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Abstract 

Background:  Reproductive containment provides an opportunity to implement a staged-release strategy for 
genetic control of malaria vectors, in particular allowing predictions about the spread and persistence of (self-limiting) 
sterile and male-biased strains to be compared to outcomes before moving to (self-sustaining) gene-drive strains.

Methods:  In this study, we: (i) describe a diffusion–advection–reaction model of the spread and persistence of a 
single cohort of male mosquitoes; (ii) elicit informative prior distributions for model parameters, for wild-type (WT) 
and genetically modified dominant sterile strains (DSM); (iii) estimate posterior distributions for WT strains using data 
from published mark-recapture-release (MRR) experiments, with inference performed through the Delayed-Rejection 
Adaptive Metropolis algorithm; and (iv) weight prior distributions, in order to make predictions about genetically 
modified strains using Bayes factors calculated for the WT strains.

Results:  If a single cohort of 5000 genetically modified dominant sterile male mosquitoes are released at the same 
location as previous MRR experiments with their WT counterparts, there is a 90% probability that the expected 
number of released mosquitoes will fall to < 1 in 10 days, and that by 12 days there will be a 99% probability that no 
mosquitoes will be found more than 150 m from the release location.

Conclusions:  Spread and persistence models should form a key component of risk assessments of novel genetic 
control strategies for malaria vectors. Our predictions, used in an independent risk assessment, suggest that geneti-
cally modified sterile male mosquitoes will remain within the locality of the release site, and that they will persist for 
a very limited amount of time. Data gathered following the release of these mosquitoes will enable us to test the 
accuracy of these predictions and also provide a means to update parameter distributions for genetic strains in a 
coherent (Bayesian) framework. We anticipate this will provide additional insights about how to conduct probabilistic 
risk assessments of stage-released genetically modified mosquitoes.
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Background
Over the last 30  years conventional control strategies 
have reduced the global incidence rate of malaria. The 
efficacy of these strategies, however, appears to be wan-
ing. Global malaria incidence rates have barely changed 

since 2014, and progress has stalled at around 57 cases 
per 1000 population at risk despite increased expendi-
ture on elimination and prevention between from 2014 to 
2017 [1]. Consequently, the World Health Organisation 
predicts that morbidity targets for 2020, 2025 and 2030 
will not to be met without significant improvements in 
vector control and chemoprevention.

Laboratory studies and modelling indicate that novel 
control strategies that use gene drives to force engineered 
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alleles through vector populations with the aim to sup-
press these populations or render them unable to trans-
mit plasmodium parasites could augment conventional 
strategies and significantly improve current rates of 
malaria control [2–5]. As with many novel technologies, 
however, the safety of genetic control methods is uncer-
tain, and the potential for spread and ecosystem-wide 
impacts makes the gene drive strategy contentious [6, 7].

To date, all research on gene-drive modified mos-
quitoes (GDMMs) has been conducted in laboratories 
under strict physical, ecological, reproductive and/or 
molecular containment [8]. Current guidance recom-
mends that if containment is to be relaxed it should be 
done in a “phased-release” strategy wherein data are 
gathered, risks are evaluated and containment is gradu-
ally lifted in a step-wise fashion if and when the risks are 
deemed acceptable [9, 10]. The possibility of long-dis-
tance dispersal [11] and biosecurity concerns with large 
semi-field enclosure, however, may erode confidence in 
strategies that try to gradually lift ecological or physical 
containment.

Genetic and reproductive containment strategies may 
be more amenable to a gradual-release strategy, and sev-
eral approaches are currently being pursued [12–14]. In 
this paper we focus on the spatio-temporal dynamics 
that govern the spread and persistence of a single cohort 
of genetically modified, dominant sterile male (DSM) 
Anopheles coluzzii mosquitoes released in a small village 
in Burkina Faso. These sterile male mosquitoes are repro-
ductively contained (but females that carry the sterilising 
construct are fertile) and could represent the first stage in 
a three-stage pathway to malaria vector control using a 
gene drive that results in a male-biased sex ratio [15, 16].

In our analysis the spatio-temporal dynamics of DSM 
mosquitoes are driven by: (i) a diffusion process that 
accounts for the dispersal capacity of the insects; (ii) 
an advection process that accounts for the attraction of 
individuals to swarms, and (iii) a reaction process that 
accounts for the death of sterile male mosquitoes. These 
processes can be described mathematically by a par-
tial differential equation (PDE) of the advection–diffu-
sion–reaction type, which models how the distribution 
of mosquitoes in time and space is affected by a chemo-
attractant present in the environment. Models of this 
type have also been widely used within the environmental 
and ecological literature. In particular, such models have 
been used previously to model mosquitoes, for example 
the dispersal of Aedes albopictus in Reunion Island using 
a similar type of parabolic PDE [17].

