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Abstract 

This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vec-
tors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need 
for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the 
pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly 
ingenious method currently under development in many important vector insects that could provide an additional 
powerful tool for use in integrated pest control programmes. The requirements and recent advances of the para-
transgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modifi-
cation, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild 
insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, 
sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environ-
mental release of the genetically engineered organisms produced in paratransgenesis are considered.
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Background
When the transmission of pathogens by insect vectors 
is being considered, members of the orders Diptera and 
Hemiptera deserve particular attention. Many species 
belonging to these orders are of medical importance, 
transmitting a great variety of parasites causing diseases, 
including malaria, Chagas disease, leishmaniasis, sleep-
ing sickness, filariasis, onchocerciasis and arboviruses.

Dipterans comprise approximately 150,000 known 
species catagorised in about 10,000 genera and 188 
families. They include the mosquito (Culicidae), house 

fly (Muscidae), blow fly (Calliphoridae), robber fly (Asi-
lidae), horse fly (Tabanidae), black fly (Simuliidae), sand 
fly (Phlebotominae), and gnat (e.g. Sciaridae) [1, 2]. Some 
species of mosquitoes, i.e. those belonging to the gen-
era Anopheles, Aedes and Culex, act as vectors of many 
microorganisms that are etiologic agents of diseases, 
such as malaria, African typanosomiases, yellow fever, 
dengue, zika, chikungunya, West Nile fever and many 
others [3–8]. Mosquitoes alone are responsible for as 
many as 1 million deaths annually,  including those from 
malaria for which high death rates have been occurring 
for many decades, with poor children aged < 5 years par-
ticularly affected [9]. Dengue fever transmitted by Aedes 
mosquitoes is the most common viral disease affect-
ing 3.9 billion people annually in 129 countries, kill-
ing approximately 40,000 people every year [9, 10]. In 
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addition, sand flies (genera Lutzomyia and Phlebotomus) 
are vectors of Leishmania and transmit leishmaniasis 
in Europe, northern Africa, the Middle East, Asia and 
parts of South America [11, 12]. Leishmaniasis, as well 
as onchcerciasis and filariasis transmitted by black flies 
and mosquito vectors, respectively, also cause permanent 
disfigurement in those infected. In Africa, several species 
of tsetse flies (Glossina spp.) are vectors of Trypanosoma 
brucei rhodesiense and T. b. gambiense, both of which 
cause sleeping sickness in humans, but these pathogens 
are not confined to humans since T. b. brucei, T. congo-
lense, T. vivax, T. evansi, and T. equiperdum also result in 
African trypanosomiasis in cattle [13, 14]. The economic 
burden and human suffering caused by these diseases are 
enormous; for example, the direct costs (illness treatment 
and death) of malaria alone is estimated to be over 12 bil-
lion U.S. dollars per year [15].

Hemipterans have much lower impact than dipterans 
in terms of the numbers and disease burden of the human 
parasites vectored. The subfamily Triatominae includes 
Rhodnius prolixus and Triatoma infestans that transmit 
the flagellate protozoan Trypanosoma cruzi, which is 
the causative agent of Chagas disease, throughout South 
and Central America as well as the USA. The pathology 
of this disease is horrendous in patients with chronic 
inflammation of the heart, colon and nervous system. 
About 6 million people are estimated to be infected with 
T. cruzi in Latin America, of which one third will die 
from the disease [16]. The hemipterans also include the 
family Cimicidae, containing the bedbugs, such as Cimex 
lectularius, which also have the potential to transmit 
human diseases [17]. However, it should not be forgot-
ten that the majority of hemipterans feed on plants and 
comprise the aphids, white flies and leaf hoppers that are 
significant vectors of viral diseases of crops [18].

The effect of global warming, the destruction of natu-
ral habitats and increases in international travel and trade 
have all served to increase both the spread of insect vec-
tor-borne parasitic diseases and the emergence of new 
microbial threats of pandemic proportions [19, 20]. For 
example, Aedes albopictus, the highly invasive Asian tiger 
mosquito, was probably introduced into Europe in 1990 
via Italy in imported vehicle tyres. A favourable climate 
and global warming enhanced the mosquito’s spread and 
it has vectored outbreaks of chickungunya and dengue 
brought to Europe by international travellers [19]. The 
speed by which emerging pathogens can spread may be 
explosive, as illustrated with the Zika virus pandemic 
in the Americas; the virus was introduced into Brazil in 
2015 and by 2016 it had infected approximately 211,700 
people [21]. 

Challenges and ingenuity in controlling 
insect‑borne diseases
Clearly, with the increased spread of many insect-vec-
tored parasites and the arrival of newly emerging dis-
eases, the need for effective control is absolutely vital. 
Control methods generally use several strategies and are 
focussed either on preventing the vector from feeding 
upon the host and transmitting the disease, or on treating 
infected individuals with drugs.

There are numerous vector-targeted control tech-
niques, ranging from draining aquatic habitats and 
removing small domestic bodies of water to the use of 
mosquito nets, biological control agents, traps, spatial 
repellants, indoor residual spraying and anti-mosquito 
bands and creams [22–25]. These are often mediated 
through an integrated pest management scheme defined 
by the U.S. Department of Agriculture as “a sustainable, 
science-based, decision-making process that combines 
biological, cultural, physical, and chemical tools” [26].

