApNA) assay [15]. In brief, each midgut 
was placed in Tris HCl 0.02  M buffer containing CaCl2 
0.02  M (200  µl), sonicated briefly, and then centrifuged 
at 12,000 × g for 5 min. Ten µl of supernatant (0.05 mid-
gut equivalent) was then added to 90 µl Tris-CaCl2 buffer 
and 200 µl of BApNA (4 mM) (Sigma). After incubating 
on a rocker for 15 min at room temperature, absorbance 
was read at 405 nm (BioTek plate reader) and quantified 
based on trypsin standards (bovine pancreas, Sigma).

For rqRT-PCR assays, midguts were collected 24  h 
after females fed to repletion on membrane feeders and 
extracted using Trizol reagent (Ambion). Samples con-
sisted of pooled midguts of two females, with four bio-
logical replicates per treatment. cDNA templates were 
generated using the iScript cDNA synthesis kit (Bio-
Rad) while gene-specific primers were designed and 
purchased (IDT) for the following targets: Aedes aegypti 
5G1 (Aa5G1, X64363.1; forward 5’-CTG​TGG​AGG​ATC​
GCT​ACT​TTC-3’; reverse 5’- GAT​GGC​GGT​TGA​CCT​
TCT​TA-3’; Aedes aegypti late trypsin (AaLT, M77814.1; 
forward 5’-GGA​AGT​GAT​ACC​TTT​ACC​GACCG-3’; 
reverse 5’-GAT​CAC​CAA​CGG​GCT​GTA​GGC-3’), Aedes 
aegypti serine protease VI (AaSPVI, GQ398048; forward 
5’-AGG​AAT​GCC​ACA​AGG​CTT​ACT​TGA​-3’; reverse 
5’-CCA​TAA​CCC​CAG​GAT​ACC​ACT-3’); and Aedes 
aegypti serine protease VII (AaSPVII, GQ398049; forward 
5’-CGA​ATG​GTA​TGT​GCC​GGT​TA-3’; reverse 5’-CAA​
CTC​CGA​CCA​GGG​TAT​TG-3’) [79]. Aedes aegypti 
actin (AaACT, KY000701) was used as reference gene 
using primers forward 5’-CGT​TCG​TGA​CAT​CAA​GGA​
AA-3’ and reverse 5’-GAA​CGA​TGG​CTG​GAA​GAG​
AG-3’ [79]. Reactions contained 3 µl cDNA, 2 µl forward/
reverse primers 5 µM and 5 µl iQ SYBR Green Supermix 
(Bio-Rad 170-8882) and were run using a Rotor-Gene Q 
real-time PCR cycler (Qiagen) under the following con-
ditions: denaturation at 95  °C for 10  s and annealing at 
60 °C for 45 s, for a total of 30 cycles. Relative transcript 
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abundance of each target gene relative to AaACT​ and 
fold change compared to non-fed controls was calculated 
using the ΔΔCT method [80].

Data analysis
Individual adult females were the unit of replication in 
assays that assessed proportions of replete or oviposit-
ing females, yolk deposition, time (days) taken to oviposit 
following ingestion of a meal and egg clutch size. Isolated 
midguts from individuals served as the unit of replication 
for trypsin activity assays. For feeding assays, the number 
of engorged females was summed across replicates and 
divided by the total offered the meal to generate an over-
all proportion of replete females.

All proportional data sets (e.g. proportion of females 
to blood-feed, proportion of females to oviposit, propor-
tion of eggs to hatch) were assessed for significant dif-
ferences among treatments using a contingency table 
analysis (chi-squared test). Continuous data such as yolk 
deposition, number of days taken to oviposit, egg clutch 
size and trypsin activity per midgut were analyzed for 
differences among treatment means using analysis of 
variance (ANOVA). The continuous-type data sets were 
initially assessed for normality using the Shapiro-Wilk 
W test on residuals and Bartlett’s test for homogeneity 
of variances. If both Shapiro-Wilk and Bartlett’s tests 
yielded non-significant p-values, treatment means were 
then compared using the parametric one-way ANOVA, 
followed by Tukey’s Honestly Significant Difference 
multiple comparisons post-hoc analysis. If the continu-
ous data were found to be non-normal, a Kruskal-Wallis 
non-parametric alternative was used instead, followed 
by Dunn’s post-hoc multiple comparison test. Data on 
the weight of blood ingested, ecdysteroid production 

by ovaries and serine protease transcript profiles were 
generated from replicated samples of pooled females 
as previously described under Bioassays. Treatment 
means from these data sets were also analyzed by one-
way ANOVA following the assessment of normality 
described for the other continuous data sets. All data 
analysis was performed using R, version 3.3.2. GUI 1.68 
Mavericks build (7288). Tables were generated using 
Microsoft Excel v16.39 and figures generated using 
GraphPad Prism v8.4.2.