Our objective is to predict the spread and persistence 
of the genetically modified mosquitoes ahead of a pro-
posed field release. These predictions are an important 
component of an independent risk assessment conducted 

prior to the field release [18] that assessed the risk of vec-
tor-borne disease transmission [19] and could also help 
to inform the design of a post-release monitoring strat-
egy. Our approach implements the Bayesian paradigm; 
we elicit the prior distribution of model parameters from 
relevant experts, for both wild-type (WT) mosquitoes 
and their DSM counterparts. We obtain the posterior 
model parameter values for the WT parameters using 
the results of mark-release-recapture (MRR) experi-
ments conducted by [20]. We then use Bayesian model 
averaging to predict the spread and persistence of DSM 
mosquitoes.

Methods
PDE model
The literature review conducted in [21] suggests that 
the behaviour of host-seeking mosquitoes can be cat-
egorised as: (i) plume finding, in which flight direction 
is either random (kinesis), determined by visual features 
in the absence of wind or deliberately upwind, down-
wind or crosswind (anemotaxis) when wind is present; 
and, (ii) plume tracking, where once the mosquito detects 
an odour plume, flight direction is deliberately upwind, 
or possibly determined by the odour gradient in wind-
less conditions, in order to find the odour source (posi-
tive chemotaxis). More details on the properties of these 
search strategies can be found in [22].

In this analysis, we assume that village compounds 
(groups of closely spaced houses) provide a source of car-
bon dioxide (CO2) that acts as an attractant for female 
Anopheles gambiae sensu strictu and Anopheles coluzzi 
mosquitoes [23, 24]. We further assume that male mos-
quitoes swarm in places where the probability of encoun-
tering receptive females is highest [25]; hence, swarms 
occur in and around compounds (as evident in Figure 1 
of [20]). Consequently, high concentrations of attract-
ant result in flights that (on average) are closer to the 
direction of the nearest compound for both males and 
females. Conversely, low concentrations have less influ-
ence on the mosquitoes and result in greater variability in 
flight direction. We do not incorporate the effect of wind 
speed or direction into the analysis (rather, we assume 
that the local dispersal dynamics are not greatly affected 
by the wind at this spatial scale), and we also assume that 
the attraction process is not influenced by the number of 
mosquitoes.

With these assumptions we developed an advection–
diffusion–reaction model to describe the expected num-
ber of male WT and DSM mosquitoes,

with the following boundary conditions (Neumann 
reflecting conditions):

(1)�t = D[�ss − α · ∇s(�U(s))]− µ�,
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where U(s) is a function that describes the strength of 
mosquito attraction at location s, and α enables us to 
modulate the effect of the utility function on the overall 
attraction. Utility functions like this have been used in 
similar ecological contexts to describe an attractive or 
repulsive flux [26].

In this model we use swarm sites as centers of attrac-
tion and assume that the strength of attraction decays 
according to a squared-sum exponential decay kernel

where L are the known swarm locations (identified 
prior to the MRR experiment [20]) and σ is an unknown 
parameter that controls the range of attraction—that is, 

(2)
∂�

∂s
= 0

(3)U(s) =
∑

sℓ∈L

exp

[

−
|s − sℓ|

2

σ 2

]

the distance beyond which the attraction of a swarm site 
sℓ for a mosquito is negligible.

The theoretical solution to the partial differential Eq. 1 
is the expected number of male mosquitoes at time t and 
location s = (easting, northing) . The partial derivatives 
are denoted �t (with respect to time) and �ss (with respect 
to location). Because we use a numerical solver, we define 
a grid over the spatial domain. Each grid cell is therefore 
one areal unit. In this study, an areal unit is a square of 
100 m2 of area. All process model parameters are sum-
marised in Table 1.

Data
In this analysis we use the results of five MRR experi-
ments [20] wherein approximately 5000 adult male 
WT mosquitoes, marked with a coloured powder, were 
released 2 h before swarming (around 16:00 h), at three 
different locations, on five different dates (Table 2). Mos-
quitoes were recaptured in three ways via: (i) swarm sam-
pling in the evening (times were not specified, but we 
assume the sampling occurred between 19:00 and 21:00 
h); (ii) pyrethroid spray catches (PSC) in the morning 
inside houses; and (iii) placement of humidified clay pots 
within rooms within houses, which were subsequently 
checked in the morning (between 06:00 and 07:00 h). All 
release and recapture sites were geo-located to allow for a 
spatial model to be used.