One of the most successful twentieth century meth-
ods of controlling insect vectors, however, was the 
widespread use of insecticides. Among these, dichlo-
rodiphenyltrichloroethane (DDT) was commonly 
used in the 1950s and 1960s to control mosquitoes and 
other pest species; however, it was banned in 1972 [27] 
despite probably saving hundreds of millions of lives 
[28]. In addition, insects have now developed resistance 
to the main chemicals used for pest control, namely the 
organochlorines, pyrethroids, organophosphates and 
carbamates [29, 30]. This resistance in African Anopheles 
mosquitoes has been described as “a worsening situation 
that needs urgent attention to maintain malaria control” 
[31]. Other vector control strategies have been utilised, 
such as insecticide-impregnated bed nets and micro-
bial control agents [23], but both of these strategies have 
limitations. Bed nets are of limited use against Culex and 
Aedes spp. which bite more often outdoors in the daytime 
than at night [32]. In addition, the adoption of biological 
control agents, recognised as non-toxic alternatives to 
chemicals, may face resistance because of environmental 
concerns [33]. More recently, ingenious attempts to con-
trol insect vectors have turned to genetic modification 
so that the vector competence to transmit pathogens is 
reduced or, alternatively, the insect is engineered with a 
lethal transgene causing death during development [32]. 
There are, however, issues to be resolved before geneti-
cally modified vector insects can be widely released in 
the field to replace the wild populations, including con-
cerns on the stability of the transgene, fitness of the 
transformed insects in the field and identification of 
genes driving favourable traits upon release, as well as 
ecological concerns over the release of genetically modi-
fied (GM) organisms [34, 35].
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Once infection has occurred by the insect vector feed-
ing on the human host, then tools are also available to 
suppress or kill the pathogen. These tools include vac-
cines and chemotherapy against the invasive parasites. 
Rapid progress is being made in both of these approaches, 
with researchers taking advantage, for example, of new 
information accruing from work on the immune interac-
tions of host and parasite that has revealed key molecules 
as potential targets for vaccines and drugs [36]. Vaccines 
that are at present being tested in various phases against 
malaria [37] dengue [38], Zika [39], chikungunya [40] 
and leishmaniasis [40] will hopefully soon be available 
to prevent such infections. At present, the only vaccines 
for vector-borne diseases on the World Health Organisa-
tion-approved list without specific limitations are those 
against the yellow fever and Japanese encephalitis viruses 
[40]. In addition, a recent report has shown success rates 
of 74–77% with the malaria R21/MM vaccine in vac-
cinated children in Burkina Faso, even after 1 year [41]. 
The European Medicines Agency also recently accepted 
Japan’s leading drugmaker, Takeda, filing packages for its 
TAK-003 dengue vaccine candidate against any dengue 
virus serotype in people aged 4 to 60 years [42]. Many 
of these vaccines are therefore already showing favour-
able results although safety is still of some concern. At 
present, the prime method for treating protozoan para-
sites, including Plasmodium, Trypanosoma, Leishmania, 
Toxoplasma and Entameoba, is drug therapy, although 
resistance to these drugs is a growing problem [43–45]. 
One example of drug resistance is that to the sesquiter-
pine lactone, artemisinin, and its derivatives; these drugs 
are used against malaria as they act rapidly to clear para-
sites from the blood. Artemisinin is derived from the 
plant Artemisia annua and has been used for centuries in 
traditional Chinese Medicine to treat fevers; since 1980 
it has saved the lives of millions of malaria patients [43]. 
Resistance to artemisinin-derived combinations was first 
detected in 2008 and has rapidly spread in Southeast 
Asia. The problem of drug resistance to one drug is exac-
erbated sometimes by the development of cross-resist-
ance to other drugs. At present, Plasmodium falciparum, 
P. vivax and P. malariae are showing widespread resist-
ance to a variety of drugs [43, 45]. Similar accounts of 
drug resistance are reported for leishmaniasis and Afri-
can trypanosomiasis [43].

Drugs are also available for treating filariasis and 
onchocerciasis, and although these can be very effec-
tive in reducing worm loads, mass drug administration 
is required [46]. In addition, there is a lack of approved 
antivirals against the many present and emerging arbovi-
ruses [47] and other zoonotic viruses.

In summary, vaccines are still not widely available for 
preventing vector-borne pathogen infections, and disease 

vectors are becoming increasingly resistant to pesticides. 
Furthermore, parasites infecting patients are devel-
oping enhanced resistance against therapeutic drugs, 
and approved drugs are currently unavailable for treat-
ing arboviruses that are emerging more frequently and 
increasingly forming widespread epidemics. Therefore, 
new drugs and innovative strategies are urgently required 
for combating these vector-borne diseases [25, 36].

Definition and advantages of paratransgenesis
Paratransgenesis is a promising and particularly ingen-
ious strategy currently being developed for controlling 
vector-transmitted diseases (Fig. 1). It utilises the geneti-
cally manipulated native microbiome (mutalistic symbi-
otic and commensal bacteria, fungi and viruses) [48] of 
the vector insect to inhibit or kill the disease pathogen. 
Native symbionts or commensals isolated from the vec-
tor are genetically transformed in vitro to produce anti-
pathogen factors and then reintroduced to the insect to 
interrupt the life-cycle of the disease organism [32, 35, 
49–51]. 

The great advantage of this method over genetically 
transformed mosquitoes is that the transformed bacte-
ria/fungi/viruses used may have the ability to colonise a 
range of different insect vector strains and even species. 
In contrast, with transgenic mosquitoes each strain or 
species may have to be transformed to prevent disease 
transmission. In addition, it is much easier to produce 
large numbers of transformed microbes than to generate 
sufficient numbers of transgenic mosquitoes [34]. Fur-
thermore, the transformed microbe usually undergoes 
massive multiplication in the target insect vector [52] and 
may be passed horizontally as well as vertically from one 
generation to another [53].

A technique similar to—but not true—paratransgen-
esis involves the transfection of non-native, non-
genetically transformed bacteria (or other microbes) 
to modify the microbiome in the insect gut, thereby 
altering host physiology and reducing vectoring abil-
ity. There are many examples of this process, such as 
Serratia marcescens-blocking Leishmania brazilien-
sis, Trypanosoma cruzi and Plasmodium berghei in 
their vector insects [32, 54]. One example studied in 
some detail is Wolbachia pipientis (bacteria; family 
Rickettsiaceae) whose strains widely occur as intra-
cellular pathogens in arthropods and nematodes and 
which can be inherited transovarially to spread rapidly 
through insect populations. Wolbachia infections in 
insects can cause incompatibility of the egg and sperm, 
leading to sterility, feminisation, parthenogenesis and 
male killing [50], and these outcomes can be used to 
control vectors. Thus, transfection of the Wolbachia 
wMelPop-CLA strain into Aedes aegypti reduces the 
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life-span of the mosquito and its ability to vector chi-
kungunya and dengue [51]. Inhibition of the parasite 
life-cycle can be achieved even when the mosquito 
strain is not naturally infected with Wolbachia. This 
inhibitory effect, however, is not universal since Aedes 
albopictus naturally infected with Wolbachia still 
effectively vectors chikungunya [55]. The difficulty 
in characterising the action of Wolbachia as para-
transgenesis arises since the strains used may or may 
not be native to the vector insect, and only untrans-
formed forms of Wolbachia are available to inhibit 
the life-cycles of parasites in different vector insects. 
Wolbachia is an intracellulatr endosymbiont, and to 
date genetic transformation has not been achieved and 
in vitro culture is only possible in a few cell lines [56–
58]. Many recent articles and reviews on Wolbachia 
are available [59–65]; therefore, the present review is 
limited to paratransgenesis in which native microbes 
are transformed and transfected into vector insects.

Development, requirements and recent advances 
of the paratransgenesis technique
Development of paratransgenesis
Paratransgenesis was originally developed in the tri-
atomine, Rhodnius prolixus, by Beard, Durvasula and col-
leagues [66–73] in an attempt to control the transmission 

of the protozoan parasite, Trypanosoma cruzi, the agent 
responsible for Chagas disease. This pioneering work 
provided a model for paratransgenesis research in other 
vector insects that transmit diseases not only to animals 
and humans but also to agricultural plants [74]. Briefly, 
the hindgut of R. prolixus contains very high concentra-
tions of a Gram-positive, actinomycete bacterium, Rho-
dococcus rhodnii. Upon emergence of the R. prolixus 
nymphs, this organism is acquired in the first instars by 
coprophagy from the faeces of other members of the 
colony and is necessary for development of the insects 
to adults. The bacteria are well-placed to interact with T. 
cruzi as this parasite spends the last stages of its life-cycle 
in the hindgut of R. prolixus surrounded by R. rhodnii. 
The newly emerged nymphs are asymbiotic and can be 
maintained under sterile conditions and fed transformed 
or wild-type R. rhodnii in a blood meal using an artificial 
membrane feeder [70]. In the initial studies, the R. rhod-
nii were transformed with an Escherichia coli/R. rhodnii 
shuttle plasmid containing antibiotic resistance marker 
genes [66]; in later studies, however, more stable  L1 
mycobacteriophage integrative plasmids were used [75]. 
After the first instar R. prolixus are fed with transformed 
bacteria, they develop to sexual maturity at a rate similar 
to that of the controls fed with untransformed bacteria. 
In addition, transformed R. rhodnii could be detected in 

