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parameters of malaria vectors: implications 
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Abstract 

Background:  Mosquito control has the potential to significantly reduce malaria burden on a region, but to influence 
public health policy must also show cost-effectiveness. Gaps in our knowledge of mosquito population dynamics 
mean that mathematical modelling of vector control interventions have typically made simplifying assumptions 
about key aspects of mosquito ecology. Often, these assumptions can distort the predicted efficacy of vector control, 
particularly next-generation tools such as gene drive, which are highly sensitive to local mosquito dynamics.

Methods:  We developed a discrete-time stochastic mathematical model of mosquito population dynamics to 
explore the fine-scale behaviour of egg-laying and larval density dependence on parameter estimation. The model 
was fitted to longitudinal mosquito population count data using particle Markov chain Monte Carlo methods.

Results:  By modelling fine-scale behaviour of egg-laying under varying density dependence scenarios we refine our 
life history parameter estimates, and in particular we see how model assumptions affect population growth rate (Rm), 
a crucial determinate of vector control efficacy.

Conclusions:  Subsequent application of these new parameter estimates to gene drive models show how the under-
standing and implementation of fine-scale processes, when deriving parameter estimates, may have a profound influ-
ence on successful vector control. The consequences of this may be of crucial interest when devising future public 
health policy.
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Background
Despite considerable progress, the global burden of dis-
ease caused by malaria remains high, and the demand for 
new, highly effective interventions is urgent [1]. To help 
reduce transmission, next-generation methods of con-
trol utilising genetic modification are being developed, 
which aim to reduce either the density or competence 
of vector populations [2]. With the release of genetically 

engineered organisms being strictly regulated, math-
ematical models remain a key resource for understand-
ing their potential. However, gaps in our knowledge lead 
to an oversimplification of fine-scale mosquito dynamics, 
which can have a significant impact on our predictions of 
vector control efficacy.

The malaria parasite is transmitted principally by mos-
quitoes within the Anopheles gambiae complex, which 
comprises eight morphologically indistinguishable spe-
cies [3]. In Africa, where 90% of malaria cases occur [1], 
Anopheles gambiae sensu stricto and Anopheles funestus 
are the dominant vectors in the majority of regions [4, 
5], with Anopheles arabiensis and Anopheles coluzzii also 
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being of significant importance [6]. Although each spe-
cies exhibits some variation in behaviour and environ-
mental tolerance [7–10], larval requirements for aquatic 
habitats mean that mosquito densities tend to peak at 
the times of year associated with high rainfall [11–13]. 
Interventions to reduce vector populations during these 
periods are an established method for reducing transmis-
sion—including larvicides [14], insecticide-impregnated 
bed nets [15] and pyrethrum spraying or trapping of 
adults [16]. These methods, however, have limitations, 
including the intensive use of chemicals, short half-lives 
of insecticides within the environment and the costs of 
continued redeployment. Next-generation “gene drive”-
based interventions have the potential to overcome many 
of the problems inherent in traditional vector control 
[17]. They insert novel genes into a vector species which 
code for specific traits likely to cause either population 
suppression or reductions in vector competence, in a 
manner that allows those genes to propagate through the 
vector population. A promising technology in this field 
is the use of homing endonuclease genes (HEGs) [18], 
a class of nuclease genes found in simple single-celled 
organisms which can copy themselves from one chromo-
some to another. HEGs can be placed at specific sites on 
a chromosome and in a heterozygous individual produce 
an enzyme which cuts the DNA on the homolog of the 
HEG-bearing chromosome. When this site is repaired, 
the HEG-bearing chromosome is used as a template [19]. 
Such interventions have the potential to significantly 
reduce malaria transmission [2, 20–22], but are also sus-
ceptible to the emergence of resistance [23] or reinvasion 
of wild-type into depopulated landscapes [24].

Modelling shows that the spatial invasion dynamics of 
gene drive systems are highly sensitive to the fine-scale 
dynamics of mosquito populations [20]. Uncertainty 
around key aspects of these dynamics makes reliable 
predictions of the impact and spread of gene drive tech-
nologies challenging. In previous studies, the reproduc-
tive potential of a mosquito population (typically denoted 
as Rm) has been found to be a key driver of the efficacy 
of gene drive constructs [20, 21, 24, 25]. Rm is the maxi-
mum rate at which a population can grow in the absence 
of density-dependent constraints (i.e. in the infinitesimal 
population density limit). However, since real popula-
tions are discrete and clumped, and subject to differing 
regimes of resource competition, the theoretical limit 
represented by Rm may never be attained. Understand-
ing how a more realistic representation of the mosquito 
life cycle affects estimates of Rm is therefore important 
for refining assessments of the likely impact of gene drive 
technologies.

