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Abstract 

Background:  Babesia bovis is one of the most significant tick-transmitted pathogens of cattle worldwide. Babesia 
bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. Each 
life stage has developmental forms that differ in morphology and metabolism. Differentiation between these forms 
is highly regulated in response to changes in the parasite’s environment. Understanding the mechanisms by which 
Babesia parasites respond to environmental changes and the transmission cycle through the biological vector is criti‑
cally important for developing bovine babesiosis control strategies.

Results:  In this study, we induced B. bovis sexual stages in vitro using xanthurenic acid and documented changes in 
morphology and gene expression. In vitro induced B. bovis sexual stages displayed distinctive protrusive structures 
and surface ruffles. We also demonstrated the upregulation of B. bovis calcium-dependent protein kinase 4 (cdpk4), 
tubulin-tyrosine ligase (ttl), and methyltransferase (mt) genes by in vitro induced sexual stages and during parasite 
development within tick midguts.

Conclusions:  Similar to other apicomplexan parasites, it is likely that B. bovis upregulated genes play a vital role in 
sexual reproduction and parasite transmission. Herein, we document the upregulation of cdpk4, ttl, and mt genes by 
both B. bovis in vitro induced sexual stages and parasites developing in the tick vector. Understanding the parasite’s 
biology and identifying target genes essential for sexual reproduction will enable the production of non-transmissible 
live vaccines to control bovine babesiosis.
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Background
Bovine babesiosis caused by Babesia bovis is one of 
the most important tick-borne diseases of cattle in 
tropical and subtropical regions [1]. Babesia bovis is 
transmitted by Rhipicephalus larval ticks [2, 3]. As 
the infected larval ticks feed on the vertebrate host, 
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B. bovis sporozoites are inoculated via saliva into the 
host’s bloodstream [2], where they invade and replicate 
asexually in red blood cells (RBC) as merozoites [4, 5]. 
When R. microplus ticks feed on infected animals, they 
ingest B. bovis-infected erythrocytes. In the midgut of 
the tick, Babesia undergoes sexual reproduction, which 
develops into the kinete stage that circulates in tick 
hemolymph. After kinete invasion of eggs, the parasites 
are transmitted transovarially [6]. This results in larval 
progeny containing B. bovis sporozoites that can infect 
cattle [2].

The clinical signs of bovine babesiosis are characterized 
by high fever, hemolytic anemia, anorexia, inappetence, 
hemoglobinuria, and capillary parasite sequestration, 
leading to death when adult cattle are acutely infected 
[7]. However, young animals are more resistant to acute 
infections than adult cattle (> 1  year old). Younger ani-
mals’ innate immune system plays an important role in 
controlling the disease, especially through the clearance 
of infected erythrocytes in the spleen [6]. Parasites can 
also establish persistent infections in the absence of obvi-
ous clinical signs. These infections lead to inapparent and 
chronic infections. However, tick transmission of the par-
asite to other hosts can occur [6].

Babesia bovis transmission relies on the production 
of sexual stages by responding to environmental signals 
inside the tick midgut lumen [8]. Disruption of B. bovis 
development in the tick midgut would prevent trans-
mission via tick vectors. To date, there are no methods 
to isolate sexual stages from infected tick midgut. We 
artificially induced B. bovis sexual stage development in 
in  vitro cultures using xanthurenic acid (XA), an inter-
mediate metabolite derived from tryptophan metabolism 
[9, 10]. In vitro induction of B. bovis sexual stages allowed 
identifying sexual stage-specific genes and gene families 
such as the hap2 gene, the cystine motif-rich gene family, 
and the ccp gene family [10–12]. These genes encode pro-
teins that may be important candidates for developing an 
effective transmission-blocking vaccine to control bovine 
babesiosis [10–12].

In this study, we examined the differential gene expres-
sion of B. bovis calcium-dependent protein kinase 4 
(cdpk4), tubulin-tyrosine ligase (ttl), and methyltrans-
ferase (mt) upon XA induction. Babesia bovis CDPK4, 
TTL, and MT proteins are homologs to previously iden-
tified gamete-specific proteins in Plasmodium falci-
parum [13] and B. bigemina [14]. We also describe the 
effect of XA on parasite morphology associated with the 
development of sexual stages. The present study aimed to 
understand the basic biology of Babesia parasites and to 
identify additional sexual stage genes that will enable the 
development and production of novel Babesia vaccines 
and possible drug targets to control bovine babesiosis.