Fig. 1  Summary of the analysis and selection of bacteria from vector microbiota for cultivation and genetic modification in vitro. The 
microorganism (A) is genetically modified by the insertion of an exogenous gene in a plasmid (B) or directly into the bacterial chromosome (C). The 
transgenic bacteria are offered to adult insects through an attractant bait. In the insect’s digestive tract, the genetically modified microorganism 
expresses a peptide capable of interrupting the transmission of the parasite or a dsRNA that can silence genes in the parasite or the vector, if these 
are sensitive to RNA interference, thereby blocking parasite development. Abbreviations: dsRNA, Double-stranded RNA
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the gut for the 6.5 months of the experiment and also fol-
lowing successive moults [66, 70], thereby demonstrat-
ing that a transgenic symbiont could be introduced into 
a vector insect with no apparent cost to fitness or sur-
vival. Subsequently, a gene fragment for the trypanocidal, 
immune peptide, Cecropin A, from insects was inserted 
into the R. rhodnii symbionts and then aposymbiotic R. 
prolixus were colonised with these transformants or with 
wild-type control bacteria. Challenge of these two groups 
of R. prolixus fourth instars with T. cruzi resulted in 100% 
and 35% infection rates, respectively, for the control and 
experimental insects [69, 71]. The 35% of infected R. pro-
lixus in the experimental group contained significantly 
reduced numbers of the final metacyclic forms of T. cruzi. 
These results provided both an innovative method for 
use in integrated pest management (IPM) programmes 
for controlling the triatomine vectors of Chagas disease 
in South and Central America, as well as a stimulus for 
developing this ingenious technique in other insect vec-
tor/parasite associations (Fig. 1).

The results of subsequent paratransgenesis research 
with other vector insects, including triatomines, are 
detailed in section  Paratransgenesis in different groups 
of vectors of this review. However, some preliminary dis-
cussion on the requirements of and recent advances in 
the use of paratransgenesis are presented here to facili-
tate the successful employment of this technique.

Requirements for successful paratransgenesis
Requirements for successful paratransgenesis include:

	 i.	 A culturable, symbiont or commensal bacterium 
(fungus or virus is occasionally used) should be 
present in the insect vector, be susceptible to 
genetic manipulation [76–78] and occupy the same 
body tissues as the pathogen in the host.

	 ii.	 The microorganism ideally should colonise all 
instars during insect development throughout the 
life-cycle from first instars into adults. Most bac-
teria are lost during metamorphosis from larvae to 
adults, especially in mosquitoes, so that transsta-
dial species such as Asaia in mosquitoes are ideal 
[79].

	iii.	 The microorganism should be non-pathogenic to 
humans and animals and capable of colonising a 
range of strains/species of mosquitoes or sand flies, 
etc. [34].

	iv.	 The ‘fitness’ of the genetically modified microor-
ganism must not be compromised and its stability 
and normal functioning should be retained within 
the host vector [70].

	 v.	 One or more effector molecules must be identified 
and then secreted by the recombinant microorgan-
ism to have the expected inhibitory effect on the 
parasite/insect vector interaction. The molecule 
must have no fitness cost to the insect vector [34, 
80, 81].

	vi.	 There must be a way to facilitate the introduction 
and dispersal of the recombinant microorganism 
into wild vector insects under field conditions. 
Initial successes with semi-field trials have been 
reported in controlling triatomines with trans-
formed R. rhodnii and mosquitoes with Asaia 
strains [53, 82].

	vii.	 Approval for use of the paratransgenesis technique 
from regulatory bodies and local populations must 
be sought. There are serious safety concerns about 
the release of genetically modified organisms in 
the field which will need to be addressed by envi-
ronmental risk assessments. The risks of horizon-
tal genetic transmission to the genomes of other 
organisms must also be minimised [34, 83].

Technical advances in the use of paratrangenesis
Most important innovative methods undergo improve-
ments to increase efficiency and optimise the outcomes. 
This is most certainly true for paratransgenesis, with 
advances made in most stages, as outlined in the follow-
ing sections, and shown in Table 1.

Analysis of microbiomes
Advances in molecular techniques beyond the 16S RNA 
gene method for the analysis of vector insect microbi-
omes have been made with, for example, high-through-
put sequencing (HTS) commonly used for the complete 
analysis of all microbes in a sample [83]. The 16S RNA 
method uses just one gene for analysis while HTS frag-
ments all the DNA in a sample, sequences these and then 
fits them together for analysis [84]. Thus, with HTS all 
groups of microorganisms in insect tissue samples can be 
identified; those selected for paratransgenesis must then 
be amenable to multiplication with traditional culture 
techniques. In addition, culturomics has recently been 
successfully introduced to identify previously unknown 
bacterial species in the vector gut microbiome. Basically, 
culturomics consists of multiple culture conditions com-
bined with matrix-assisted laser desorption/ionisation–
time of flight (MALDI-TOF) mass spectrometry or 16S 
ribosomal DNA (rDNA) amplification and sequencing 
[50, 85].

The choice of symbiotic microorganisms as recom-
binant candidates for the expression of effector mol-
ecules in paratransgenesis has also been extended from 
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bacteria to include viruses and fungi, although the major-
ity of studies have utilised bacterial symbionts [70, 83, 
86]. Novel viruses and fungal genera have been identi-
fied in Culex pipiens by shotgun metagenomic sequenc-
ing, which is a HTS, PCR-independent technique, as well 
as by culture-dependent methods [87]. Wild mosquitoes 
are also commonly infected with insect-specific viruses 
belonging to several families, including the Densovirinae 
and Flaviviridae [86, 88], and these appear to suppress 
arbovirus infections in mosquitoes by superinfection sup-
pression [51]. Work with mosquito densoviruses (MDVs) 
has demonstrated their potential use in paratransgen-
esis. MDVs are environmentally stable and colonise 

natural mosquito populations by vertical and horizontal 
transmission, and their host specificity is restricted to 
mosquitoes [89, 90]. They also have small genomes that 
are easily modified genetically to express foreign effec-
tor genes with potential for the transformation of target 
vector insects [90–93]. The recombinant viruses initially 
produced, however, were apparently replication defective 
and unable to undego secondary transmission due to the 
loss of viral capsid proteins essential for replication [90]. 
This problem has now been overcome using a microRNA 
(miRNA) expression system in which the recombinant 
MDVs are stable and self-replicating and induce silenc-
ing of mosquito genes [90]. In addition, the problem of 

Table 1  Summary in approximate chronological order of some of the important advances in the development of paratransgenesis in 
vector insects

dsRNA Double-stranded RNA, gfp   green fluorescent protein, kanR kanamycin resistant, mCherry red fluorescent protein, MDVs mosquito densoviruses, miRNA 
microRNA, rDB3 antibody fragments (encoding murine VH/K which binds progesterone), RNAi  RNA interference
a The glassy-winged sharpshooter, a hemipteran like the triatomines
b See also the paratransgenesis modelling paper by Li et al. [136] based on systems of differential equations
c This will lead to RNA interference-based paratransgenesis; see, for example, Asgari et al. [115]