Results
UGAL strain Aedes aegypti similarly respond to blood 
feeding on a rat or membrane feeders containing rat blood
We first assessed whether females exhibited any differ-
ences in feeding, survival, oviposition or number of eggs 
laid when given an anesthetized rat versus membrane 
feeders filled with commercially purchased bottled blood. 
Because anticoagulants in blood have previously been 
shown to affect mosquito feeding success and survival 
[81], we compared mosquito responses to defibrinated 
rat blood or rat blood containing three different antico-
agulants: Na citrate, Na heparin or EDTA. Proportion-
ately fewer females fed to repletion after 30 min on a rat 
but average meal size (mg) was similar across treatments 
except for blood containing EDTA (Table  1). Survival 
over the course of these assays was unaffected by treat-
ment since no replete females died. Days to oviposition 
were also similar among treatments except for females 
that consumed blood with EDTA, which oviposited 
approximately 1 day sooner than females that consumed 
blood from a rat (Table 1). No differences were detected 
in number of eggs laid (clutch sizes) among treatments 

Table 1  Feeding, oviposition time and eggs produced per Ae. aegypti female provided a live rat or bottled bloods in membrane 
feeders

1  Females were fed in cohorts of 10 per cage for a total of 100 females per treatment. χ2 = 11.76, df= 4, p= 0.02
2  A subsample of replete females was examined to determine time to oviposition, total eggs per female (clutch size) and eggs per mg of blood consumed
3  For each indicated row, the mean ± SD for each treatment is indicated. Different small case letters after a given mean indicates treatments significantly differed from 
one another after ANOVA or Kruskal-Wallis and post hoc Tukey Kramer or Dunn’s tests, respectively

Different letters to the right of means in each row indicated the treatments significantly differed from one another (p ≤ 0.05).

Live rat Bottled rat blood with anticoagulant

Defibrinated Na citrate Na heparin EDTA

Proportion of replete females1 46/100 67/100 66/100 61/100 59/100

Ingested blood (mg) per female 2.90±0.94a 2.45±0.32a 2.27±0.33a 2.15±0.64a 1.26±0.55b

Females examined for time to oviposi-
tion and eggs laid2

20 8 20 18 10

Time to oviposition (days)3 3.90 ± 0.85a 3.50 ± 1.41a, b 3.60 ± 0.50a,b 3.28 ± 0.9a,b 3.00 ± 0.00b

Total eggs per female 123.2 ± 48.0 140.6 ± 37.7 110.0 ± 44.7 115.3 ± 48.4 137.4 ± 25.1

Eggs per mg blood consumed3 46.7 ± 21.0a 57.9 ± 15.5a, b 49.2 ± 20.0a 57.6 ± 26.1a,b 69.0 ± 12.6b
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although normalizing the data by bloodmeal size sug-
gested females laid more eggs per mg of blood containing 
EDTA (Table  1). Overall, few differences were detected 
between females that fed on a rat and membrane feed-
ers containing commercially purchased rat bloods. We 
thus used membrane feeders rather than living hosts to 
compare the effects of different bloods and blood compo-
nents from different vertebrates on egg formation, using 
sodium citrate as the anticoagulant for all treatments.

Whole blood, plasma and blood cells from four vertebrates 
differentially support egg formation
Multiple olfactory and visual cues have been implicated 
in attracting anautogenous female mosquitoes to verte-
brates [82]. While most anautogenous mosquitoes are 
generalists that bite multiple vertebrates, Ae. aegypti 
shows evidence of evolving from a generalist feeder 
in its native Africa into two subspecies: Ae. aegypti 
formosus, which remains a generalist in Africa, and Ae. 
aegypti aegypti, such as the UGAL strain used in this 
study, which has been introduced worldwide and pref-
erentially feeds on humans [25, 75]. Vertebrate blood 
is also known to differ among species with the protein 
content of plasma usually being higher in mammals 
than other taxa, while red blood cells vary from being 
anucleate in mammals to large and nucleate in birds, 
reptiles and amphibians [19]. However, it is largely 
unclear whether anautogenous species with host pref-
erences derive reproductive benefits from the blood 
of preferred hosts. We therefore first asked whether 
females of each species differentially fed or laid eggs 
after feeding on commercially purchased bloods from 
two mammals (human, rat) and two birds (chicken, tur-
key) in no-choice membrane feeder assays that lacked 
most olfactory and visual cues associated with living 
hosts.