Although not exclusively, Rm in mosquito popula-
tions is often limited principally at the aquatic stages by 

density-dependent larval mortality, characterised by two 
parameters: the baseline density-independent mortality 
rate and the carrying capacity of the local environment 
for mosquito larvae. Carrying capacity describes the 
maximum number of mosquito larvae that can be sus-
tained by the resources available within the environment, 
whilst density dependence affects the mortality (and 
developmental delays) caused by intraspecific competi-
tion for these resources [26, 27]. The two are intrinsically 
linked—for example, decreasing carrying capacity would 
lead to an increase in resource competition and hence 
density-dependent effects. How mathematical models 
approach larval density dependence is currently limited 
by the few experimental studies that exist, and analysis of 
experimental data has shown both linear and quadratic 
relationships between density and mortality [26–28]. 
Recent modelling studies have accounted for a lack of 
empirical data by implementing flexible density depend-
ence functions in models to simulate a range of scenarios 
[29, 30].

Although a number of approaches have been used 
to simulate density dependence, most models tend to 
assume that in the low-density limit (e.g. one mated 
female entering an environment otherwise empty of 
mosquitoes), density-dependent effects will not apply, 
and the population will grow at its theoretical maximum 
(i.e. Rm). However, this is likely to overestimate Rm, as it is 
inconsistent with how a mosquito lays eggs in the natu-
ral environment, where habitat heterogeneity, local envi-
ronmental conditions and behavioural traits will cause 
females to lay eggs in temporally and spatially clumped 
batches [31]. This behaviour has been studied in both 
Aedes and Anopheles mosquitoes, in laboratory condi-
tions [32–34] and in the wild [35–37].

In this paper, using a discrete-time stochastic mathe-
matical model of mosquito population dynamics, we aim 
to identify the effects of egg “clumping” on the estima-
tion of Rm. Additionally, as any conferred density effects 
from clumping are intrinsically linked with the functional 
form of density dependence, we explore multiple den-
sity dependence regimes. From this we aim to identify 
whether clumped egg-laying and specific forms of density 
dependence provide a better model fit to observed data, 
and the implications associated Rm estimates have on 
gene drive technologies.

Methods
Mosquito population model
We developed a discrete-time stochastic model that 
simulates the life cycle of a mosquito population. A sche-
matic of the model is outlined in Fig. 1 and is described 
below.
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The life cycle of a mosquito consists of four main 
stages: egg, larvae, pupae and adult. The first three stages 
are aquatic and, although there is variation in the wild, 
last approximately 5–14  days [38]. Larvae emerge from 
eggs and feed on algae, bacteria and other small particu-
late matter whilst developing through four separate lar-
val instars, before metamorphosing into pupae and then 
finally adults. After maturation into the adult stage and 
having successfully mated, a female begins its first gono-
trophic cycle. During the gonotrophic cycle, which lasts 
approximately 3  days, the mosquito takes a blood meal 
from a human or animal host, after which the blood is 
digested during a resting phase and used to develop the 
eggs in the ovaries. Once the eggs have matured, the 
mosquito is considered gravid and will search for a suita-
ble site for oviposition. This process is then repeated until 
the eventual death of the adult.

As in previous models [28], to reduce complexity but 
maintain biological realism, we group the first two larval 
stages into a single class, early instar larval stage E, and 
the third and fourth stages into a late larval stage class 
L. Pupae P and adults M remain as single stages. Tran-
sition between early- and late-stage larvae and associ-
ated density-dependent mortality can be described as 
a binomial event occurring within discrete time δt . The 
probability of mortality or transition can be defined as δt 
multiplied by the sum of the two respective rates, devel-
opment to late-stage larvae ( dE) and density-dependent 
mortality µE(E, L) . A proportion dE