Insect vectors Transformed microbes used + effector genes Paratransgenesis innovation References

Rhodnius prolixus Rhodococcus rhodnii + thiostrepton resistance Original technique described [66]

R. prolixus R. rhodnii + cecropin A Killing of Trypanosoma cruzi [69, 71]

R. prolixus/Triatoma infestans R. rhodnii/Corynebacterium sp. + AMPs, rDB3 and 
endoglucanase

Combinations of effector molecules kill T. cruzi [77, 82]

Anopheles gambiae Metarhizium anisopliae + scorpine and scorpine 
fusion protein

Combinations of effector molecules kill Plasmodium [100]

Anopheles stephensi Serratia ASI + 5 anti-Plasmodium effector proteins Combinations of effector molecules kill Plasmodium [120]

Anopheles gambiae Microbiome endosymbionts fully identified for the 
first time

High-throughput sequencing introduced [132]

R. prolixus R. rhodnii + rDB3 antibody fragment Semi-field simulation of transgenic bacteria spread 
in CRUZIGARD

[73]

Homalodisca vitripennisa Pantoea agglomeransgfp Semi-field simulation of transgenic bacteria spread 
in hydrogel

[128]

An. stephensi/An. gambiae Asaiagfp Semi-field simulation of transgenic bacteria spread [53]

An. stephensi Serratia AS1-mCherry and AS1-gfp Semi-field simulation of transgenic bacteria spread [120]

R. prolixus R. rhodnii and Gordona rubropertinctus Model showing negligible risk of horizontal transfer 
of transgenic bacteria

[133]

An. stephensi Serratia ASI-gfp + mCheery and kanR genes/+ microbi-
ome in vivo

No horizontal transfer of transgenic bacteria genetic 
material in vivo

[134, 162]

Anopheles spp. P. agglomerans Modelling paratransgensisib [130]

An. stephensi Serratia ASI-gfp + mCheery and kanR genes/+ microbi-
ome in vivo

Transiently expressed plasmids for checking environ-
mental safety of released genes

[134]

An. stephensi Asaia + scorpine Transgene only expressed after blood meal, thus 
reducing fitness costs

[126]

R. prolixus R. rhodnii and Escherichia coli expressing dsRNA RNAi and knockdown of vector genesc [74, 111]

Anopheles spp. Asaia RNaseIII mutant created Potential for developing an efficient RNAi-based 
paratransgenesis for vector or parasite gene knock-
down

[110, 115]

An. gambiae CRISPR/Cas9 is a new method of microbe transfor-
mation

Potential to transform microbes for paratransgenesis 
and also mediate gene silencing

[102, 135]

Aedes albopictus MDVs miRNA expression system with recombinant MDVs 
stable for silencing mosquito genes

[90]
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large-scale production of the recombinant MDVs has 
been solved, allowing field testing experiments [94].

Fungi with long environmental survival times as spores 
and the ability to infect insects directly through the exo-
skleleton also have the potential for use in paratransgen-
esis. Mosquitoes, triatomines and sand flies have been 
shown to have extensive mycobiomes, although current 
knowledge of the interaction of these mycobiomes with 
vector insects and their infecting pathogen associations 
is very limited [83, 95–97]. Yeast species, such as Wick-
erhamomyces anomalus, have been isolated from both 
laboratory and wild colonies of Anopheles and are wide-
spread in adult mosquito tissues, suggesting possible use 
in paratransgenesis [81, 98]. This potential has been con-
firmed with genetically modified yeast delivering double-
stranded RNA (dsRNA) to a Drosophila sp. pest of soft 
fruits which, following ingestion, resulted in decreased 
locomotor activity and reduced egg-laying of the adult 
insects [99]. Another significant study was conducted 
on the entomopathogen, Metarhizium anisopliae, which 
was transformed to express anti-Plasmodium falcipa-
rum molecules, including various combinations of scor-
pion toxin (scorpine), artificial salivary gland and midgut 
(SMI) molecules and PfNPNA sporozoite-binding anti-
body. Transgenic Anopheles infected with M. anispliae 
expressing a combination of scorpine with SMI peptides 
resulted in > 98% inhibition of sporozoite levels in the 
salivary glands [100]. Subsequent to these studies, how-
ever, little progress seems to have been made in the use 
of fungi in paratransgenesis for the control of pathogen 
transmission by vector insects. This is surprising since 
entomopathogenic fungi can easily be mass produced 
and genetically transformed, do not infect vertebrates 
and have previously been used in the field to control 
insect pests. There would also be a synergistic effect since 
both the mosquito and the malarial parasite would be 
inhibited by the transformed fungus [101].

Transformation of symbionts
Once the symbionts have been selected, they are trans-
formed to carry effector genes to inhibit the life-cycle of 
the pathogen in the vector insect or even in the vector 
itself. Various plasmid vector systems are usually used 
for this genetic transformation. For example, in studies of 
paratransgenesis in the vector insect, Rhodnius prolixus, 
L1 mycobacteriophage integrative plasmids inserted 
genes into the genome of the symbiotic bacterium, Rho-
dococcus rhodnii, to give highly stable constructs [77] 
One recent development has been the introduction of 
CRISPR-Cas (Clustered Regularly Interspaced Short 
Palindromic Repeats [CRISPR] with CRISPR-associated 
[Cas] endonuclease or enzyme) genome editing systems 
to transform the genomes of the insect gut microbiome. 

Not only can such systems transform bacteria by intro-
ducing one or more specific genes but it can also medi-
ate gene silencing [102–104]. CRISPRs are derived from 
prokaryotes and include an endonuclease (Cas9) guided 
by a guide RNA (gRNA) to cut the chromosome at a 
specific site [32]. One advantage of this system is that 
the integration of the transgene is not only site-specific 
but also highly stable. The CRISPR technique has been 
applied successfully to edit an outer membrane gene 
(ompA) of a gut symbiont of Aedes aegypti to determine 
its role in biofilm formation in the vector gut [105], as 
well to transform several mosquito species to alter and 
drive specific genes into different generations [32, 106, 
107]. The CRISPR system can transform microbes for 
paratransgenesis and also mediates gene silencing, result-
ing in more consistent and robust knockdowns with 
fewer off-target events than RNA interference (RNAi; 
see detailed comparative review on CRISPR and RNAi 
in [108]). RNAi knockdown techniques, however, have 
been invaluable in mosquitoes to investigate immune 
gene functions in relation to parasite interactions [83, 
109]. In earlier studies, RNAi knockdown in Plasmodium 
was hampered by an apparent lack of appropriate RNAi 
machinery, but it is now possible by engineering two 
components, Argonaute 2 and a modified short hairpin 
RNA, into the parasite. These transgenic parasite lines, 
although not immediately transferable to the field, will 
be invaluable for studying Plasmodium gene function 
[110]. Thus, with both RNAi and CRISPR-Cas systems, 
it should be possible for multiple genes to be inhib-
ited simultaneously and so prevent parasites developing 
resistance. The next step will be to inhibit parasite devel-
opment within the insect vector using these techniques 
[83].