Methods
Cattle, ticks, and parasite cultures
A splenectomized 3–4 months male Holstein that tested 
negative for B. bovis by PCR [2] and cELISA [15] was 
used in this study. The animal was maintained according 
to protocols approved by the University of Idaho Institu-
tional Animal Care and Use Committee (IACUC #2018-
16). Rhipicephalus microplus La Minita tick strain [16] 
was used. Approximately 40,000 larvae from 2 g of eggs 
were placed under a cloth patch to feed. When approxi-
mately 1% of the nymphs molted to adults, the calf was 
inoculated intravenously with B. bovis S74T3Bo strain sta-
bilate containing approximately 1 × 107 B. bovis-infected 
erythrocytes [17] to synchronize the peak of parasitemia 
with female tick repletion. The infected calf was moni-
tored daily for B. bovis in peripheral blood and clinical 
signs of babesiosis [18] (Additional file 1: Fig. S1). Replete 
female ticks were collected, washed in tap water, dried, 
and incubated at 26 °C with 93% relative humidity. Dur-
ing the development of B. bovis within the tick midgut, 
five engorged ticks were removed daily from the incuba-
tor and dissected for 6 consecutive days. Individual mid-
gut was placed into 1  ml of TRIzol® reagent (Thermo 
Fisher Scientific, Waltham, MA) and stored at −  80  °C. 
Eleven days post-B. bovis inoculation, infected defibri-
nated blood was collected from the calf, and the eryth-
rocytes were washed five times with Puck’s saline G to 
remove white blood cells. Washed infected RBCs were 
pelleted by centrifugation at 3000  rpm, 10  min at 4  °C, 
and suspended in TRIzol.

Induction of in vitro B. bovis sexual stages
To induce sexual stages, B. bovis infected blood was col-
lected and maintained in in  vitro cultures for 1  week 
before induction. The in vitro cultured B. bovis infected 
erythrocytes were suspended in a medium with or with-
out 100  μM XA (Sigma, St. Louis, MO, USA) as previ-
ously described [10]. Induced in  vitro sexual stage 
parasites were isolated at 12  h and 24  h post-induction 
by differential centrifugation at 400×g for 1  min. The 
supernatant was recovered and the sexual stages pel-
leted at 2000×g for 5 min. The sexual stage parasites were 
suspended in TRIzol and stored at − 20 °C. To estimate 
cell viability, cells were suspended in PBS, mixed with an 
equal volume of 20 μg/ml 6-carboxyfluorescein diacetate 
[19] in PBS (Calbiochem-Behring, La Jolla, CA, USA), 
and incubated at room temperature for 15 min. The cells 
were then washed twice with PBS and visualized by a 
Leica microscope using LAS-X software.

Scanning electron microscopy
Induced sexual stages were washed three times with 
PBS. Samples were fixed in 2% paraformaldehyde, 2% 
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glutaraldehyde, and 0.1  M phosphate buffer and incu-
bated overnight at 4  °C. Samples were rinsed twice 
with distilled water and then post-fixed overnight in 2% 
osmium tetroxide. After rinsing, parasites were dehy-
drated with an ethanol series (30–100%). Final drying 
was with hexamethyldisilazane (HMDS). Approximately 
50–100  µl of sample suspended in HMDS was pipetted 
onto a coverslip attached to an aluminum SEM stub and 
placed in a vacuum desiccator overnight [20] before gold 
coating. Samples were imaged on a FEI SEM Quanta 
200F at Franceschi Microscopy and Imaging Center, 
Washington State University.