Recaptures were performed for 7 days after release for 
all experiments except the first one where recaptures 
were performed for 5  days. We used the results of the 
first four MRR experiments to derive posterior estimates 

Table 1  The parameters and units of the diffusion–advection–
reaction model for sterile male mosquitoes

Name Description Units

α Attractiveness of swarms reward−1 m−1

µ Male mosquito mortality rate day−1

� The expected number of male mosquitoes Number of mos-
quitoes per areal 
unit

D Isotropic diffusion coefficient m2 day−1

σ Decay of attraction to swarm sites m

Table 2  Summary of the MRR experiments conducted by Epopa et al. [20] in Burkina Faso

The last column presents the average distance for recapture (in meters). We use the results of the first four experiments to parameterise our model and calculate Bayes 
factor for expert-derived priors, and use the fifth MRR experiment to validate the model predictions

MRR Date Release site GPS coordinates N mosquitoes 
released

N mosquitoes 
captured

Distance (m)

Longitude Latitude

1 2013-10-09 A − 4.4724 11.2347 1146 32 140

1 B − 4.4755 11.2342 1158 9 344

1 C − 4.4718 11.2318 1103 6 205

2 2014-05-07 A − 4.4724 11.2347 1878 6 94

2 B − 4.4755 11.2342 1655 1 266

2 C − 4.4718 11.2318 1734 1 193

3 2014-09-04 A − 4.4724 11.2347 1665 56 133

3 B − 4.4755 11.2342 1673 4 440

3 C − 4.4718 11.2318 1684 13 205

4 2015-04-09 A − 4.4724 11.2347 2107 1 55

4 B − 4.4755 11.2342 2013 3 386

4 C − 4.4718 11.2318 1953 18 190

5 2015-10-09 C − 4.4724 11.2347 5992 18 141
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of male WT model parameters, reserving the results of 
the fifth experiment to compare with model predictions.

Priors
Process model
A key challenge when conducting risk assessments of a 
novel technology is the lack of empirical information. 
Without any operational history from which success 
and failure rates might be estimated, quantitative risk 
predictions must (at least initially) be based on the test-
able predictions of domain experts. The Bayesian infer-
ence paradigm encourages the careful elicitation of prior 
information and provides a coherent mechanism for 
updating this information as data become available [27]. 
The experimental observations and expert elicitation, 
however, must be independent but carefully aligned for 
this process to work.

For this analysis we carefully elicited opinions on 
the mortality rate and dispersal distance of WT and 
DSM male mosquitoes from four independent recog-
nised experts on malaria transmission by mosquitoes 
in Africa and genetic vector control methods; the inde-
pendent experts were not involved in the development 
of the DSM mosquitoes [18]. The experts were encour-
aged to draw on their own research experience and 
knowledge of the published literature while construct-
ing their assessments. Prior to the elicitation, experts 
were provided information on the genetic construct 
(originally incorporated into the G3 laboratory colony 
strain of Anopheles gambiae) and were told that the 
genetically modified strain would be repeatedly back-
crossed with WT mosquitoes captured in the vicinity 
of a biosecure laboratory in order to gradually replace 
the G3 genetic background with that of the locally 
originated strain. The location of the laboratory was 
provided to each expert, but the species of local WT 
mosquitoes was not specified. For the mortality rate, 
we proposed that the experts answer questions about 
either the probability of mortality, the probability of 

survival or the life expectancy. All responses were con-
verted to an estimate of the daily probability of sur-
vival (p) which was then converted to the mortality 
rate parameter ( µ = − log(p) ) used in the PDE model 
(Additional file 1).

The model’s diffusion parameter ( D ) was not elicited 
directly but calculated using the experts’ prior opinion 
on the average daily dispersal distance (d) of male mos-
quitoes. All experts agreed that a log-normal distribu-
tion provided the most appropriate description of their 
uncertainty for both WT and DSM strains. The model’s 
prior diffusion parameter was subsequently calculated 
using the relation D = d2/π t (see Additional file 2 for a 
detailed derivation). The geographical and temporal con-
text of the elicitation was carefully prescribed, including 
a standardized time frame (dispersal over a 1-day period), 
so that all experts’ opinions could be combined.