In addition, a modified form of paratransgenesis, 
termed RNAi-based paratransgenesis, has recently been 
introduced in which the transformed microbes deliver 
dsRNA instead of the usual effector proteins [74, 111–
116] (Fig.  1). This method of delivery is ingenious as 
previously it was necessary to either inject or feed the 
target insects with the dsRNA, with both of these meth-
ods having significant disadvantages [117]. Injection is 
labour intensive, often kills many insects and induces 
immune/stress responses to potentially confuse inter-
pretation of results, and the RNAi effect may be transient 
in long-lived species. Likewise, with feeding insects the 
dsRNA, the effect may be temporary and require repeat-
ing several times [74], although prolonged knockdown 
of the TsetseEP gene was achieved in Glossina by feed-
ing dsRNA [118]. Using bacteria to express dsRNA has 
been successfully employed in the haematophagous tri-
atomine, R. prolixus [74, 111], and the phytophagous 
crop pest, Frankliniella occidentalis [74]. In R. prolixus, 
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an RNaseIII-deficient endosymbiont strain of Rhodo-
coccus rhodnii had dsRNA expression cassettes stably 
incorporated into the chromosome and was used to suc-
cessfully knock down Nitrophorin-1 and Nitrophorin-2. 
The knockdown phenotype produced colourless salivary 
glands in contrast to the cherry-red glands of the controls 
[74]. Likewise, a dsRNA expression cassette for Vitellin, 
responsible for producing approximately 80% of oocyte 
protein in R. prolixus, resulted in a significant 72.3% 
reduction in first instar-eclosed insects per adult insect 
per day. The transformed R. rhodnii not only persisted > 
250 days in the R. prolixus gut with no apparent effects 
on insect fitness, but was also horizontally transmitted by 
coprophagy [74]. Also in R. prolixus, using E. coli express-
ing dsRNA, genes RHBP (Rhodnius heme binding pro-
tein) and CAT​ (catalase), involved in antioxidant activity 
and oocyte development were knocked down between 65 
and 96%, respectively [111]. Finally, in the thrip, Franklin-
iella occidentalis, a similar strategy was adopted, except 
that alpha tubulin was targeted (tubulin alpha1), result-
ing in depletion of tubulin mRNA levels and signifi-
cantly increased mortality of adults [74]. These studies 
indicate the real possibility of using symbiont-mediated 
RNAi to control both vectors of disease and agricultural 
pests. This technique has now been developed to medi-
ate honey bee physiology and kill parasitic Varoa mites 
[116], and is being advanced to produce a mutant Asaia 
strain for RNAi-based paratransgemesis in Anopheles 
[115]. Future studies should be aware that using RNaseIII 
mutant bacteria has been shown to improve the delivery 
efficiency of dsRNA compared with normal transformed 
bacteria still producing RNAseIII [119].

Choice of effector molecules
The original inspirational studies on paratransgenisis in 
R. prolixus used the native endosymbiont, R. rhodnii, to 
deliver either a functional antibody fraction or Cecropin 
A, an insect antimicrobial peptide, as effector molecules 
against T. cruzi [66, 71]. Subsequently, numerous other 
effector proteins have been identified and used in para-
transgenesis, with the majority associated with mosqui-
toes and against Plasmodium spp. (for more details see 
[81, 120–123] and section Mosquito microbiomes: native 
endosymbiotic bacteria in paratransgenesis of present 
article). In addition, a number of advances in use of effec-
tors have been made. First, antimicrobial peptides are 
frequently used in paratransgenesis against various stages 
of Plasmodium; in order to facilitate this, Carter et  al. 
[124] tested a range of 33 such molecules. These peptides 
were fed to Plasmodium-infected anopheline mosquitoes 
in the first 24 h of the sporogonic stage. Analysis identi-
fied seven peptides, mainly from bee and wasp venoms, 
that mediated significant killing of the parasites and had 

limited effects on mosquito fitness in terms of fecundity 
and longevity. It should be noted that this study involved 
feeding the peptides directly to infected insects rather 
than through secretion by transformed native symbionts. 
Second, studies have found that combinations of effec-
tor molecules are much more effective at killing para-
sites than single molecules (e.g. [75, 100, 120, 121, 124, 
125]). Most of these studies, however, were with parasites 
mixed with effector proteins in  vitro or with transgenic 
mosquitoes expressing combinations of proteins rather 
than by paratransgenesis with multiple effectors secreted 
by a single transformed symbiont. The outstanding par-
atransgenesis research of Fang et  al. [100] and Wang 
et  al. [120]  with Anopheles gambiae and An. stephensi, 
respectively, however, describes the multiple simultane-
ous expressions of effector molecules by microbes. In 
An. gambiae, Metarhizium anisopliae was transformed 
to deliver scorpine as well as an [SM1]8:scorpine fusion 
protein, resulting in a 98% reduction of Plasmodium fal-
ciparum sporozoite counts [100]. Also, in An. stephensi, 
a Serratia strain of symbiotic bacteria (Serratia ASI) was 
discovered, capable of simultaneously expressing five 
anti-Plamodium effector proteins [120] (see also Pantoea 
agglomerans and Serratia in section  Mosquito microbi-
omes: native endosymbiotic bacteria in paratransgen-
esis of present article). These combinations of proteins 
from transformed Serratia ASI or M. anisopliae were 
more effective at reducing parasite oocyst or sporozoite 
numbers, respectively, than those from symbionts pro-
ducing just a single effector molecule [100, 120]. This is 
an important step forward since such combinations of 
anti-parasite effector molecules with various modes of 
action can be optimal for preventing the development 
of resistance by parasites. Third, one significant problem 
with transgenic symbionts released in the field is their 
potential loss of ability to compete with the microbiome 
already established in the gut of wild vectors [126]. For 
example, Asaia bogorensis colonises a range of vectors, 
including Ae. aegypti, Ae. albopictus and An. stephensi, 
and has been engineered to produce anti-Plasmodium 
effectors. Shane et  al. [126] reasoned, however, that 
genetic modification of the bacteria may lead to a sig-
nificant loss of fitness as a cost of the prodution of the 
effector protein, leading to lack of competiveness when 
released in the field. This problem was resolved by isolat-
ing blood meal-induced promotors (BMI) activated only 
during vector feeding on blood and exposure to nutrients 
[126]. Plasmids expressing the anti-Plasmodium protein 
scorpine under the control of the BMI promoters were 
constructed and transferred into Asaia sp. SF2.1 strain 
by electroporation. The Asaia BMI strains, in compari-
son to the constitutive scorpine-expressing control strain, 
had significantly increased maximum growth rates, 
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enhamced ability to compete when co-cultured with 
wild-type Asaia and increased colonisation of mosquito 
midguts. The BMI strains also resulted in a significant 
reduction in oocyst numbers compared with the con-
stitutive scorpine-producing control [126]. The authors 
hypthesised that for release in the field more than one 
effector protein should be expressed by the transformed 
symbiont to reduce chances of resistance. In addition, for 
the sake of stability, the effector genes should be inserted 
into the Asaia chromosome rather than carried on a plas-
mid (see CRISPR in section Transformation of symbionts 
of present article).

Tranfection into insect vectors
A significant problem for paratransgenetic control of dis-
ease vectors is the delivery of the transformed symbiont 
to a specific wild insect vector population under field 
conditions [127] (Fig. 2).