We detected no differences among treatments in the 
proportion of UGAL Ae. aegypti females that fed to 
repletion or the number of eggs females laid (Fig. 2a, b). 
In contrast, large differences were detected in egg hatch 
rates with turkey blood producing the largest yields 
and chicken blood producing the smallest (Additional 
file  1: Table  S2). We next separated each whole blood 
into its plasma and cell fraction. No differences were 

detected in the proportion of females that fed to reple-
tion on each plasma (Fig. 2c), whereas large differences 
were detected in the number of eggs laid because of 
females producing none after feeding on bird plasmas 
(Fig.  2d). Egg hatch rates were also lower for females 
that consumed human versus rat plasma (Additional 
file  1: Table  S2). Dissection of females that consumed 
avian plasmas showed that oocytes contained little yolk 
(ca. 40–100  µm), indicating that avian plasmas initi-
ated vitellogenesis but did not sustain full maturation 
of oocytes. More females fed to repletion on rat than 
other blood cells (Fig.  2e), while females that con-
sumed human blood cells laid no or very few eggs that 
also exhibited low hatch rates (Fig. 2f; Additional file 1: 
Table S2).

To assess whether the preceding outcomes were gen-
eralizable, the same treatments were tested with An. 
gambiae, which is strongly anthropophilic, and C. 
quinquefasciatus, which in the field preferentially feeds 
on birds but also feeds on several mammals including 
humans [83, 84]. The proportion of An. gambiae and C. 
quinquefasciatus that fed to repletion on whole blood, 
plasma or cell fractions varied among treatments but 
overall showed no tendencies in terms of An. gambiae 
more readily feeding on human and C. quinquefascia-
tus more readily feeding on avian-derived components 
(Figs.  3 and 4). An. gambiae laid the fewest eggs after 
consuming whole chicken blood; C. quinquefasciatus 
laid the most eggs on avian whole bloods, but hatch rates 
showed no tendencies in either species (Figs.  3 and 4, 
Additional file  1: Table  S2). Broadly similar patterns to 
Ae. aegypti were observed when blood fractions were fed 
to An. gambiae with females laying no eggs after con-
suming avian plasmas, very small numbers of eggs after 
consuming human blood cells and relatively large num-
bers of eggs after feeding on avian blood cells (Fig.  3). 
Egg hatch rates for An. gambiae were also overall low-
est after consuming human plasma (Additional file  1: 
Table S2). C. quinquefasciatus laid relatively small num-
bers of eggs after consuming all plasmas and laid almost 
no eggs after consuming human blood cells, but laid 
large numbers of eggs after consuming avian blood cells 
that were also similar overall to the number of eggs laid 
after consuming whole avian bloods (Fig.  4). Egg hatch 

Fig. 2  Feeding and egg laying by Ae. aegypti in response to blood and blood fractions from four vertebrates. Females were provided whole blood 
(a, b), plasma (c, d) or blood cells (e, f) containing ATP 1 mM in membrane feeders from human, rat, chicken or turkey. a, c and e Comparison of the 
proportion of females that fed to repletion. Numbers below the x-axis indicate the total number of individual females tested for a given treatment. 
Statistical significance after contingency table analysis is indicated by asterisks: *p < 0.05; **p < 0.001; ***p < 0.0001; ns not significant. b, d, and f 
Comparison of the number of eggs each female that fed to repletion laid. Numbers below the x-axis indicate the total number of individual replete 
females assessed for egg lay for each treatment. Horizontal bars indicate the mean ± SD. Within each graph different small case letters indicate 
treatments significantly differed from one another after a Kruskal-Wallis and post-hoc Dunn’s test (p ≤ 0.05)

(See figure on next page.)
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rates for C. quinquefasciatus also overall trended lower 
after feeding on plasmas than blood cells (Additional 
file 1: Table S2).