The model’s two chemotaxis-related parameters are: (i) 
the relative strength of attraction towards the source of 
the attractant that a mosquito experiences at a location 
( α ), with units m−1R−1 where m is the distance in meters 
between the location and the source and R is a meas-
ure of the “reward” at the source, often expressed as the 
concentration of CO2 for female mosquitoes; and (ii) the 
distance beyond which a mosquito is negligibly attracted 
to a swarm site, called the range ( σ ) with units m. The 
attractiveness of a swarm site at distance σ from a mos-
quito is roughly 38% of its attractiveness at zero distance.

Finding prior information on these parameters proved 
difficult for the particular setting of this model, in par-
ticular for α . We therefore chose a very broad prior distri-
bution for α that spans several orders of magnitude, from 
1% (1st percentile) to 140% (99th percentile) of the attrac-
tion at the source. For the range σ defined the same way 
we do, different articles on related species provide values 
ranging from 3 [28] to 18 m for single baiting or > 36 m 
for double baiting [29], or even 40 m [30]. We therefore 
used a log-normal distribution for this prior with positive 
probability across all these possibilities (Table 3).

Table 3  Process (PDE model) and observation model parameters, prior distributions and sources

cfr Clay pots resting catches, psc pyrethroid spray catches, SS swarming samples, PDE partial differential equation, SOP standard operating procedures (the procedure 
used during the MRR experiments are described in a set of SOP that were made available to us as part of an independent risk assessment process)

Parameter Prior parameters Prior distribution Source

Mortality ( µ) θµ : mixture (see Fig. 2) Beta Experts

Diffusion (D) θD : mixture (see Fig. 2) Log-normal Experts

Swarm attraction ( α) θα = {−2, 1} Log-normal Weakly informative

Swarm range ( σ) θσ = {3.5, 4} Log-normal Literature

Catchability cfr ( pcfr) θcfr = {1, 1} Beta Weakly informative

Catchability psc ( ppsc) θpsc = {1.4, 1} Beta SOP

Catchability SS ( pss) θss = {10, 20} Beta SOP
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Observation model
An important advantage of the Bayesian paradigm is 
that it allows us to develop more realistic hierarchical 
models that capture uncertainty in the biological and 
physical processes that drive a phenomenon, as well as 
the uncertainty associated with the measurement pro-
cess with which these processes are observed. In this 
context, this allows us to reflect the uncertainty about 
how many mosquitoes any particular trap will catch 
given a known number of mosquitoes in the proximity 
of the trap.

Here we represent the observation model uncer-
tainty using three, trap-specific, catchability param-
eters, denoted pcfr for clay-pots, ppsc for insecticide 
spraying and pss for swarm sampling. These parameters 
define the probability of catching a mosquito given 
that it was in close proximity of the trap at the time of 
sampling [31]. Note that prior and posterior estimates 
of these parameters depend on the model resolution 
because the definition of “close proximity” is deter-
mined by the resolution of the raster (i.e. the grid cell 
size) over which the PDE model is numerically solved. 
Hence, all predictions must be made at the same reso-
lution used for solving the PDE and updating the prior 
distributions.

The priors for the catchability parameters were cho-
sen according to the following principles:

•	 For pss , a beta distribution with parameters 
αss = 10 and βss = 20 (meaning on average one 
third of the mosquitoes in the swarm are caught, 
following the standard operating procedures of the 
MRR experiment, which requires one third of the 
swarm to be captured).

•	 For ppsc , a beta distribution with parameters 
αpsc = 1.4 and βpsc = 1 . This prior was chosen 
because the PSC procedure involves spraying an 
entire room and capturing all the dead mosquitoes 
in the room. The PDE model, however, is specified 
at a resolution of the compounds, which on average 
have 1.4 rooms. We assume that each room has on 
average the same number of male mosquitoes.

•	 For pcfr , assuming this is the least efficient method 
but not having more information we deliberately 
selected a fairly low informative prior. So we chose 
a beta distribution with parameters αcfr = 1 and 
βcfr = 1.

A complete list of process and observation model pri-
ors and their sources is summarised in Table 3.