This process requires rapid spread of the foreign 
genes through the native population, without either fit-
ness costs to the target vector or the occurrence of 
transfection of non-target insects. This technique could 
potentially be incorporated into IPM programmes. but 
problems associated with the release of GM organisms 
have yet to be fully resolved (see section  Concluding 
remarks including safety and environmental concerns of 
present article). There have, however, been attempts to 
simulate natural conditions and investigate the potential 
of transfecting vectors in the wild. Some of these studies 
are more than 10 years old [73], with the major regulatory 
barriers to GM organisms presumably still not statisfied. 
The following are more recent pilot experiments more or 
less simulating natural conditions for transfection.

Mancini et al. [53] used large cages to study the hori-
zontal and vertical transfection of Asaia sp.-transformed 
bacteria expressing green fluorescent protein (GFP), 
Asaiagfp, into laboratory-reared Anopheles stephensi and 
An. gambiae populations. Transfection occurred either 
by the release of paratransgenic male mosquitoes or from 
feeding on cotton pads soaked in sucrose plus 108 trans-
formed Asaiagfp bacteria/ml. Transfection was monitored 
after 5, 12 and 20  days by fluorescence microscopy and 
PCR. The results showed the efficient horizontal spread 
of Asaiagfp into both An. stephensi and An. gambiae. For 
example, in An. stephensi, the release of paratransgenic 
males resulted in a 73% infection rate in 400 mosquitoes 
after 20  days. In addition, experiments on vertical and 
trans-stadial transmission in An. gambiae resulted in 78% 
of fourth instars and 44% of the newly emerged adults 
with Asaiagfp. In conclusion, this semi-field pilot study 
illustrates the feasibility of transfecting transformed bac-
teria into populations of mosquitoes [53].

Arora et  al. [128] also used a simulated field study to 
address the problem of transfecting a pest insect, the 
glassy-winged sharpshooter, Homalodisca vitripennis 
(a hemipteran like the triatomines), with a transformed 
bacterium, Pantoea agglomerans, expressing a GFP. This 
insect is a vector of Xylella fastidiosa which is a bacte-
rial pathogen of grapes and citrus fruits. The engineered 
P. agglomerans were microencapsulated in an alginate 
hydrogel and after ingestion by field-collected H. vitrip-
ennis, the bacteria colonised the foregut for up to 15 days. 
The bacteria were only released from the gel during the 
flow of plant sap into the foregut of feeding insects. More 
recently, it has also been shown that P. agglomerans can 
be transmitted horizontally between H. vitripennis and 
therefore may be self-sustaining [128].

Finally, Wang et al. [120] used laboratory cage experi-
ments containing virgin female and male An. stephensi 
mosquitoes fed, respectively, with Serratia AS1−mCherry 
and AS1-gfp, to monitor how Serratia AS1 colonised and 
persisted in these mosquitoes. Subsequently, The results 
showed that all the offspring larvae and adults carried 
both fluorescent proteins so that the transformed Ser-
ratia AS1 spread through the whole mosquito life-cycle 
horizontally, vertically and transstadially. Additional 

Fig. 2  Spread of engineered microorganisms (EM) into wild 
mosquitoes. EM can be directly offered to winged adults through a 
baited trap or encapsulated and seeded or oviposited into water to 
contaminate aquatic juvenile forms. Females containing EM can also 
contaminate eggs laid on land, enabling vertical transmission. The 
selected bacterial species should preferably remain in the different 
stages of mosquito development or even be transmitted horizontally 
within this host. In this way, EM can remain permanently and 
cyclically in the environment
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experiments also showed that the bacteria persisted in 
multiple subsequent generations [120] (for more details, 
see section  Mosquito microbiomes: bacteria of present 
article).

These studies are important as they describe the suc-
cessful transfection and persistence of transformed bac-
teria into insect vector populations as well as the use 
of microencapsulation of engineered bacteria to limit 
their release and contamination of the environment 
(Fig.  2). These are significant steps in the evolution of 
paratransgenesis from the laboratory to the field [128, 
129]. In addition, the results of semi-field trials provide 
information for formulating models of the efficacy of 
paratransgenesis and ways of improving the spread of 
transformed bacteria. For example, information on the 
distriburion of sugar baits could be used to help prevent 
a malaria outbreak and influence control policies [130]. 
On a cautionary note, however, the value of these semi-
field pilot studies has been questioned since the insects 
tested are sometimes inbred laboratory strains and the 
doses of microbes used extremely high so the results 
obtained may not reflect the normal responses occur-
ring in nature [131]. When cage trials are undertaken, it 
is also important to carefully assess the effects of genetic 
transformation on mosquito fitness in all developmental 
stages, including percentage of egg hatching. The above 
advances are summarised in Table 1.

Paratransgenesis in different groups of vectors
The majority of studies on paratransgenesis have been 
conducted using symbiotic or commensal bacteria for 
transformation (see section  Analysis of microbiomes of 
present study). The composition of the bacteria in insects 
is highly dynamic and varies not only from vector species 
to species but also according to stage of development, 
sex, nutrition, habitat, geographical region of the insect 
and location in the insect [83, 97, 132–141]. The bacte-
ria live in the intracellular or extracellular environment 
of the insect host and preferentially colonise the midgut 
and less frequently the salivary glands and reproductive 
organs [142, 143].

Mosquito microbiomes
There are over 3567 species of mosquitoes classified 
into 41 genera [144], but members of just three gen-
era, Anopheles, Aedes and Culex, are responsible for the 
transmission of the majority of human diseases [9].

Studies on the microbiome composition of mosquitoes 
are most important since these have revealed the roles 
of the constituent microbes in the nutrition, physiol-
ogy, immunity, metabolism, reproduction, longevity and 
even behavior of the host mosquitoes (e.g. [145–149]). 

In addition, the microbiome influences the relationship 
of the vector insect with infecting parasites and patho-
gens (e.g. [97, 120, 146, 149–158]). An excellent review 
on the interaction of the mosquito gut microbiota with 
the immune system and the pathogens is provided by 
Gabrieli et  al. [159] who emphasises the importance of 
understanding this trilogy in order to maximise control 
strategies. Therefore, knowledge of the insect vector 
microbiome is vital for identifying microbes for use in 
paratransgenesis and for optimising the mass production 
for release of transgenic mosquitoes to control malarial 
parasites and arboviruses [34, 51, 83, 120, 160–163].

In the last decade, the realisation of the importance of 
the mosquito microbiome has resulted in over 300 pub-
lications on this topic [164]. This in turn has produced 
large amounts of data from many species in various phys-
iological states and from different habitats, using alterna-
tive sampling and analysis techniques. This problem has 
made it difficult to compare the research results on mos-
quito microbiomes from different studies [51, 161, 164, 
165]. Dada et al. [164] have therefore created a Mosquito 
Microbiome Consortium (www.​mosqu​ito-​micro​biome.​
org) as a repository for rationalisation of these data and 
to provide guidelines for conducting mosquito microbi-
ome research to enhance collaboration. This Consortium 
focusses on four areas, namely: (i) sampling/experimen-
tal design; (ii) metadata collection; (iii) sample processing 
and controls; and (iv) data handling and analysis.