Transmission electron microscopy
Sexual stage parasites from induced cultures were 
washed three times with PBS. Samples were fixed in 2% 
paraformaldehyde, 2% glutaraldehyde, and 0.1  M phos-
phate buffer and refrigerated overnight at 4  °C. Fixed 
samples were microwaved in a Pelco Biowave Pro 36500 
Laboratory Microwave System for 2  min at 750 Watts, 
with a temperature cutoff restriction set at 28  °C. Sam-
ples were rinsed twice with distilled water and post-fixed 
overnight in 1% osmium tetroxide at 4 °C. After rinsing, 
the parasites were dehydrated with an ethanol series (30–
100%), then placed into propylene oxide (PO) and infil-
trated overnight in a 1:1 PO:Spurr resin mix. Infiltration 
medium was poured off and changed to 100% Spurr’s 
embedding media overnight and samples polymerized at 
65  °C before thin sectioning (80–100 nm) [21]. Sections 
were stained sequentially with uranyl acetate, potassium 
permanganate, and Reynold’s lead before observation 
with an FEI Tecnai G2 TEM.

In silico target gene identification by genomic search 
and bioinformatic analysis
To identify B. bovis homologs of P. falciparum and B. 
bigemina gamete-specific proteins CDPK4, MT, and 
TTL, bioinformatic analysis was performed based on 
amino acid identity using NCBI Blastp (https://​blast.​
ncbi.​nlm.​nih.​gov/​Blast) and the complete annotated B. 
bovis genome sequence (https://​www.​ncbi.​nlm.​nih.​gov/​
nucco​re/​AAXT0​00000​00.2) [22]. Clustal Omega analy-
sis (http://​www.​ebi.​ac.​uk/​Tools/​msa/​clust​alo/) was used 
to evaluate the percent amino acid identity of proteins. 
Protein domains conserved among B. bovis, P. falci-
parum, and B. bigemina homologs were determined 
using the Simple Modular Architecture Research Tool 
(http://​smart.​embl-​heide​lberg.​de/). Transmembrane 
domains were predicted for the target proteins using 
the Transmembrane Hidden Markov Model Package 
2 (TMHMM2) [23] (http://​www.​cbs.​dtu.​dk/​servi​ces/​
TMHMM-2.0). SignalP-5.0 was used to predict puta-
tive signal peptides [24]. Multiple alignments of CDPK4 

amino acid sequences from B. bovis, B. bigemina, T. 
equi, T. parva, and P. falciparum were generated using 
Multiple Sequence Alignment by CLUSTALW (http://​
www.​genome.​jp/​tools/​clust​alw/). Cello v2.5 predictor 
was used to predict protein translocation and subcellu-
lar localization [25] (http://​cello.​life.​nctu.​edu.​tw/). Phy-
logenetic analysis of CDPK4 from B. bovis, B. bigemina, 
T. equi, T. parva, and P. falciparum was conducted using 
Phylogeny.fr.software; the tree prediction is based on an 
approximate likelihood-ratio test (aLRT) as an alterna-
tive to nonparametric bootstrap and Bayesian estimation 
of branch support [26, 27] that used MUSCLE for align-
ment, Gblocks for curation, PhyML for phylogeny, and 
TreeDyn for graphic representation.

RNA extraction and cDNA synthesis
Total RNA was extracted from blood, induced sexual 
stages, and tick gut samples using TRIzol reagent accord-
ing to manufacturer’s protocol and the RNA pellets sus-
pended in 20 µl DEPC-treated water. RNA samples were 
treated with DNase I (Invitrogen, Waltham, MA, USA) 
following the manufacturer’s protocol to remove contam-
inating genomic DNA, quantified by Nanodrop (Thermo 
Fisher Scientific, Waltham, MA, USA). The removal of 
genomic DNA was confirmed by PCR targeting rap1 as 
previously described [28] using non-reverse transcribed 
samples. cDNA was synthesized from 150 ng total RNA 
of each sample with the Superscript® First-strand cDNA 
synthesis kit (Invitrogen, Waltham, MA, USA) following 
the manufacturer’s protocol.