µE(E,L)+dE
 of all the lar-

vae transitioning out of E are expected to enter the state 
L, again simulated by sampling from the corresponding 
binomial distribution. Similarly, transitions between late-
stage larvae and pupae can be described with a prob-
ability dE and density-dependent mortality of µE(E, L) . 
Pupae then develop into adults with a probability of dP 
and a density-independent probability of mortality µp . 
Half of all emerging adults are assumed to be female, 

and male adults are not explicitly modelled (we assume 
that there are enough males to successfully mate with all 
females). For simplicity and model tractability we assume 
that adults die at an age-independent rate µm and have an 
approximate average life expectancy of 9–12 days in the 
wild [39]. Regular immigration of adult mosquitos from 
external populations is known to occur in most wild pop-
ulations [40]; therefore, migration is modelled as a Pois-
son process with rate I . The input of new larvae into the 
system comes from eggs laid at a constant rate, Mβδt , 
where β is a fitted parameter for the average daily egg-
laying rate of adult females.

The dynamics of a mosquito population can thus 
be described as a series of stochastic equations where 
Bin(p, n) denotes a binomial draw with p probability and 
n trials, and Poisson(�) a draw from a Poisson distribu-
tion with given lambda.

where

E(t + δt) = E(t)− BE +Mβδt,

L(t + δt) = L(t)− BL + Bin

(

dE

µE(E, L)+ dE
,BE

)

,

P(t + δt) = P(t)− BP + Bin

(

dL

µL(E, L)+ dL
,BL

)

,

(1)

M(t + δt) = M(t)+
1

2
Bin

(

dP

dP + µP

,BP

)

− Bin(µMδt,M)+ Pois(I),

BE = Bin((dE + µE(E, L))δt,E),

BL = Bin((dL + µL(E, L))δt, L),

Fig. 1  Model schematic showing transitions between stages, points of mortality and density-dependent mortality, immigration and egg-laying. 
Each arrow represents a Poisson draw, binomial or series of binomial events based on fitted probability parameters
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Density‑dependent mortality
Density dependence in mosquito larval stages results 
from the competition for resources during the early 
and late instars; however, pupae are not pressured by 
resources, as they do not feed. For simplicity, although 
adults may have additional density constraints, it is 
assumed in this model that adults are not constrained by 
density effects [41].

Density dependence for early-stage larvae E(t) and late-
stage larvae L(t) at time t can therefore be described as 
µE(E(t), L(t)) and µL(E(t), L(t)).

To quantify the effect of egg-laying under different 
potential systems of density dependence, three functional 
forms were considered within the model:

A linear relationship between larval density and den-
sity-dependent mortality, as used by White et al. [28]:

Density-dependent mortality, which grows as some 
(fitted) power ( � ) of larval density, resulting in � deter-
mining the intensity of density dependence, where � < 1 
intensity grows at a decreasing rate, whilst � > 1 intensity 
grows at an increasing rate.

Exponential density dependence, where mortality 
increases exponentially with larval population density:

Here, µ0
E and µ0

L are the death rates for early and late 
instars at low densities, K (t) is the environmental car-
rying capacity at time t and γ is the difference in effect 
of density dependence on late-stage instars compared 
with early-stage instars. Larval carrying capacity (K) was 

BP = Bin((dP + µP)δt,P).

(2)µE(E(t), L(t)) = µ0
E

(

1+
E(t)+ L(t)

K (t)

)

,

µL(E(t), L(t)) = µ0
L

(

1+ γ
E(t)+ L(t)

K (t)

)

.

(3)µE(E(t), L(t)) = µ0
E

(

1+
E(t)+ L(t)

K (t)

)�

,

µL(E(t), L(t)) = µ0
L

(

1+ γ
E(t)+ L(t)

K (t)

)�

.

(4)µE(E(t), L(t)) = µ0
Ee

(

E(t)+L(t)
K (t)

)

,

µL(E(t), L(t)) = µ0
Le

(

γ
E(t)+L(t)

K (t)

)

.

assumed to be proportional to rainfall from the previous 
τ days weighted by an exponential distribution with mean 
2τ , where rain(t) in millimeters is the daily rainfall and � 
is a village-specific scaling factor as used by White et al. 
[28]:

As there were inconsistent records of temperature in 
the Garki project for the study sites, we assumed a sin-
gle fixed value. Similarly to White et al. [28], we used the 
mean air temperature of 24 °C to obtain an approximate 
mean value for the water temperature of 28 °C, and based 
our priors on this value.