It is highly recommended to read this Consortium 
paper [164] as well as the publications of Romulo and 
Gendrin [157] and Rodríguez-Ruano et  al. [165] for 
rationalisation of future research efforts and protocols. 
Consultation of the mosquito microbiome literature 
does, however, reveal some consistences in the the com-
position of bacterial species (see following subsections).

Mosquito microbiomes: bacteria
Bacteriomes of Aedes spp. and Anopheles spp. mosqui-
toes consist primarily of Gram-negative species, with as 
many as 98 genera described in anophelines [166]. Many 
of these bacteria are found in the midgut although the 
salivary glands and reproductive organs are also involved. 
In Anopheles culicifacies, the salivary glands are reported 
to contain more diverse microbial communities than the 
gut [142].

A detailed account of the bacteriome distribution in 
Aedes has been given by Scolari et  al. [51]. Relatively 
few taxa, however, usually dominate, and these are 
often referred to as the core microbiota [156]. These 
may be highly variable depending upon the host stage 
and sex, the habitat, as well as whether the mosquitoes 
were laboratory-reared, field-caught and parasitised or 
not [149, 167–169],

http://www.mosquito-microbiome.org
http://www.mosquito-microbiome.org
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The mosquito bacteriome is mainly composed of 
the Gram-negative phyla Proteobacteria and Bacteroi-
detes, but there are also representatives of the Gram-
positive phyla Firmicutes and Actinobacteria. The 
Proteobacteria contain many species with great poten-
tial for paratransgeneisis experiments in mosquitoes 
and include the genera Asaia, Enterobacter, Pantoea, 
Serratia, Aerobacter, Aeromonas, Alicyclobacillus, 
Bacillus, Clostridia, Elizabethkingia, Escherichia, Fla-
vobacterium, Geotrichum, Klebsiella, Lactobacillus, 
Micrococcus, Proteus, Pseudomonas, Shewanella, Spin-
gomonas, Thorsellia and Wolbachia (e.g. [51, 83, 97, 
132, 137, 140, 141, 149, 151, 160–163, 168–179]).

This list is incomplete, as shown by Tainchum et al. 
[179], who recorded five new genera in anophelines 
from Thailand, and by Nilsson et al. [180] who, work-
ing with Anopheles darlingi from the Amazon Basin, 
reported dominance of Escherichia/Shigella, Pseu-
domonas (all Proteobacteria) and Staphylococcus (phy-
lum Firmicutes). Whether there are any differences 
in the microbiota of Aedes, Anopheles and Culex has 
also been the subject of study (e.g. [156]). It has been 
shown in a comparative study of the microbiome of 
field-collected Aedes, Anopheles and Culex carried 
out in the USA that there are similarities in the bacte-
ria components in the gut [180]. Ecology seems to be 
important since different mosquito species from simi-
lar environments share core bacteria. The environment 
determines the nature of the food resources, such as 
the plants and nectar, as well as the composition of the 
microbiota at the breeding sites. The microbiota of the 
larvae will be acquired from the surrounding water, 
and a fraction will be retained by the adults follow-
ing moulting (Fig.  2); the remainder will be modified 
following a blood or sugar meal or even parasitisa-
tion and co-occurrence and co-exclusion interactions 
in the microbiome with, for example, Wolbachia [135, 
156, 175]. In fact, the mosquito gut has been described 
as a “selective eco-environment for its microbiome”, 
favouring enteric bacteria, such as the Enterobacte-
riaceae, with high redox capacities to manage the oxi-
dative and nitrosative stresses from the digestion of 
the blood meal [181]. Finally, although genera of bacte-
ria found in laboratory-reared and wild mosquitoes are 
similar, wild mosquitoes lose component microbiota 
within one generation of laboratory rearing [161].

Mosquito microbiomes: native endosymbiotic bacteria 
in paratransgenesis
Relatively few native bacterial species (Table 2) from the 
midgut of mosquitoes have been exploited for devel-
oping paratransgenesis for the control of disease and 
malaria in particular. These include Asaia, Pantoea, 

Serratia, Enterobacter, Escherichia, Chromobacterium 
and Pseudomonas. 

Asaia  Asaia commonly infects mosquitoes via plant 
nectar and has been found in a large range of mosqui-
toes both from wild and laboratory strains. It is present 
in many Anopheles (Nyssorhynchus) species, including the 
important malaria vectors, An. stephensi, An. gambiae, 
An. fluviatilis and An. darling, as well as in Aedes aegypti, 
Ae. albopictus and the Culex pipiens complex [51, 163, 
173, 182–189].

Asaia has great potential for development in para-
transgenesis as not only is it widely distributed in mos-
quitoes but it also colonises the midgut, salivary glands 
and reproductive organs of both male and females. In 
addition, Asaia is horizontally and vertically transmit-
ted, present in different stages of mosquito development 
and can be grown in culture and genetically manipulated 
(e.g. [138, 173, 190–192]). In addition to this potential 
of Asaia in paratransgenesis, wild Asaia strains can also 
inhibit the development of malarial parasites through the 
production of toxic proteins [183, 193], reduce the malar-
ial parasite load by activation of the basic immune sys-
tem of Anopheles after an infected blood meal [194] and 
inhibit competing Wolbachia infections [195]. Despite 
the potential of Asaia and other symbionts for the para-
transgenesis control of malaria, there seems to be more 
emphasis on producing transgenic mosquitoes for release 
and control programmes rather than the potentially safer 
paratransgenesis alternative [10, 34, 122, 125].

Wang and Jacobs-Lorena [122] compiled a compre-
hensive table of possible anti-Plasmodium effector mol-
ecules, recognising four classes: (i) parasite killing; (ii) 
interaction with parasites; (iii) interaction with mosquito 
midgut or salivary gland epithelia; and (iv) manipulation 
of mosquito immune system. These molecules, together 
with those identified by Carter et al. [124], provide a use-
ful choice for delivery by mosquito symbionts such as 
Asaia.

In order to determine more about the Asaia–mos-
quito interactions and test the suitability of Asaia for use 
in paratransgenesis with mosquitoes, Favia et  al. [190] 
undertook a study on the kinetics of infection of Asaia 
in An. stephensi. Analysis of infected mosquitoes fed with 
GFP-tagged Asaia (Asaiagfp) showed that the bacteria 
colonised the female gut and salivary glands, the same 
compartments occupied by the malarial parasite during 
development. In addition, the larval gut and adult male 
reproductive system were massively invaded. Therefore, 
Asaia could potentially be orally and venerally transmit-
ted, and, as reported previously, passed vertically from 
mother to offspring [190]. The bacteria remained in the 
adults throughout their lives and could be transmitted 
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using simple sugar solutions. Capone et  al. [196] also 
reported in An. stephensi that Plasmodium berghei genet-
ically modified to express GFP (PbGFPcon) induced a 
host immune response but with no adverse effect against 
the midgut native population of Asaia. In fact, 2 days 
after PbGFPcon infection, the Asaia were enhanced by 
tenfold in mosquitoes. Other assays using Asaiagfp and 
AsaiaDsRedshowed the co-localisation of the bacteria with 
Plasmodium berghei (PbGFPcon) in the salivary glands 
and midgut, an optimal situation for reducing the vec-
torial capacity of the mosquito with transformed Asaia 
releasing anti-Plasmodium factors [196].