Quantitative PCR assay and primer design
To examine the expression pattern of B. bovis cdpk4, 
mt, ttl, and hap2, specific primers for each gene were 
designed using the PrimerQuest® Tool (Integrated 
DNA Technologies (IDT)) (Table  1) following recom-
mended guidelines for qPCR primer design. Primers 
were purchased from Eurofins Genomics (Louisville, 
KY, USA). BLASTn analysis confirmed that primer 
sequences were not contained in the R. microplus 
genome (NC_023335.1). Melting curve analysis was 
added to the PCR cycle to check the specificity of each 
primer pair. Standard PCR was performed to amplify 
the full-length gene from cDNA samples for all tar-
get genes using primers listed in Table  1. PCR cycling 
conditions consisted of 95 °C for 3 min followed by 35 
cycles of 95  °C for 30  s, 55  °C for 30  s, and 72  °C for 
2  min, with a final extension of 72  °C for 5  min. PCR 
products were visualized by 1% agarose gel electro-
phoresis. PCR amplicons were cloned into PCR 2.1-
TOPO® (Thermo Fisher Scientific) and submitted for 
sequencing (Eurofins MWG Operon, Louisville, KY). 
Standard curves were generated for each gene using 
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specific quantities of plasmids. For the normaliza-
tion of the qPCR data, B. bovis α-tubulin and mitogen-
activated protein kinase (mapk) genes were evaluated 
as parasite reference gene candidates. CFX Manager™ 
software (Bio-Rad, Hercules, CA, USA) [29] was used 
to examine the stability of expression of the reference 
gene candidates. The qPCRs for the genes of inter-
est and reference gene candidates were performed in 
a CFX96™ Real-Time PCR Detection System (C1000 
Touch™ Thermal Cycler) (Bio-Rad, Hercules, CA, 
USA) using the SsoFast™ EvaGreen® Supermix Kit 
(Bio-Rad, Hercules, CA, USA). The cycling conditions 
consisted of initial denaturation at 95 °C for 2 min fol-
lowed by 40 cycles of 95  °C denaturation for 15  s and 
annealing at 55  °C for 30 s. Reactions were performed 
in triplicate in 20 μl using 300 nM of each primer and 
2  μl of 1/20 dilution of cDNA as template. qPCR for 
msa-1 was performed to amplify a 150-bp fragment 
between bases 604 and 754 of msa-1 (GenBank Acces-
sion number AF275911) using msa-1-specific primers, 
fluorogenic probe, and SsoAdvanced Universal Probes 
Supermix (Bio-Rad, Hercules, CA, USA) as previously 
described [2]. A standard curve was developed using 
dilutions of specific numbers of msa-1 plasmid as pre-
viously described [2]. CFX Manager™ software (Bio-
Rad, Hercules, CA, USA) was used to analyze the qPCR 
data. Amplification efficiency was evaluated to deter-
mine the sensitivity of the qPCR for each gene. Rela-
tive expression was calculated with a division of each 
gene detected expression by mapk detected expres-
sion within each time point. There were heterogeneous 
variances between time points, and therefore relative 
expression was transformed to log10. Differences due to 
time were tested with a mixed linear model with a fixed 

effect of time and repeated effect of technical replicate. 
Pairwise differences of time were tested with Tukey or 
Tukey-Kramer (unbalanced data) adjustment.

Results
Induction and morphological analysis of in vitro B. bovis 
sexual stages
Microscopic inspection of non-induced B. bovis blood 
stages showed pyriform-shaped parasites in RBC 
(Fig.  1a). In contrast, B. bovis cultures induced by 
decreasing temperature to 26  °C and addition of xan-
thurenic acid to the culture media showed the presence 
of extra-erythrocytic parasites with long projections and 
large round parasite stages, indicative of parasite sexual 
stage formation (Fig.  1b–d). Analysis of XA-induced 
cultured parasites using scanning electron microscopy 
showed that egress of in vitro-induced sexual stage para-
sites from infected RBC began by 3 h after the onset of 
induction (Fig.  2a). Babesia bovis induced sexual stage 
cells at 12  h post-XA induction displayed elaborate and 
distinctive protrusive structures, such as projections and 
surface ruffles (Fig. 2b–e). Babesia bovis induced sexual 
stages were found to undergo cell-to-cell fusion, form-
ing multinucleated syncytia, upon XA in vitro induction 
(Fig.  2f, g). Ultrastructural analysis of induced parasites 
using transmission electron microscopy showed parasites 
were mostly rounded or slightly ovoid, exhibiting distinct, 
unique features that are characteristic of in vitro induced 
B. bovis sexual stages. Typical Babesia organelles, such 
as prominent double-membrane nuclei, mitochondria, 
apicoplasts, spherical bodies, rhoptries and micronemes, 
vacuoles, and numerous free ribosomes, were observed 
in extracellular B. bovis sexual stages. Some parasites 
contained abundant cytoplasmic organelles, while others 