Clumped egg‑laying
To simulate clumped egg-laying, the input of eggs into 
the system ( Mβδt) in Eq.  (1) is replaced by a stochastic 
“clumping” process. Here, the probability of each adult 
female laying eggs during any one time step δt is δt

S
 , where 

S is the duration of the gonotrophic cycle. The total num-
ber of females laying eggs, Ex , is thus sampled from a 
binomial distribution Ex = Bin

(

δt
S
,M

)

 . The number of 
eggs laid in that time step is then sampled from a Poisson 
with mean Exn , where n is the mean clutch size Pois(Exn) . 
As n , unlike β , explicitly considers the gonotrophic cycle 
S , the relationship between the two values is depend-
ent on the average number of gonotrophic cycles within 
a mosquito’s lifespan ( µm ); therefore, approximately, 
n =

β
(

eSµm−1
)

µm
.

Data
The model was fitted to rainfall and mosquito catch 
data obtained from the Garki project [39]. The project 
was a World Health Organization-funded study into 
the effects of malaria and vector interventions during 
the 1970s and presents one of the most detailed lon-
gitudinal data sets for combined mosquito and mete-
orological data. The data consist of environmental, 
demographic and mosquito catch data from 24 vil-
lages over an approximately 5-year period. Time series 
of Anopheles gambiae caught by pyrethrum spray in 
houses were extracted for eight villages and the data 
pooled to the village level. From these villages, two 
were from control areas where no interventions were 
carried out after the first rainy season, allowing the 
data to be split into two successive seasons, giving a 
total of ten population time series.

(5)K (t) = �
1

τ

(

1− e−
t
/τ

)

t
∫

0

e−(t−t ′)/τ rain
(

t ′
)

dt ′.
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Parameter estimation
We used an adaptive particle Markov chain Monte Carlo 
algorithm (pMCMC) to directly fit our stochastic model 
of mosquito dynamics to the data collected during the 
Garki project. pMCMC is a form of MCMC which uses 
a particle filter component to calculate a marginal like-
lihood for parameter acceptance/rejection within a 
Metropolis-Hastings algorithm [42, 43]. To account for 
the overdispersion and fractional sampling of the popu-
lation, a beta-binomial likelihood function was used, 
with the parameter accounting for overdispersion r and 
the fraction of the population sampled p being fitted (see 
Additional file 1 for details of the pMCMC algorithm and 
likelihood methods).

The number of particles and chain length in a pMCMC 
has no set rules, and there is a trade-off between mini-
mising the noise in the model and maintaining a realistic 
compute time. For each scenario of density dependence 
and egg-laying, we looked at the decrease in variation for 
set parameters when increasing the particle number and 
estimated the time to convergence in the chains. There-
fore, the pMCMC chain was run with 150 particles for 
2,000,000 iterations, with a 100,000-iteration burn-in. 
Attempts to increase the particle number and achieve 
convergence when fitting with an exponential density 
dependence were not successful, so full chains were not 
run. Priors were based on lab and field studies detailed in 
White et al. [28]. Approximate initial conditions for each 
of the villages were obtained by assuming deterministic 
equilibrium, allowing the value of each state variable to 
be derived from the value of a single estimate of the ini-
tial value of E, L, P, or M (see Additional file 1). This sin-
gle parameter was denoted as z and estimated for each 
village. Most parameters were assumed to be common 
to all villages and were estimated by fitting the model to 
the data from all villages simultaneously, except village-/
season-specific scaling factors �(1...10) and initial condi-
tion parameters z(1...10) , which were assumed to be vil-
lage- and season-specific. Median values of the posterior 
distributions from the pMCMC chains for each param-
eter were then used to simulate the models for plotting, 
and 95% credible intervals were obtained by repeatedly 
sampling the joint posterior distribution.