Serum albumins and hemoglobin from different 
vertebrates variably stimulate egg formation in Ae. aegypti
We next assessed how specific blood-associated pro-
teins affected egg formation and key physiological pro-
cesses that regulate vitellogenesis. We focused these 
studies on Ae. aegypti because: (i) regulation of egg 
formation in mosquitoes is best understood in this 
species and (ii) preliminary studies identified issues 
in feeding purified proteins to An. gambiae and C. 
quinquefasciatus, which prevented comparison of out-
comes to Ae. aegypti. The plasma fraction of vertebrate 
blood primarily contains three types of proteins (albu-
min, fibrinogen and globulins) while the cellular frac-
tion by dry weight consists primarily of hemoglobin 
[85]. We fed Ae. aegypti females each of these proteins 
from at least two vertebrates at 200 mg/ml in PBS plus 
ATP, which approximates the total protein content 
of whole human blood. Females that fed to repletion 
were then dissected 48  h later to determine whether 
the vitellogenic phase of oogenesis had been activated 
by measuring yolk deposition, which increases lin-
early in oocytes when females consume whole blood 
[18]. Serum albumins from several vertebrates stimu-
lated yolk deposition but only bovine serum albumin 
(BSA) from cow generated outcomes that were equiva-
lent to females fed whole rat blood (Fig.  5a). Little or 
no yolk deposition occurred when females consumed 
fibrinogens or bovine gamma-globulins, while modest 
yolk deposition occurred after consumption of human 
gamma-globulins (Fig. 5a).

Vertebrate hemoglobins consist of two alpha and 
two beta subunits that form heterotetramers with 
an approximate aggregate mass of 65 kDa [86]. Pig 
hemoglobin stimulated a variable but often similar 
yolk deposition response as BSA and whole rat blood, 
whereas human and cow hemoglobin did not (Fig. 5a). 
These differences correlated with all essential amino 
acids being present among the subunits that form 
the hemoglobins in most mammals including pigs, 

rats and birds, whereas all subunits forming the non-
fetal hemoglobins in primates including humans and 
even-toed ungulates such as cows and sheep lack iso-
leucine [87, 88] (Additional file  1: Table  S3). Adding 
isoleucine but not select other essential amino acids 
to human and cow hemoglobin increased yolk deposi-
tion into oocytes to similar levels as pig hemoglobin 
(Fig.  5b). Feeding females blood cells from cow or 
sheep resulted in no eggs being laid, but adding iso-
leucine resulted in females laying similar numbers of 
eggs as occurred when females were fed whole blood 
or plasma (Fig. 5c).

Select other proteins also support egg formation
We assessed whether any other commonly available 
proteins that are soluble in PBS at 200 mg/ml also stim-
ulate Ae. aegypti to deposit yolk into oocytes. The met-
alloenzyme carbonic anhydrase is produced in a variety 
of vertebrate tissues including bovine erythrocytes 
from which it is purified for commercial sale [89]. This 
protein and ovalbumin from chicken eggs stimulated 
yolk deposition, but duck ovalbumin, porcine gelatin 
and reconstituted skimmed milk powder from cows, 
which consists primarily of casein [90], did not (Fig. 6a). 
Sucrose in PBS-containing ATP, lipid (partially hydro-
genated vegetable oil) in PBS plus ATP or PBS plus ATP 
alone were consumed and taken into the midgut by 
females but little or no yolk was deposited into oocytes 
(Fig. 6a). Since serum albumins load both fatty acids and 
steroids [91, 92], we compared females that consumed 
delipidated or a lipid-enriched BSA (Albumax II) versus 
standard fraction V BSA. No differences in yolk depo-
sition were detected among these treatments but the 
number of eggs females laid were highest for females 
fed delipidated BSA (Fig.  6b). In contrast, females fed 
standard fraction V BSA digested into peptides using 
proteinase K or free amino acids at equivalent molari-
ties to BSA at 200 mg/ml stimulated no yolk deposition 
(Fig.  6c). Several commercially available peptide mix-
tures (Proteose Peptone 3, Bacto Peptone and Casein 
Acid Hydrolysate) in PBS plus ATP were also readily 
consumed by females but stimulated no yolk deposition 
(Fig. 6c).