Inference
WT male parameters
A Bayesian hierarchical model (BHM) is classically 
written:

where here θ is the vector of parameters of the PDE 
model and the trap catchability parameters, � refers to 
the expected abundance of male mosquitoes in the vicin-
ity of the traps and y refers to the MRR data collected 
following the 12 releases ( r = 1, . . . , 12 ), observed with 
three different collection (trap) techniques ( c = 1, . . . , 3 ). 
Assuming conditional independence of the observations, 
the posterior distribution can be re-written as:

where θd is the list of parameters defined in Table 1.
For a given release r, we describe the number of avail-

able released mosquitoes at time t as a Poisson random 
variable with expectation �r(t) , where the dependence of 
this expectation on location is suppressed:

where �r(t) is given by the PDE model described in Eq. 1. 
The data y are the observed count of male mosquitoes in 
a given trap. Since the traps catch only a portion of the 
mosquitoes that occur in their immediate vicinity, a natu-
ral trap observation model is the binomial distribution:

where nr is a realization of the Poisson random vari-
able �r (the expected number of released mosquitoes in 
the trap’s immediate vicinity), and pc is the catchability 
parameter, or “trap efficiency”, which is trap depend-
ent. In this study we do not account for the possibility 
of false positive (insects or mosquito species incorrectly 
identified as released male mosquitoes) or false negative 
(released male An. gambiae mosquitoes incorrectly iden-
tified as something else) probabilities as they are assumed 
to be equal to zero [20].

Given the binomial likelihood, the posterior distribu-
tion is obtained by integrating over the possible Poisson 
outcomes:

(4)
π(θ , �|y) ∝ π(y|�)

︸ ︷︷ ︸

data

π(�|θ)
︸ ︷︷ ︸
process

π(θ)
︸︷︷︸

prior

(5)

π(θd , �r , pc|y) ∝
�

c

�

r



π(yr,c|�r , pc)
� �� �

data

π(�r |θd)
� �� �
process



π(θd , pc)
� �� �

prior

(6)nr(t)|�r(t) ∼ Poisson(�r(t))

(7)yr,c|nr , pc ∼Binomial(nr , pc)
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Markov Chain Monte Carlo (MCMC) inference meth-
ods have been successfully applied to hierarchical Bayes-
ian models, similar to the model described here, on many 
occasions (see, for example [32–35]). We found, however, 
that the standard random-walk Metropolis MCMC rou-
tine was too slow to mix. Furthermore, in this context, 
more advanced methods, such as Hamiltonian Monte 
Carlo sampling, which require repeated likelihood com-
putations along the proposal path, are inefficient because 
of the high computational costs entailed by the need to 
numerically solve the PDE model for each new proposal.

We found a reasonable compromise through the 
Delayed-Rejection Adaptive Metropolis (DRAM) algo-
rithm, proposed by [36]. This MCMC algorithm uses 
a multivariate proposal distribution that automatically 
adapts to allow for posterior correlations between the 
parameters and identifies the directions of principal 
change along the ridges in the posterior surface. The 
acceptance rate of the DRAM algorithm is also improved 
by using a delayed rejection scheme where, instead of 
immediately advancing the chain following rejection of 
a parameter set, a second proposal is made that depends 
on both the current position of the chain and the rejected 
parameter set. We implemented DRAM by using the 
function modMCMC in the FME package [37] in R ([38]; 
https://​www.R-​proje​ct.​org/), using one delayed rejec-
tion step and updating the proposal distribution every 
200 iterations. We run a total of three MCMC chains of 
15000 samples each, with 5000 used as burn-in. The con-
vergence of the chains was assessed using Gelman’s R̂ cri-
terion (see chapter 11 in [39]).

Posterior prediction validation
We evaluated the accuracy of the posterior model predic-
tions by comparing them against the observed recaptures 
in the MRR experiment that we deliberately withheld 
from the inference procedure. The fifth MRR experi-
ment was conducted at the same location as the first 
four experiments, and under similar conditions with two 
exceptions: (i) all marked male mosquitoes were released 
at a single location, and (ii) a much larger number of 
mosquitoes were released (Table  2). The experimen-
tal conditions and population dynamics might there-
fore be considered to be slightly different than those 
which prevailed during the first four experiments. If the 
model is nonetheless able to make sufficiently accurate 

(8)π(θd , �r , pc|y) ∝
�

c

�

r




�

nr

π(yr,c|nr , pc)π(nr |�r)
� �� �

data



π(�r |θd)
� �� �
process

π(θd)
� �� �

prior

predictions, then we may be more confident in its ability 
to be generalised to other similar release scenarios.