Mosquito population growth rate
Rm in the context of this paper is considered as the popu-
lation growth rate in the low-density limit, as quantified 
by the number of adult female offspring produced per 
adult female. To calculate this, two values were derived: 
a raw value in the absence of density dependence and 
a second value which included the effects of density 
dependence. To obtain a raw analytical value we followed 

White et al. [28], where a female laying n viable eggs dur-
ing an oviposition cycle can expect to oviposit approxi-
mately n

(

e−Sµm + e−2Sµm + · · ·
)

=
n

eSµm−1
 eggs, where 

e−Sµm , e−2Sµm , etc., is the proportion surviving one and 
two gonotrophic cycles, respectively. The fraction sur-
viving to adulthood can then be defined respectively for 
clumped and non-clumped egg-laying as:

However, clumped egg-laying means larval populations 
always experience some density-dependent competition; 
thus the raw value for Rm never predicts actual popula-
tion growth. Accounting for minimal density dependence 
is analytically challenging, however. We therefore evalu-
ated Rm numerically by simulating the model for a sin-
gle female mosquito until its death in a system empty of 
other adults and recorded the number of female offspring 
surviving until adulthood. Simulations were repeated 
using multiple random samples of parameter sets sam-
pled from the pMCMC posterior to estimate credible 
intervals. To account for stochastic variation, the mean 
was taken from 50 simulations of each parameter set.

Effect on gene drive
To illustrate the effect on vector control, we looked at 
a test case of the impact on gene drive from changes in 
both density dependence and the addition of clumped 
egg-laying, by reconstructing the gene drive model for-
mulated by Deredec et  al. [20]. This model considers 
HEGs, a class of selfish genetic elements which are one 
of the most credible gene drive methods currently being 
developed. HEG efficacy is determined by the number 
of HEGs being used and their homing rate (the fraction 
of potential recipient heterozygous chromosomes that 
require the HEG). We ran the model using parameter 
estimates from our results for each of our scenarios and 
established the impact on the required HEGs and hom-
ing rate for elimination.

Results
Density‑dependent mortality
The pMCMC chains gave good convergence, and the 
model visually fitted the village-level time series well, 
both when using a linear (Eq. 2) and fitted power (Eq. 3) 
density dependence (see Fig.  2 and Additional file  1). 

(6)

Rm =
1

2

�

n

eSµm − 1

�







1

1+ µ0
E
dE











1

1+
µ0
L

dL





�

1

1+
µP
dL

�

,

(7)

Rm =
1

2

�

β

µm

�







1

1+ µ0
E
dE











1

1+
µ0
L

dL





�

1

1+
µP
dL

�

.
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Final parameter estimates were taken as the median 
of the posterior estimates with 95% credible intervals 
obtained by repeatedly sampling parameter sets from the 
joint posterior, Table 1. It was not possible to fit an expo-
nential density dependence (Eq.  4), with the pMCMC 
algorithm unable to obtain reliable posterior estimates 
for any parameters, suggesting that exponential density 
dependence is highly unlikely. Deviance information cri-
terion (DIC) values show that fitting a power provided 
the best model, 1104.149, compared to 1115.039 for lin-
ear density. 

Egg clumping and clutch size estimates
For both clumped and non-clumped egg-laying, when 
using a linear (Eq.  2) and fitted power density (Eq.  3) 
dependence, the model fitted to the data well. Again, 
however, it was not possible to fit an exponential density 
dependence (Eq. 4). DIC values show that fitting a power 
provided the best model, 1107.822, compared to 1122.032 
for linear density. These values also show that non-
clumped egg-laying provides a better fit to the data under 
both density dependence regimes, although this difference 

is marginal, particularly when fitting a power. Simulations 
of mosquito population dynamics using median posterior 
parameter estimates are shown in Figs. 2 and 3 for non-
clumped and clumped egg-laying, respectively, of the fit-
ted power density dependence (linear density dependence 
fits can be seen in Additional file 1).

Clutch size n for fitted power (Eq.  3) and linear den-
sity dependence (Eq. 2) was estimated at 12.049 (95% CI 
2.945–28.051) and 3.19 (95% CI 1.563–5.925), respec-
tively. When considering non-clumped egg-laying, eggs 
laid per day β was estimated as 11.502 (95% CI 2.544–
26.585) for fitted power and 1.305 (95% CI 1.00–2.372) 
for linear. Note that, as previously described, for the con-
tinuous (non-clumped) egg-laying model variant, when 
estimating β , the gonotrophic cycle S is not explicitly 
considered (unlike in the clumped egg-laying equation); 
therefore, a comparative value to n (i.e. number of eggs 
laid in the same period) would be β

(

eSµm−1
)

µm
 , giving 39.566 

(95% CI 8.751–91.449) for the fitted power and 4.489 
(95% CI 3.439–8.157) for linear density dependence.