Table 1  Gene identification and primer sets of Babesia bovis genes of interest used for PCR and quantitative PCR

FL full length, qPCR quantitative PCR
a Information in parentheses refers to the purpose of PCR. Full-length primers used to amplify constructs used to build qRT-PCR standard curves
b Amplicon size in base pairs

Gene identificationa Locus tag Forward primers (5′-3′) Reverse primers (5′-3′) Sizeb

cdpk4 (FL) BBOV_IV003210 CGC​TGC​TAA​AGT​GCA​ACA​TAT​CTT​T CGT​GTA​TGC​ATT​TAG​ACA​CCT​AGT​TT 1707

cdpk4 (qPCR) BBOV_IV003210 GGC​AGT​ATG​TCG​GAC​AAG​GT CGA​ACG​ATC​CTT​TAC​CCA​GA 193

mt (FL) BBOV_II003780 ATG​ACA​GAA​CTT​GCC​CAT​GAT​CTC​ GAA​ACA​GTC​TGT​AAC​CTG​CGTTT​ 234

mt (qPCR) BBOV_II003780 TGA​CAG​AAC​TTG​CCC​ATG​ATC​ GGG​GAA​ACA​TCT​TCT​TCA​TCTCA​ 102

ttl (FL) BBOV_III004540 ATG​TTA​AAG​TCA​GAC​ATA​CCC​ATG​ TCT​TTG​AAA​AAT​TGC​AAG​TGG​ 1242

ttl (qPCR) BBOV_III004540 TAC​ACT​GGG​AAT​TGC​ACG​AA GAC​GCC​GTG​GGT​ACT​TTT​TA 205

mapk (FL) BBOV_IV005520 CTC​CAT​TGT​ACA​AGT​GCC​CAA​AGG​AG CAT​GGC​TTG​TAT​ATA​ATT​TTG​AGT​GG 2203

mapk (qPCR) BBOV_IV005520 GCT​TAC​GTA​ACC​CGC​CAC​TA ATA​TCA​AAG​GCA​CGG​CAG​AC 151

α-tubulin (FL) BBOV_III002820 GCC​AAC​TTC​AAT​CAC​TTC​ATT​CCG​ GAT​GCT​ACG​ATT​AAG​TAA​ATG​TTT​TTC​ 1463

α-tubulin (qPCR) BBOV_III002820 CAT​GCT​TGA​CAA​CGA​GGC​TA TGC​GAG​GGT​AAG​GTA​CCA​AG 188

hap2 (qPCR) BBOV_III006770 AAA​GCG​TCT​ATG​TAA​TCA​A ACA​GTT​TTC​TTC​TCG​TCA​ 165



Page 5 of 10Hussein et al. Parasites Vectors          (2021) 14:395 	

presented large vacuoles in the cytoplasm. Sequential 
ultrastructural studies of B. bovis sexual stages showed 
a pattern of coordinated development of sexual forms, 
starting with parasite egress from host RBC concomitant 
with the rupture of the infected RBC membrane (RBCM) 
observed 3 h after induction (Fig. 3a). The process culmi-
nated with parasite cell-to-cell membrane fusion and the 
formation of multinucleated syncytia (Fig.  3b, c). How-
ever, nuclear fusion was not observed.

In silico analysis of target genes
In silico analysis was performed to select B. bovis 
homologs to previously identified sexual stage genes 
in P. falciparum (cdpk4, mt, and ttl) and B. bigemina 
(mt, ttl). In silico predictions suggested the absence 
of signal peptide and transmembrane domains in B. 
bovis CDPK4, MT, and TTL proteins. Also, these pro-
teins were found to be cytosolic, consistent with their 

homologs in P. falciparum [13, 30]. Overall, B. bovis 
CDPK4, MT, and TTL amino acid sequences appeared 
well conserved compared with homologs in other 
species. Accession numbers and functional annota-
tion of B. bovis target proteins are shown (Table  2). 
Babesia bovis CDPK4 contains a serine/threonine 
protein kinase, catalytic domain (STKc_CAMK), 
and an EF-hand type Ca (2+) binding domain (Addi-
tional file 2: Fig. S2). Babesia bovis CDPK4 (GenBank: 
XP_001609485.1) shares 60%, 85%, 77%, and 68% 
amino acid identity with CDPK4 from P. falciparum 
(GenBank: XP_001349078.1), B. bigemina (GenBank: 
XP_012766984.1), T. equi (GenBank: XP_004833801.1), 
and T. parva (GenBank: XP_766594.1), respectively. 
Multiple alignments and phylogenetic analysis of 
amino acid sequences corresponding to the CDPK4 