(See figure on next page.)
Fig. 3  Feeding and egg laying by An. gambiae in response to vertebrate blood and blood fractions. Females were provided whole blood, plasma or 
blood cells from four vertebrates. Bar graphs on the left indicate the proportion of females that fed to repletion, with sample size (i.e., the number of 
individuals offered the meal) indicated below the x-axis in italics. Statistical significance after contingency table analysis is indicated (*p < 0.05; **p 
< 0.001; ***p < 0.0001; ns not significant). Dot plots on the right show the number of eggs laid by replete females, with sample sizes (i.e., number of 
replete females obtained from the feeds on the left panel) indicated below the x-axis and horizontal bars showing the treatment mean ± SD. Small 
case letters indicate treatments that significantly differed from one another after a Kruskal-Wallis and post-hoc Dunn’s test (p ≤ 0.05)
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Fig. 4  Feeding and egg laying by C. quinquefasciatus in response to vertebrate blood and blood fractions. Data are presented as in Figs. 2 and 3, 
with proportions of females fed to repletion indicated in a, c and e and egg clutch size per replete female shown in b, d and f. Italicized numbers 
below the x-axis indicate sample sizes, and statistical significances are indicated as previously described in the legends of Figs. 2 and 3
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BSA more weakly stimulated trypsin‑like activity 
in the midgut yet comparably stimulated ecdysteroid 
production by the ovaries compared to blood
As previously noted, bloodmeal consumption by Ae. 
aegypti females stimulates OEH and ILP release from 
the brain, which regulates bloodmeal digestion by the 
midgut and ecdysteroid production by the ovaries, 
which are both essential for egg formation [12–14]. 
Twelve trypsin-like serine protease (SP) genes are 
expressed in the midgut with prior studies identify-
ing four (Aa5G1, AaLT, AaSPVI and AaSPVII) as late-
phase SPs that are inducibly expressed by blood feeding 
and are primarily responsible for bloodmeal digestion 
[12–14]. AaSPVI accounts for most late-phase trypsin-
like activity [12–14]. With the potential exception of 
pig hemoglobin, yolk deposition was more strongly 
stimulated by BSA than any other blood protein we 
bioassayed. We therefore asked if BSA induced both 
high expression of late phase SPs and trypsin-like activ-
ity in the midgut, as does whole blood. We also bioas-
sayed females that consumed BSA-derived peptides 
and the amino acid solution that mimicked the amino 
acid composition of BSA since neither induced any yolk 
deposition. BSA induced upregulation of Aa5G1, AaLT, 
AaSPVI and AaSPVII, ranging from 20 to 50 times 
higher relative to peptide-, amino acid- and non-fed 
females (Fig.  7a). However, expression of these serine 
proteases was not statistically different among these 
treatments, in contrast to whole blood, which induced 
100–200 times higher expression of these genes rela-
tive to non-fed controls (Fig.  7a). BSA also stimulated 
late trypsin-like activity, but more weakly than whole 
blood, while no trypsin activity was detected in the 
midguts of females that consumed peptides or amino 
acids (Fig.  7b). In contrast, blood and BSA similarly 
stimulated the ovaries to produce ecdysteroids while 
peptides and amino acids did not (Fig. 7c).

Discussion
It has long been recognized that anautogenous mosqui-
toes blood feed to reproduce [27, 93, 94]. Studies dat-
ing back to the 1920s have examined different aspects of 

how vertebrate blood affects egg formation. However, as 
noted earlier, most papers in the literature focus on sin-
gle species of mosquitoes and hosts. Thus, the primary 
novelty of this study is our comparative approach under 
standardized assay conditions that examined how: (i) 
three anautogenous species respond to blood and blood 
fractions from different vertebrates and (ii) purified blood 
proteins from different vertebrates affect egg formation 
and key physiological processes that regulate vitellogen-
esis in Ae. aegypti.