High levels of correlation between � and egg-laying 
also occurred during model fitting, where lower input 
of eggs into the system compensates for an increase in 

Fig. 2  Model fits to Garki Project data for non-clumped egg-laying when fitting a power to density dependence with 95% credible intervals. Red 
points show counts of adult female mosquitoes (M) aggregated over individual villages for the first recorded rainy season in the data; for villages 
4 and 5, a second rainy season denoted by S2 is also fitted to. Parameters for simulations were obtained from the median posteriors estimated by 
pMCMC fitting and 95% credible intervals from repeated samples of the joint posterior estimate
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density-dependent mortality (Fig. 4). This is particularly 
pronounced under clumped egg-laying scenarios, show-
ing that clutch size and the form of density dependence 
are intrinsically linked.

Mosquito population growth rate
We found that simulated and raw analytical estimates of 
Rm were marginally lower for clumped egg-laying than 
continuous oviposition (Table  2), reflecting the finite 
lower bound on density-dependent mortality in the 
clumped model. However, for both clumped and non-
clumped egg-laying, Rm was significantly lower when 
considering a linear density dependence over a fitted 
power.

Effect on gene drive
Both clumped egg-laying and fitting a power to the 
density dependence affected the required number and 
homing rate of HEGs for successful population elimina-
tion (Fig. 5). As expected, this is in line with the changes 
Deredec et  al. [20] found when they modified values 
for Rm. Changes in density dependence had the great-
est effect, whilst clumped egg-laying showed a relatively 
minor effect that cannot be concluded to be significant 
due to the overlap of credible intervals.

Discussion
Here we have quantified the effects of differing density 
dependence regimes and mosquitoes laying their eggs in 
a clumped, non-homogeneous fashion. From this we can 

Table 1  Model parameters with priors, posterior estimates and 95% credible intervals for linear and fitted power density dependence, 
clumped and non-clumped egg-laying

Credible intervals were obtained by repeatedly sampling from the joint posterior distribution

Parameter Description Unit Prior Prior distribution Posterior clumped Posterior non-clumped

Fitted power
Linear

Fitted power
Linear

S Duration of gonotrophic cycle Days 3 Fixed – –

β Number of eggs laid per day 
per adult

Eggs day−1 1–35 Uniform – 11.502 (2.544–26.585)
1.305 (1–2.372)

n Clutch size Eggs 1–35 Uniform 12.049 (2.945–28.051)
3.19 (1.563–5.925)

–

dE Development rate early larval 
instars

Days−1 0.150 (0.09–0.207) Normal 0.15 (0.091–0.209)
0.147 (0.085–0.205)

0.149 (0.091–0.205)
0.140 (0.081–0.202)

dL Development rate late larval 
instars

Days−1 0.240 (0.037–0.428) Normal 0.223 (0.102–0.373)
0.216 (0.100–0.374)

0.217 (0.100–0.391)
0.181 (0.100–0.343)

dp Development rate pupae Days−1 1.00 (0.566–1.458) Normal 0.884 (0.325–1.499)
0.855 (0.246–1.442)

0.826 (0.214–1.400)
0.639 (0.200–1.299)

u0E Per capita mortality rate of early 
instars

Days−1 0.035 (0.022–0.047) Normal 0.035 (0.022–0.048)
0.035 (0.022–0.048)

0.035 (0.022–0.048)
0.036 (0.022–0.048)

u0L Per capita mortality rate of late 
instars

Days−1 0.035 (0.022–0.047) Normal 0.036 (0.023–0.049)
0.035 (0.023–0.048)

0.036 (0.023–0.049)
0.035 (0.023–0.049)

µP Per capita mortality rate of 
pupae

Days−1 0.25 (0.184–0.318) Normal 0.251 (0.184–0.317)
0.252 (0.184–0.319)

0.253 (0.184–0.317)
0.255 (0.188–0.321)

µM Per capita mortality rate of 
adults

Days−1 0.091 (0.0812–0.101) Normal 0.090 (0.08–0.099)
0.089 (0.078–0.099)

0.089 (0.080—0.099)
0.089 (0.079–0.100)