Fig. 1  Morphology of B. bovis blood stages and induced sexual stages stained with 6-CFDA. a Blood stages. b–d Sexual stages induced in in vitro 
culture using XA at 26 °C. Scale bar: 5 µm

Fig. 2  Scanning electron micrographs of induced in vitro B. bovis sexual stages. a Lysis of the infected red blood cell (iRBC) membrane and release 
of B. bovis sexual stages (white arrow) from erythrocyte observed 3 h post-induction. b Extracellular B. bovis induced parasite (black arrow) observed 
12 h post-induction, c–e Exflagellation of B. bovis sexual stages observed 12 h post-induction. f, g Parasite fusion 24 h post-induction. Scale bar: 
2 µm
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of B. bovis, B. bigemina, T. equi, T. parva, and P. fal-
ciparum revealed conservation among apicomplexan 
parasites (Additional file 3: Fig. S3) consistent with the 
taxonomic evolution of B. bovis and related apicompl-
exan species (Additional file  4: Fig. S4). Babesia bovis 
MT (GenBank: XP_001609901.1) contains a conserved 
methyltransferase domain (Additional file  2: Fig. S2) 
that shares 55% amino acid identity with B. bigemina 
MT (GenBank: XP_012767431.1) and 33% with P. falci-
parum MT (GenBank: XP_001348700.2). Babesia bovis 
TTL (GenBank: XP_001611585.1) possesses a tubulin-
tyrosine ligase domain (Additional file  2: Fig. S2) and 
shares 57% amino acid identity with B. bigemina TTL 
(GenBank: XP_012769325.1) and 27% amino acid 

identity with P. falciparum gamete-specific protein 
TTL (GenBank: XP_002808689.1) (Table 3).

Expression of target genes in blood stages, induced sexual 
stages, and tick midgut‑specific stages
Quantitative PCR was used to analyze the transcrip-
tion pattern of B. bovis cdpk4, mt, and ttl genes in blood 
from an acutely infected animal, in non-induced cul-
ture (0  h), in cultures at 26  °C without or with XA at 
time points 12  h and 24  h, and in tick-specific stages 
from individual engorged tick midgut (MG) sam-
ples collected from B. bovis infected females. Babesia 
bovis α-tubulin, mapk transcripts were evaluated as 
B. bovis reference gene candidates for data normali-
zation (Additional file  5: Table  S1). The α-tubulin was 

Fig. 3  Transmission electron micrograph of ultrastructural changes in B. bovis upon XA sexual stage induction. The sections were made at 
time points a 3 h, b 12 h, and c 24 h after addition of XA. N nucleus, FV food vacuole, EP external processes, PPM parasite plasma membrane, M 
microneme, R rhoptry, EM erythrocyte membrane. The polymerized samples were 80–100 nm thin sections. Scale bar: 500 nm

Table 2  Accession numbers and functional annotation of Babesia bovis genes of interest

Locus_tag Chromosome 
number

Accession number 
of B. bovis genes of 
interest

Accession number 
of B. bovis proteins of 
interest

Function annotation Length cDNA (bp/aa)

BBOV_IV003210 4 XM_001609435.1 XP_001609485.1 Calcium-dependent protein kinase 4 
(CDPK4)

1707/517

BBOV_II003780 2 XM_001609851.1 XP_001609901.1 Hypothetical protein (MT) 234/77

BBOV_III004540 3 XM_001611535.1 XP_001611585.1 Tubulin-tyrosine ligase family protein (TTL) 1242/413

BBOV_IV005520 4 XM_001610431.1 XP_001610481.1 Mitogen-activated protein kinase (MAPK) 2203/584

BBOV_III006770 3 XM_001611756.1 XP_001611806.1 Membrane protein (HAP2) 2274/757

BBOV_I003060 1 XM_001608906.1 XP_001608956.1 Merozoite surface antigen-1(MSA-1) 1130/ 319
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considered inadequate for qPCR normalization because 
it was not stably expressed in the tested parasite stages. 
In contrast, mapk was stably expressed throughout dif-
ferent time points and the development of tick-specific 
stages and was selected as a reference gene for nor-
malization. Based on this, the transcription levels of all 
the target genes were normalized to the mapk expres-
sion level. The melt curve analyses showed the absence 
of primer dimers and nonspecific amplification for all 
tested genes; the efficiency of amplification ranged 
between 94 and 109% (Additional file 6: Fig. S5).