Bayesian model averaging
The field data for the WT male mosquito allows us to 
calculate the posterior distribution for the WT mortal-
ity and dispersal distance parameters. This in turn allows 
us to measure how well each expert’s prior distribution 
matches the posterior distribution, and weight each 
expert’s response accordingly. We do this by considering 
each expert’s prior as an alternative model and use the 
theory of model evidence [40] to calculate the Bayes fac-
tor [19, 41].

We assume that experts who are good at predicting 
outcomes with WT mosquitoes (i.e. those whose prior 
distributions are close to the posterior distributions) will 
also be good at predicting outcomes with DSM mosqui-
toes, and weight the experts’ DSM priors by the posterior 
probability of the models using Bayesian model averaging 
to obtain a weighted linear pool of expert opinion for the 
DSM mortality and dispersal distance (Fig. 1).

Results
WT parameters
Table 4 provides the summary statistics of the posterior 
distributions of the PDE model parameters (Fig.  2 pro-
vides both the priors and posteriors for comparison). The 
use of the MRR data allowed us to provide refined esti-
mates for the parameters of the PDE model. The diffusion 
coefficient in particular has seen its uncertainty decrease, 
yielding a mean value of 127 m2 per day. The chemotaxis 
component has a posterior mean value of about 0.07, 
while the range parameter for the mosquito attraction is 
about 33.9 m.

The posterior samples of the dispersal and swarm 
attraction parameters are highly correlated such that high 
dispersal values are associated with low attraction, and 
vice-versa. We anticipated this and deliberately chose a 
weakly informative prior for the attraction parameter to 
allow the data to drive their posterior estimates as far 
as possible. The largest observable dispersal, however, 
is clearly dictated by the distance between the sources 
of attractant (compounds) and the traps laid out in the 
field. In this instance, all traps were laid within 500 m of 
release sites and compounds (Fig. 1 in [20]), limiting the 
ability to infer the possibility of the much higher dispersal 
values represented in the expert prior (Fig. 2).

https://www.R-project.org/
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Spread and persistence of male WT mosquitoes
Figure 3 provides an overview of the expected evolution 
of the number of mosquitoes caught in the set of traps 
set for the fifth MRR (just 14 selected locations where at 
least 1 mosquito was caught during MRR 5). When com-
paring the model outcomes to the actual capture data, 
we note that of the 365 observations (of the number of 
mosquitoes caught in a given trap at a given time), only 
11 observations report numbers outside the 90% cred-
ible interval given by the model, providing a good level of 
confidence on the ability of the model to capture the gen-
eral dynamic and its ability to make usable predictions 
both in space and time about the spread and dispersal of 

Fig. 1  Statistical model structure. Hierarchical structure of the model for the observations on WT males and the connection to the spread and 
persistence prediction for DSM mosquitoes. The parameters α (chemotaxis attraction strength) and σ (chemotaxis attraction range) are shared 
between the two strains. Abbreviations: DSM, Dominant sterile male; WT, wild type

Table 4  Summary statistics for the posterior distributions of the 
PDE model parameters inferred from the wild-type MRRs

a The equivalent daily mortality rate value is given in parentheses, for ease of 
comparison with other studies. Q05: 5th quantile, Q95: 95th quantile

Parameter Mean Q05 Q95

Mortality ( µ)a 0.16 (0.14) 0.11 (0.10) 0.24 (0.21)

Diffusion (D) 127.0 113.7 140.7

Swarm attraction ( α) 0.07 0.03 0.10

Swarm range ( σ) 33.9 19.8 56.1

Catchability PSC ( ppsc) 0.18 0.11 0.25

Catchability cfr ( pcfr) 0.03 0.02 0.05

Catchability SS ( pss) 0.29 0.24 0.34
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WT strain mosquitoes. The reported root-mean-square 
deviation (RMSE) for this cross-validated experiment is 
0.335.

DSM parameters
The weighted linear pool priors for DSM mortality and 
diffusion (weighted according to the Bayesian model 
averaging approach detailed above) are summarised in 
Table 5. The two parameters are quite different from the 

WT posterior estimates, with the DSM mortality prior 
sixfold higher than the WT posterior, and the dispersal 
multiple orders of magnitude bigger.