τ Period of rainfall contributing to 
carrying capacity

Days 7.00 (2.000–12.000) Normal 12 (8–16)
14 (8–19)

12 (8–15)
15 (11–19)

� Fitted power – – – 0.322 (0.165–0.576)
–

0.251 (0.171–0.352)
–

γ Effect of density dependence 
on late instars relative to early 
instars

– 13.06 (8.137–18.029) Normal 13.317 (8.48–18.196)
13.016 (7.925–18.066)

13.441 (9.144–18.802)
13.027 (8.037–18.071)

p Proportion of population sam-
pled by trapping

– – – 0.029 (0.004–0.068)
0.024 (0.005–0.064)

0.03 (0.005–0.076)
0.026 (0.004–0.076)

r Level of overdispersion – – – 0.016 (0.002–0.04)
0.013 (0.002–0.036)

0.016 (0.002–0.044)
0.014 (0.002–0.043)

I Immigration Females per δt 1–8 Uniform 1.032 (0.213–3.897)
1.500 (0.264–4.569)

0.924 (0.161–3.156)
1.258 (0.224–4.478)

δt Discrete time step Days−1 0.25 – – –
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Fig. 3  Model fits to Garki Project data for clumped egg-laying when fitting a power to density dependence with 95% credible intervals. Red points 
show counts of adult female mosquitoes (M) aggregated over individual villages for the first recorded rainy season in the data; for villages 4 and 5, 
a second rainy season denoted by S2 is also fitted to. Parameters for simulations were obtained from the median posteriors estimated by pMCMC 
fitting and 95% credible intervals from repeated samples of the joint posterior estimate

Fig. 4  Cross-correlation plots between n and �, showing the corresponding two dimensions of parameter space explored by the pMCMC 
algorithm; the hexagon colour and count value represent the number of accepted parameter proposals
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see how both egg-laying and density dependence have a 
clear impact on estimates of Rm and subsequent vector 
control efficacy.

Much recent development work on genetically modi-
fied mosquitoes has aimed at increasing homing and 

transmission rates of constructs [44–47]. In this con-
text, our analysis suggests that the challenges to elimina-
tion posed by high values of Rm could vary substantially, 
especially if density dependence and egg-laying regimes 
are not universal. The consequences of this finding could 

Table 2  Rm estimates with 95% credible intervals for clumped and non-clumped egg-laying under linear and fitted power density 
dependence

Rm is calculated in two ways, numerically by simulating the model for a single female mosquito until its death in a system empty of other adults and recording the 
number of female offspring surviving to adulthood, and analytically as described in the methods. For the Rm estimate simulations, the median parameters from the 
pMCMC posterior estimates were used. To estimate 95% credible intervals, 500 parameter sets were randomly taken from the pMCMC results and the Rm simulation 
run 50 times with these values and a mean taken. The credible intervals were then estimated from the resulting 500 mean values

Clumped Non-clumped

Linear Fitted power Linear Fitted power

Simulated 3.099 (2.027–4.408) 13.532 (3.775–26.543) 3.407 (2.506–4.883) 31.958 (10.891–71.342)

Analytical 4.007 (2.6–6.148) 16.314 (4.588–34.256) 5.449 (3.778–7.721) 45.321 (13.708–90.157)

Fig. 5  Repeat of model by Deredec et al. [20] using parameters estimated by our analysis, Rm was derived both analytically and numerically for 
all density and egg-laying scenarios. The model estimates the number of HEGs needed in relation to their homing rate (a measure of efficacy) for 
successful elimination of a mosquito population. The bold centre line is the parameter estimates from the median of the posterior; the shaded 
bands represent the 95% credible intervals
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have a significant impact on both the efficacy required 
from gene drive constructs and the release strategies 
necessary for successful deployment both positive and 
negative. Numerical and analytical estimates of Rm were 
significantly lower under a linear density dependence and 
clumped egg-laying scenario than under continuous egg-
laying and a fitted power density dependence (Table  2). 
This level of reduction in Rm is substantial when consid-
ering predictions of the required homing rate and num-
ber of HEGs from our runs of the model by Deredec et al. 
[20].