The data indicate that cdpk4 gene expression is signifi-
cantly upregulated in induced sexual stages (induced by 
decreasing temperature to 26  °C and addition of XA to 
the culture media) at 24  h (P < 0.0001) and tick-specific 
stages at days 2 and 6 compared to blood stages (Fig. 4a). 
In addition, the level of the mt transcript was also 
increased in induced sexual stages at 24  h (P < 0.0234) 
and tick-specific stages at days 1 to 6  compared to blood 
stages (Fig. 4b). However, expression of ttl was higher in 
induced sexual stages at 12  h (P < 0.0262) and tick-spe-
cific stages at days 1, 2, and 6 compared to blood stages 
(Fig.  4c). Expression of the hap2 gene was found to be 

Table 3  Protein sequence identities (%) between Babesia bovis homologs of Plasmodium falciparum  and Babesia bigemina sexual 
stage-specific proteins

B. bovis protein name B. bovis accession number P. falciparum 
accession 
number

Identity B. bigemina 
accession 
number

Identity Function annotation

CDPK4 (BBOV_IV003210) XP_001609485.1 XP_001349078.1 60 XP_012766984.1 85 Calcium-dependent protein kinase 4

MT (BBOV_II003780) XP_001609901.1 XP_001348700.2 33 XP_012767431.1 55 Hypothetical protein (Methyltrans‑
ferase)

TTL (BBOV_III004540) XP_001611585.1 XP_002808689.1 27 XP_012769325.1 57 Tubulin-tyrosine ligase family protein

Fig. 4  Relative expression of B. bovis genes in blood from an acutely infected animal, in non-induced culture (0 h), and cultures at 26 °C without or 
with XA at time points 12 h and 24 h, and tick-specific stages from individual engorged female tick midgut (MG) samples collected for 6 consecutive 
days after incubation (MG day1 to day 6). a Calcium-dependent protein kinase 4 (cdpk4). b Methyltransferase (mt). c Tubulin-tyrosine ligase (ttl). d 
Hapless 2 (hap2). e Merozoite surface antigen-1 (msa-1) genes. The data represent the mean of three experiments, each containing three technical 
replicates. Asterisk (*) indicates statistical pairwise differences between time points (P < 0.05)
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upregulated in induced sexual stages at 12  h and 24  h 
(P < 0.0485) and by tick-specific stages day 2 compared 
to blood stages (Fig. 4d). Also, hap2 gene expression was 
previously demonstrated using reverse transcription PCR 
(RT-PCR) to be exclusively transcribed by induced sexual 
stages and during B. bovis development within the tick 
midgut [10]. Interestingly, msa-1 expression was found 
to be maximal by blood stages (P < 0.0019) and gradually 
reduced over time during sexual stage induction and tick-
specific stages (Fig.  4e). The results represent the mean 
of three experiments, each containing three technical 
replicates (Additional file  7: Table  S2). Taken together 
with the morphological analysis, these results affirmed 
that XA and a drop-in temperature play an important 
role during B. bovis sexual stage formation in the in vitro 
induction system used in these experiments.