Several laboratory cultures of Ae. aegypti including the 
UGAL strain produce large clutches of eggs after feed-
ing on rat and other rodent bloods, which underlies the 
common use of these mammals in general rearing [56, 
95, 96]. In this study, we identified no differences in egg 
production between UGAL Ae. aegypti that feed on a 
living rat versus membrane feeders containing whole 
rat blood unless EDTA was used as an anticoagulant. 
We thus standardized subsequent assays by using mem-
brane feeders and Na citrate as the anticoagulant. While 
summaries of the older literature conclude that anautog-
enous mosquitoes produce more eggs after feeding on 
vertebrates with nucleated erythrocytes [36, 53], only C. 
quinquefasciatus showed evidence of this in our results. 
Since C. quinquefasciatus preferentially feeds on birds 
in the field [83, 84, 97], this species may reproductively 
benefit from avian bloods, which has also been noted 
for other Culex species [30, 32, 33, 35, 98–102]. In con-
trast, anthropophilic Ae. aegypti and An. gambiae largely 
laid similar numbers of eggs across the two mammal 
and avian blood sources we tested. Our finding that Ae. 
aegypti and An. gambiae did not lay more eggs when fed 
avian blood could reflect an adaptation of our laboratory 
cultures to mammalian blood, as both species have been 
reared exclusively on mammalian blood for hundreds of 
generations. Another possibility is that mosquitoes fed 
on living hosts are more strongly attracted to odorant 
and tactile cues from avian hosts and therefore imbibe 
larger bloodmeals resulting in larger egg clutches. Our 
artificial membrane feeders are devoid of such cues that 
might encourage excessive gorging in females.

(See figure on next page.)
Fig. 5  Yolk deposition into oocytes and egg laying by Ae. aegypti in response to blood proteins from different vertebrates. a Mean yolk length ± 
SD 48 h after feeding to repletion on blood-derived proteins in PBS-containing ATP from different vertebrates. Each protein was fed to females 
at 200 mg per ml with whole blood from a rat serving as the positive control and PBS containing ATP serving as the negative control. Small case 
letters indicate treatments significantly differed from one another after a Kruskal-Wallis and post-hoc Dunn’s test (p ≤ 0.05). b Mean yolk length ± 
SD 48 h after feeding to repletion on cow or human hemoglobin with no additional amino acid (AA) or with addition of isoleucine (Ile), leucine 
(Leu), arginine (Arg), methionine (Met) or tryptophan (Trp). Within each graph different small case letters indicate treatments significantly differed 
from one another after a Kruskal-Wallis and post-hoc Dunn’s test (p ≤ 0.05). c Eggs laid per female after feeding to repletion on whole blood, 
plasma, blood cells or blood cells plus isoleucine from cow or sheep. Numbers above each treatment indicate the total number of replete females. 
Horizontal bars indicate the mean ± SD. Within each graph different small case letters indicate treatments significantly differed from one another 
after a Kruskal-Wallis and post-hoc Dunn’s test (p ≤ 0.05)
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Contrary to other studies [31, 36, 56, 96, 103], our 
results show no evidence that Ae. aegypti and An. gam-
biae lay smaller clutches after feeding to repletion on 
whole human blood versus blood from other hosts. 
However, our results do show dramatic differences in 
egg formation in response to blood fractions with Ae. 
aegypti and An. gambiae laying eggs after consuming 
mammalian but not avian plasmas. Avian blood cells 
further stimulated all three mosquito species to lay 
similar numbers of eggs as whole blood, while human 
blood cells resulted in females laying few or no eggs. 
Yet, in the case of C. quinquefasciatus, all plasmas 
stimulated females to lay similar, albeit lower, numbers 
of eggs than whole blood, while Ae. aegypti laid large 
numbers of eggs after consuming rat blood cells but An. 
gambiae did not. Thus, each of the mosquito species 
we tested exhibited differences in egg laying across the 
four vertebrate bloods we tested but the two anthropo-
philes, Ae. aegypti and An. gambiae, overall exhibited 
more similarities to one another than to the ornitho-
phile C. quinquefasciatus.

We focused the second part of our study on assess-
ing how the major protein constituents of plasma and 
blood cells from different vertebrates differentially 
affect egg formation in Ae. aegypti. Pilot experiments 
revealed that An. gambiae and C. quinquefasciatus 
fed poorly when offered meals containing solubilized 
serum albumins. The response of anopheline species to 
adenosine nucleotides as phagostimulants is a subject 
which requires further investigation; we propose that 
poor feeding on artificial meals not containing blood 
or blood fractions could be the result of a decreased 
response to our chosen phagostimulant (ATP) com-
pared to Ae. aegypti. In addition to poor feeding, An. 
gambiae in particular exhibited poor survival and via-
bility following serum albumin ingestion. Given these 
confounding factors, and given that a more expan-
sive molecular toolkit exists for the model organism 
Ae. aegypti, we chose not to use An. gambiae or C. 

quinquefasciatus in our studies of how purified blood 
proteins affect egg formation and the physiological pro-
cesses that regulate vitellogenesis.