The difference between the posterior distributions for 
WT and DSM mortality reflects the effect of the Bayes-
ian model averaging but also the significant reduction 
in uncertainty that occurs when moving from prior 
to posterior distributions (see Fig.  2), as often occurs 
in a Bayesian analysis. The linear pool of expert prior 

Fig. 2  Prior and posterior distributions. Plot of the prior (elicited) and posterior (inferred) distributions for the four partial differential equation 
model parameters ( α , µ , σ , D). a Dispersal parameter D, b daily mortality µ , c swarm attractiveness α , d swarm attractiveness decay σ
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distribution for the dispersal distance of WT mosqui-
toes was also very much higher than its posterior distri-
bution estimated using the data. It is possible therefore 
that the weighted linear pool prior for DSM dispersal will 
also prove to be an overestimate, noting of course that 
the posterior estimates of WT dispersal are conditional 
on the design of the MRR experiments which was estab-
lished before this analysis.

Fig. 3  Model performance. Plot of the true observations (red crosses) and the posterior predictive expected number of catches (orange line) from 
the simulated model, as a function of days. The orange shading represents the 90% credible interval for the number of catches at the specified 
location. It is expected that 90% of the red crosses fall within the orange polygon

Table 5  Updated statistics for the PDE model parameters using 
the WT MRR results and the DSM priors

a The equivalent daily mortality rate value is given in parentheses, for ease of 
comparison with other studies

Parameter Mean Q05 Q95

Mortality ( µ)a 1.05 (0.65) 0.19 (0.17) 2.42 (0.91)

Diffusion (D) 753 × 103 8.77 112 × 103
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Spread and persistence of male DSM mosquitoes
The predicted persistence of DSM mosquitoes following 
a release of a single cohort of 5000 males is summarised 
in Fig.  4. The large uncertainty captured in Table  5 is 
clearly reflected in these predictions: the mean expected 
survival is estimated to be about 9 to 10 days, with a 90% 
probability that the expected number of male DSM mos-
quitoes falls to < 1 by day 10. The 90% credible interval, 
however, is large, and there is a small probability (c. 0.05) 
that it could take as long as about 2  months for this to 
occur.

The dispersal of the DSM mosquitoes is balanced by the 
mortality rate. Because of this, the DSM are not expected 
to disperse far from their release site. The expected num-
ber of mosquitoes per cell is delineated by the red and 
orange contours in Fig. 5. For instance, while the spread 
is expected to extend on average to up to 500  m away 
from the release location by day 2 (with at most a 1% 
chance of finding a mosquito further away), the extent 
then contracts quickly to a limited area (< 250  m from 
release location) by day 5, to finally about 150  m away 
from the release location at day 12.

Discussion
This analysis uses a combination of mathematical model-
ling, Bayesian inference and expert elicitation to predict 
the spread and persistence of genetically modified DSM 
mosquitoes following the release of a single cohort of 
5000 individuals. These predictions were made as part 
of an independent risk assessment [18, 42] (available at: 
https://​targe​tmala​ria.​org/​resou​rces/​libra​ry/?​categ​ory=​
risks_​and-​asses​sments) that also addressed the accidental 
release of fertile female mosquitoes. The results reported 
here helped determine the scope of the assessment and 
in particular provided the rationale for excluding the 
possibility of effects on non-target organisms caused by 
changes in food web structures or the provision of eco-
logical services: the predicted survival of the DSM popu-
lation is too short, and the associated population size too 
small, to cause any noticeable effect on non-target organ-
isms or ecosystem processes.

The risk assessment was finalised and made public in 
May 2018, prior to the decision by the National Biosafety 
Agency (NBA) of Burkina Faso to authorise the field trial 
(July 2018), but after the submission by Target Malaria of 

Fig. 4  Model prediction of survival. Evolution of the predictive posterior expected number of mosquitoes following a release of 5000. Note that the 
scale of the y-axis is logarithmic, making the model predictions linear

https://targetmalaria.org/resources/library/?category=risks_and-assessments
https://targetmalaria.org/resources/library/?category=risks_and-assessments
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a biosafety application to the NBA seeking authorisation 
for the release (November 2017; see: https://​targe​tmala​
ria.​org/​resou​rces/​libra​ry/?​categ​ory=​devel​opment-​pathw​
ay). The field release itself occurred in July 2019 (see: 
https://​tinyu​rl.​com/​y4qr9​lc5). We anticipate that the 
results from this field experiment will soon be forthcom-
ing and that they will provide an important opportunity 
to test the accuracy of the predictions presented here. 

The risk assessment results are case specific and do not 
generalise to other genetic control strategies that involve 
(for example) population modification strategies.