Whilst we have looked only at HEG efficacy in this 
study, the variation in Rm will also be further com-
pounded by wild-type resistance. For example, in work 
by Beaghton et  al. [45] looking specifically at mutation 
rates in driving-Y interventions, Rm was key to the prob-
ability of mutations arising. This occurs because, with 
increasing Rm, the time to elimination is increased, and 
thus the probability that resistant mutations arise before 
population elimination is achieved. In addition, the prob-
ability of a resistant mutation becoming established also 
increases, as at a higher Rm the probability of stochastic 
loss decreases.

The fitting of a value for � < 1 for both clumped and 
non-clumped egg-laying scenarios suggests a negative, 
non-linear density effect, i.e. as the larval population 
increases towards the environmental carrying capacity, 
the rise in severity of density effects decreases. It could be 
suggested from these results that whilst the overall death 
rate in the population is increasing, at the individual scale 
the mortality rate is decreased. This could be explained 
by there being a protective effect or efficiency gain in for-
aging/energy expenditure within larger groups of larvae, 
as often seen in other organisms [48, 49]. Additionally, 
the effects of density dependence may be mitigated to an 
extent by deceased or smaller larvae acting as an alter-
nate food source.

The difference in Rm estimates between density 
dependence regimes is quite stark; however, it is difficult 
to identify the most probable functional form, particu-
larly as DIC values are relatively close. In the wild, there 
is likely variation between sites and locations which can 
impact on larval development and adult fitness. These 
may be dependent on multiple factors, e.g. highly local-
ised microclimates or differences in faunal communi-
ties. What this study perhaps more clearly shows is the 
importance of understanding this component of life his-
tory and the need for empirical data to help predict den-
sity dependence effects. This is something which was also 
highlighted in Khamis et al. [29], who similarly identified 
how density dependence could have a significant impact 
on vector control and cost-effectiveness. Additionally, 
our Rm estimates of non-clumped laying are lower than 

those from the comparable deterministic model by White 
et al. [28], likely a result of the more realistic, stochastic 
nature of our model and the fitting techniques used.

Estimated values for n and β in our study are relatively 
low, and lower than reported clutch sizes of Anopheles. 
However, the class E in our model is not a value for eggs, 
but early instar larvae, and thus will be lower than actual 
egg numbers when egg survival/hatching is considered. 
In addition, as the model does not include space or 
attempt to model individual breeding sites, the represen-
tation of density is not precise.

Generally, our model fitted to the data well, despite 
over- or underestimating some of the more extreme 
data points, particularly the higher peaks. However, it is 
important to consider how much overdispersion is inher-
ent in such population counts. Further, as our model does 
not simulate individual breeding sites, there is likely vari-
ation between and within villages we do not capture. For 
example, we assume a single mosquito species and do 
not consider the interactions and competition with other 
species in larval pools. Whilst the environmental niches 
of mosquitoes both within and outside the Anopheles 
gambiae complex vary (some species such as An. ara-
biensis prefer larger or more permanent pools, whilst 
An. gambiae s.s. prefer smaller temporary sites [50]), 
there is still the possibility of interspecies competition 
for resources, and transient environmental conditions 
may lead to temporary niche overlap. As rainfall leads to 
higher carrying capacity, it also affects the type of habitat 
available, which may vary between villages/sites, and this 
could lead to a shift in species-specific density depend-
ence effects. Lastly, in focusing solely on density depend-
ence in larval mortality, our model does not account for 
density or other detrimental effects in the adult popula-
tion, such as the size and availability of blood meals and 
infection status [51, 52], or the adult fitness costs result-
ing from density-dependent impeded larval development 
[53–55].

Conclusions
In this study, we have identified how general assump-
tions over egg-laying and the functional form of density 
dependence in mathematical models can have a signifi-
cant impact on the estimates of life-history parameters. 
These in turn fundamentally affect the likely impact of 
vector control interventions such as gene drive. Our 
results suggest that these aspects of mosquito ecol-
ogy should not be ignored in future studies, and under-
standing of local population dynamics are vital in our 
predictions of vector control efficacy. To build on this 
work, future data collection should consider detailed 
temporally regular, and preferably spatially stratified, 
population counts of adults and larvae in highly seasonal 
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settings to better characterise these effects. Further, it is 
important we understand how these effects may change 
under differing regimes of mosquito and aquatic diver-
sity, predator abundance and infection status, necessi-
tating the need for comprehensive longitudinal studies 
conducted in realistic environments.
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