Hemoglobin accounts for ~90% of the total protein 
in vertebrate blood and thus is far more abundant than 
any plasma protein [54]. We therefore standardized the 
concentration of each protein we tested (200 mg/ml) in 
feeding assays to reflect total protein in human blood 
rather than the actual abundance of each component. 
As previously noted, several studies report that BSA 
and whole blood comparably stimulate yolk deposition 
into primary follicles [67–74]. In contrast, our results 
show that serum albumins from other vertebrates more 
weakly stimulate yolk deposition than BSA, which was 
unanticipated given: (i) lyophilized plasmas of several 
mammals were recently reported to stimulate high-
level egg production in Ae. aegypti [66] and (ii) mam-
malian serum albumins share high amino acid identity 
(74–76%) and have similar crystal structures [104, 105]. 
Our results further indicate that fibrinogens and glob-
ulins from two mammals (human, cow) stimulate low 
rates of yolk deposition. In contrast, hemoglobin from 
pig stimulates similar yolk deposition rates to whole rat 
blood and BSA while human and cow hemoglobin stim-
ulates no yolk deposition. Thus, our results indicate 
that purified blood proteins differentially stimulate yolk 
deposition and that UGAL Ae. aegypti also differentially 
respond to homologs of the same protein from different 
vertebrates. That chicken ovalbumin stimulates yolk 
deposition indicates certain proteins absent in verte-
brate blood can stimulate egg formation. Other studies 
also report variable oogenic responses by different mos-
quito species fed egg albumin, gelatin, skim milk, agar, 
soy infant formula and hemolymph from other insects 
[55, 62, 106–110].

Since albumins bind a range of lipids and other 
ligands [91, 111], we reasoned this variable potentially 
contributes to the differences in yolk deposition we 
see among vertebrate albumins. A previous study also 

Fig. 6  Yolk deposition into oocytes and egg laying by Ae. aegypti in response to non-blood proteins and other factors. a Mean yolk length ± SD 
48 h after feeding to repletion on non-blood proteins, skim milk, sucrose or vegetable oil in PBS containing ATP. Each protein was fed to females at 
200 mg/ml while other components were fed at concentrations as indicated in "Methods". PBS containing ATP served as the negative control. Small 
case letters indicate treatments significantly differed from one another after a Kruskal-Wallis and post-hoc Dunn’s test (p ≤ 0.05). b Mean yolk length 
± SD 48 h or numbers of eggs laid per female after feeding to repletion on BSA, fatty acid depleted BSA or fatty acid-enriched (AlbuMAX II) BSA. 
For yolk length no significant difference (ns) was detected among treatments after a Kruskal-Wallis test (p > 0.05). For eggs per female, numbers 
above each treatment indicate the total number of replete females, horizontal bars indicate the mean ± SD, and different small case letters indicate 
treatments significantly differed from one another after a Kruskal-Wallis and post-hoc Dunn’s test (p ≤ 0.05). c Mean yolk length ± SD 48 h after 
feeding to repletion on BSA, peptides derived from BSA, other peptide preparations or amino acids that mimic abundance in BSA. Each treatment 
was fed to females at 200 mg per ml. Small case letters indicate treatments significantly differed from one another after a Kruskal-Wallis and 
post-hoc Dunn’s test (p ≤ 0.05)

(See figure on next page.)
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reported that addition of LDL and cholesterol to a BSA-
based artificial diet increased fecundity in Ae. aegypti 
[70]. However, we detected no differences in yolk dep-
osition between BSAs enriched or depleted for bound 
lipids and lipid-enriched BSA resulted in females lay-
ing fewer eggs. It is nevertheless possible that factors 
binding to serum albumins potentially contribute to the 
between-species differences in albumins we observed. 
On the other hand, our finding that females produce 
no mature eggs after consuming BSA-derived peptides, 
peptides from other proteins or free amino acids mim-
icking the composition of BSA suggest proteins must 
be of a minimum size for digestion and absorption and 
that small peptides and amino acids are potentially 
excreted too rapidly to be efficiently absorbed. This 
suggestion would also be consistent with studies show-
ing that slow, continuous perfusion of essential amino 
acids into the hemocoel of mosquitoes promotes egg 
formation while single injections of amino acids do not 
[52, 108, 112]. We also note that our findings are not 
wholly in accord with two early reports that peptides 
and amino acids stimulated very low-level, but nonzero, 
egg formation in Ae. aegypti [113, 114].