In this analysis we were able to validate the model pre-
dictions for WT mosquitoes by holding back a propor-
tion of the observation data. This also enabled us to use 
Bayesian model averaging to identify experts who were 
more accurate in their prior predictions. By allowing 

Fig. 5  Model prediction of dispersal. Spread of the predictive posterior expected number of mosquitoes following a release of 5000. Orange 
contour: outside the zone, the probability of finding no DSM mosquito is ≥ 0.99. Red contour: inside the zone, the expected number of DSM 
mosquitoes is ≥ 1. Black dots indicate compound locations. a Extent after 2 days, b extent after 5 days, c extent after 9 days, d extent after 12 days

https://targetmalaria.org/resources/library/?category=development-pathway
https://targetmalaria.org/resources/library/?category=development-pathway
https://targetmalaria.org/resources/library/?category=development-pathway
https://tinyurl.com/y4qr9lc5
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the opinions of these experts to carry greater weight, we 
were also able to reduce uncertainty in the prior predic-
tions for DSM mosquitoes. This approach assumes, how-
ever, that experts who make more accurate predictions 
about WT mosquitoes will also make better predictions 
about genetically modified mosquitoes. We will also be 
able to test this assumption once the results of the DSM 
field release are published.

Our results demonstrate how field observations 
greatly reduce the uncertainty between the prior infor-
mation elicited with independent domain experts and 
the posterior distribution. Despite their relatively large 
uncertainty, our experience is that expert-derived prior 
distributions are essential when attempting to run infer-
ence over the multi-dimensional parameter space that 
dynamic population models demand, and that careful 
elicitation will therefore continue to be an essential com-
ponent of future risk assessment studies.

Our posterior estimates of WT dispersal are condi-
tional on a series of MRR experiments that were con-
ducted prior to the elicitation of the dispersal prior 
distributions. These priors played no part in the experi-
mental design, and the difference between the prior 
and posterior distributions depends on this design. This 
difference may reflect conservative prior estimates of 
mosquitoes’ mean daily dispersal when in the vicinity 
of attractants (swarm locations), but it may also be an 
artefact of the MRR design that focussed efforts in and 
around village compounds to maximise the number of 
recaptures. As Epopa et  al. [20] notes, however, further 
intensive sampling studies outside or around villages will 
be useful to ensure that posterior estimates of dispersal 
are not blind to long-range dispersal outcomes that are 
not witnessed because of the recapture site design. There 
is also the possibility of an impact of genetic modifica-
tion on dispersal, either through life-history traits linked 
to vagility or perhaps host-seeking behavioural traits. If 
vagility is negatively impacted, then dispersal could be 
less for DSM compared to WT mosquitoes, but if host-
seeking ability was instead curtailed, then dispersal could 
perhaps decrease for DSM relative their WT counter-
parts. As mentioned above, the analysis conducted here 
could be repeated to take into account the DSM MRR 
data that were in the planning stages at the time of the 
risk assessment.

We believe that dynamic population models will form 
a central component of any risk-based governance sys-
tem for gene drive-modified mosquitoes. We therefore 
suspect that confidence in this governance structure will 
likely depend on the extent to which risk assessments are 
able to predict the spread and the persistence of mosqui-
toes carrying gene drive constructs, within the bounds 
of adequate accuracy. Critically, a staged release strategy 

provides the opportunity to compare the predictions of 
these types of models against observed outcomes, learn 
how to approach the modelling and inference challenges 
and gradually define the bounds of accuracy that regula-
tors and stakeholders believe are adequate.

This staged learning is borne out by this analysis: the 
reproductive containment strategy utilised in the DSM 
mosquitoes provides a good, relatively simple, starting 
point for this type of analysis. The reaction dynamics in 
our model are greatly simplified by virtue of the fact that 
the released male mosquitoes are sterile. The dynamic 
models for the second stage in Target Malaria’s pathway, 
namely self-limiting male bias strains, will be more com-
plicated because they must accommodate the birth pro-
cesses and genetic dynamics that are not relevant here, 
and also other potentially important interspecific interac-
tions [43]. The models for the third and final stage, that 
is self-sustaining driving male bias strains, will be more 
complicated again particularly because the interspecific 
interactions are likely to be more important and because 
the spatio-temporal scope of the analysis will be signifi-
cantly larger.

Conclusion
Our analysis demonstrates the strength of the Bayes-
ian approach in the context of staged learning. Given 
its qualities, we believe this paradigm is the most 
appropriate to handle the prediction and risk assess-
ment challenges that novel, gene drive-based strategies 
for controlling malaria vectors will pose in the coming 
years.
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