Discussion
In the present study, we examined gene expression and 
morphology associated with developing sexual stages in 
induced in vitro cultures and midguts of replete R. micro-
plus fed on B. bovis infected calves. Herein, we extend the 
number of genes upregulated during B. bovis sexual stage 
development to include cdpk4, ttl, and mt. CDPK4, a ser-
ine/threonine kinase, is an enzyme that plays an impor-
tant role in intracellular calcium signaling in plants, 
green algae, ciliates, and apicomplexan parasites [31]. 
In malaria parasites, CDPK4 is known to be involved 
in stage-specific cellular responses to calcium signal-
ing transduction pathways, cell cycle regulation, and life 
cycle progression [32]. In P. berghei male gametocytes, 
CDPK4 is transcriptionally upregulated [30] and involved 
in sexual reproduction. Importantly, inhibition of P. fal-
ciparum CDPK4 blocked malaria transmission [33–35]. 
Plasmodium falciparum TTL is involved in post-transla-
tional C-terminal tyrosination of α-tubulin and regulates 
the formation of microtubule interacting proteins [13]. 
Plasmodium falciparum MT plays a fundamental role in 
gene regulation through the methylation of histones and 
non-histone proteins such as transcription factors which 
are essential for parasite development and differentia-
tion [36]. In B. bigemina, MT was identified as a marker 
of tick stage development [14]. Previous studies dem-
onstrated that differential expression of hap2 [10], the 
cystine motif-rich gene family [11], and the ccp gene fam-
ily [12] was associated with apicomplexan sexual stage 
development. Also, basal B. bovis kinete-specific protein 
(ksp) expression by blood-stage parasites was found to 
be upregulated by tick stage parasites [37]. However, KSP 
protein is restricted to tick stage parasites [37]. These 
observations suggest that the expression of specific pro-
teins is required for parasite development within the 
tick vector. The data presented here provide evidence 

for the importance of cdpk4, ttl, and mt in the develop-
ment of B. bovis sexual stages [10]. This is supported by 
our previous work on B. bigemina that found ttl and mt 
genes were upregulated in sexual stages from tick mid-
gut or induced in vitro culture using tris 2-carboxyethyl 
phosphine [14]. In P. falciparum, cdpk4, ttl, and mt are 
upregulated in sexual stages and involved in sexual repro-
duction and arthropod infection [13, 32, 34, 36, 38]. After 
B. bovis sexual and zygote formation, parasites develop 
into kinetes in midgut epithelial cells that migrate to tick 
hemolymph by day 6 after repletion [37]. Upregulation 
of B. bovis cdpk4, ttl, and mt expression at day 6 after 
female tick dropping suggests that these genes may also 
be important in B. bovis kinete development. This agrees 
with a recent RNA-seq study that showed all three genes 
were highly upregulated in B. bovis kinetes [39].

It has been reported that XA is important for in vitro 
induction of Babesia sexual stages [8, 10, 40]. In malaria, 
XA is present in the gut of Anopheles mosquitos and is 
known to induce gametogenesis of P. falciparum [9]. It 
has recently been shown that XA supported the growth 
of a tick-borne pathogen, Anaplasma phagocytophilum, 
in tick cells by inhibition of tryptophan dioxygenase 
activity [41]. However, it remains unknown whether this 
metabolite is present in the tick midgut [10]. Babesia 
bovis sexual stages induced in vitro by XA were observed 
by light microscopy to have distinct morphological and 
ultrastructure features similar to those described for 
B. canis, B. bigemina, and B. bovis sexual stages derived 
from tick midgut or Boophilus microplus cell cultures [8, 
42]. Sexual stages of Babesia are characterized by cyto-
plasmic projections and microtubule development [8, 
10, 43]. Using SEM, we observed aggregation of in vitro 
induced parasite strahlenkörper forms similar to B. bovis 
and B. bigemina developing within the tick midgut [8, 44, 
45]. This aggregation may improve contact between indi-
viduals before the fusion of sexual stages. The close jux-
taposition of individuals was confirmed using SEM and 
TEM, similar to previous work on B. bovis [10].

Further experiments are necessary to investigate the 
role of B. bovis CDPK4, MT, and TTL proteins dur-
ing parasite development within the invertebrate host. 
Knocking out cdpk4, mt, and ttl genes using gene editing 
and transfection techniques will facilitate determining 
whether disrupting these genes interferes with the para-
site’s life cycle within the tick vector.

Conclusions
Understanding the development of parasite sexual 
stages is considered a key component of future trans-
mission blocking vaccines and the control of bovine 
babesiosis. Proteins encoded by the genes described 
in this study, such as CDPK4, TTL, and MT, might be 
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potential drug or vaccine targets. The current study is 
a part of our ongoing research to understand B. bovis 
sexual stage development to design strategies to block 
parasite transmission.
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