Previous studies noted that isoleucine deficiencies in 
the blood of certain vertebrates correlate with reduc-
tions in egg production by anautogenous mosquitoes 
[51, 54, 103]. In contrast, our use of purified proteins 
definitively indicates that Ae. aegypti produces no 
mature eggs when fed hemoglobins lacking isoleucine 
but large numbers of eggs when fed hemoglobins that 
contain the essential amino acid isoleucine or when fed 
an isoleucine-deficient hemoglobin that is isoleucine-
supplemented. The effect of isoleucine deficiency was 
previously attributed to essential amino acid balance 
being important for egg production [51, 55, 96]. How-
ever, amino acids function as nutritional signals in reg-
ulating a number of cellular processes through the TOR 
and insulin signaling pathways [115–117]. Amino acids 
also regulate translation initiation with the absence 

of any essential amino acid resulting in suppression 
of protein synthesis [118, 119]. Thus, more complex 
mechanisms than amino acid balance likely underlie the 
severe defects in egg formation that occur when female 
mosquitoes feed on isoleucine-deficient hemoglobins.

Since BSA strongly stimulates egg formation in Ae. 
aegypti, we asked if this protein and whole blood simi-
larly stimulate two physiological processes required for 
vitellogenesis: late-stage serine protease gene expres-
sion in the midgut and ecdysteroid production by the 
ovaries. BSA did induce the expression of four proteases 
with known roles in bloodmeal digestion, Aa5G1, AaLT, 
AaSPVI and AaSPVII; however, levels of expression and 
trypsin-like activity were roughly half the levels meas-
ured in blood-fed females. Hundreds of serine proteases 
are expressed in Ae. aegypti [14], and midgut-localized 
proteases include not only trypsin-like enzymes but also 
chymotrypsins and two major classes of exopeptidases, 
aminopeptidases and carboxypeptidases [13, 120, 121]. 
Therefore, it is possible that BSA is primarily digested 
by enzymes other than the trypsin-like proteases we 
surveyed. In contrast, BSA and whole blood comparably 
stimulate ecdysteroid production by the ovaries, which 
is consistent with BSA and blood-fed females laying 
similar numbers of eggs [65, 68, 71].

Conclusions
Three species of anautogenous mosquitoes variably pro-
duced eggs in response to whole vertebrate blood, blood 
fractions or specific proteins from different vertebrates. For 
the most abundant protein in blood, hemoglobin, major 
differences in egg formation by Ae. aegypti were clearly 
due to isoleucine deficiency of this protein from select ver-
tebrates, whereas the underlying basis for serum albumins 
differentially affecting egg formation remained unclear. 
Physiological assays in Ae. aegypti further showed that 
blood and BSA differentially stimulate digestive enzyme 
activity but comparably stimulate ecdysteroidogenesis.

(See figure on next page.)
Fig. 7  Late-phase serine protease gene expression, midgut trypsin-like activity and ovary ecdysteroid production by Ae. aegypti after feeding on 
blood, BSA or BSA-derived products. a rqRT-PCR analysis of Aa5G1, AaLT, AaSPVI and AaSPVII expression in midguts 24 h after feeding to repletion 
on rat blood, BSA, BSA-derived peptides or amino acids that mimic abundance in BSA. Mean relative transcript abundance ± SD for each treatment 
is normalized to the actin gene. Each treatment was replicated four times using midgut samples prepared from different females. Small case 
letters indicate treatments significantly differed from one another after ANOVA and a post-hoc Tukey-Kramer multiple comparison test (p≤0.05). 
b Trypsin-like activity 24 h after the same treatments listed in (a). Non-fed females served as the negative control. Horizontal bars indicate the 
mean ± SD. Small case letters indicate treatments significantly differed from one another after ANOVA and a post-hoc Tukey-Kramer multiple 
comparison test (p ≤ 0.05). c Ecdysteroids produced per ovary pair ± SD from females that fed to repletion on the same treatments as in (a). 
Ovaries were collected from females at 24 h post-feeding and ecdysteroid amounts determined by EIA after a 6 h incubation in saline. A minimum 
of ten independent samples were prepared per treatment with different letters indicating significant differences after ANOVA and a post-hoc 
Tukey-Kramer multiple comparison test (p ≤ 0.05)
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