Subsequently, Mancini et  al. [53] undertook a semi-
field pilot study of the horizontal and vertical transfection 
of Asaiagfp into laboratory-reared Anopheles stephensi 
and An. gambiae populations and confirmed the efficient 
transmission of the bacteria in both species (see details in 
section Tranfection into insect vectors in present article). 
Thus, the feasibility of transfecting transformed Asaia 
into populations of mosquitoes was confirmed.

Successful experiments modifying Asaia to secrete 
heterologous proteins into the An. stephensi midgut 
and inhibit P. berghei were first reported by Bongio and 
Lampe [193]. Asaia bogorensis were genetically screened, 

and an efficiently secreted siderophore receptor protein 
was fused with the antiplasmodial gene scorpine or with 
an anti-Pbs21 scFv-Shiva1 immunotoxin. These Asaia 
strains were fed to mosquitoes that were then challenged 
with a P. berghei-infected blood meal; 2 weeks later 
mosquitoes were dissected and oocyst numbers on the 
midgut counted. Significant reductions in oocyst num-
bers occurred  in both Asaia strains compared with the 
controls (P < 0.0001 and < 0.0006, respectively, for scor-
pine and the immunotoxin transformants) [193]. More 
recently, however, Shane et al. [126] reasoned that genetic 
modification of the bacteria may lead to a significant loss 
of fitness and competiveness in the field. These research-
ers therefore constructed Asaia BMI strains (bacteria 
with blood meal-induced promotors). These strains, in 
comparison to the constitutive scorpine-expressing con-
trols, showed significant increases in maximum growth 
rates, in the ability to compete with wild-type Asaia, 
in the colonisation of mosquito midguts and in the 
inhibition of oocyst numbers [126] (see details in sec-
tion Choice of effector molecules of present article).

Pantoea agglomerans (= Enterobacter agglomerans)  Pan-
toea agglomeratus was the most prevalent of 20 genera of 

Table 2  Genetic manipulation of bacteria, fungi and viruses with potential use in mosquitoes for paratransgenic control of 
Plasmodium 

AgDNV Anopheles gambiae densonucleosis viruses, DsRed discosoma red, mCherry red fluorescent protein, kanR  kanamycin resistant

Transformed microbes used + effector genes Insect vectors Experimental results with transformed microbes Key references

Asaia BMI strain + scorpine An. stephensi Plasmodium berghei reduction in oocyst numbers in vivo [126]

Asaiagfp

AsaiaDsRed

E. coliDsRed

An. stephensi P. berghei ANKA, strain PbGFPCON shows co-localisation of 
parasites and bacteria

[196]

Asaiagfp An. gambiae, An. stephensi Semi-field transfection study only [53]

Asaia + scorpine
Asaia + anti-Pbs21 scFv-Shiva1 immunotoxin

An. stephensi P. berghei reduction in oocyst numbers in vivo [193]

Asaiagfp An. stephensi Transfection study only [190]

Enterobactergfp + defensin An. stephensi Transfection study only [218]

Pantoea + mPLA2
Pantoea + Pro:EPIP
Pantoea + Shiva1
Pantoea + scorpine
Pantoea + (EPIP)4

An. stephensi, An. gambiae P. berghei
Plasmodium falciparum
Inhibition of 85–98% oocyst formation in vivo

[121]

Serratia AS1-gfp

Serratia ASI−mCherry
An. gambiae, An. stephensis Semi-field transfection study only [120]

Serratia ASI-gfp + mCherry and kanR 
genes + microbiome in vivo

An. stephensi No horizontal transfer of transgenic bacteria and transient 
plasmid expression

[134, 162]

Serratia ASI−mCherry An. stephensi, Culex pipiens, 
Cx. quinquefaciatus, Cx. 
theileri

Transfection studies through different routes [214]

AgDNV-gfp An. gambiae Transfection of GFP- labelled viruses [91]

Metarhizium anisopliae + [SM1]8
M. anisopliae-PfNPNA +1
M. anisopliae + scorpine
M. anisopliae + [SM1]8:scorpine

An. gambiae P. falciparum reduced sporozoite counts [100]
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symbiotic bacteria reported in wild-caught An. gambiae 
and An. funestus mosquitoes from Kenya and Mali [170]. 
There are also other reports of P. agglomeratus in anophe-
line, Aedes and other culicine mosquitoes from around 
the world [51, 197–199]. In addition, this bacterium is 
present in laboratory strains of Anopheles stephensi, An. 
gambiae and An. albimanus [200, 201]. Pantoea agglom-
eratus has been developed for potential paratransgenesis 
to prevent the transmission of malaria in mosquitoes [81, 
114, 202], and of plant diseases and pests in agriculture 
crops [74, 129, 203] (see section Tranfection into insect 
vectors of present article). Pantoea agglomeratus has great 
potential for use in paratransgenesis as it naturally infects 
mosquitoes, resides in the insect midgut together with 
infecting malarial parasites, can be cultured and labelled 
with GFP for following the dynamics of infection, multi-
pies 200-fold following ingestion and, most importantly, 
can be transformed to secrete anti-Plasmodium effector 
molecules [121].

The classic paper of Wang et al. [121] describes the use 
of the E. coli HlyA secretion system to separately trans-
form P. agglomeratus strains with eight anti-Plasmodium 
effector molecules. The expression and secretion of each 
of the effector proteins by the recombinant P. agglom-
eratus were confirmed by Western blotting. To test the 
effects of the transformed bacteria on infection of An. 
gambiae and An. stephensi by Plasmodium falciparum or 
P. berghei, the bacteria were fed to the mosquitoes on cot-
ton pads soaked with bacteria suspended in 5% sucrose. 
After 32 h, the mosquitoes were given an infected blood 
meal, and 8 days later numbers of oocysts formed were 
counted. Five of the effector proteins secreted by the 
transformed P. agglomeratus significantly inhibited par-
asite development by up to 98% for scorpine or (EPIP)4 
(Plasmodium enolase–plasminogen interaction peptide). 
Combinations of two types of effectors were no more 
effective at parasite inhibition than individual proteins; 
this, however, does not consider possible enhanced resist-
ance of P. agglomeratus protein combinations to parasite 
mutation and evolution. The importance of this study is 
that the engineered P. agglomeratus were equally effec-
tive at inhibiting malarial parasites in both An. gambiae 
and An. stephensi so that any reproductive or behavioural 
barriers that may exist between isolated vector popula-
tions in the wild will not affect paratransgenesis [121]. 
Progress in the widescale use of P. agglomerans for mos-
quito control has not advanced rapidly since the Wang 
et al. paper [121], probably as a result of the unresolved 
problem of driving the bacteria into wild mosquitoes 
[120] (see section  Concluding remarks including safety 
and environmental concerns of present article) and the 
continued resistance to the release of engineered micro-
organisms into the environment. In addition, reports of 

P. agglomerans causing secondary human infections in 
bones and joints as well as pathogenic strains in some 
crops have to be considered [204, 205], although it is 
unlikely that these pathogenic bacteria are the same as 
those isolated from insects.

Serratia  Serratia spp. have been widely reported in the 
midguts and tissues of Anopheles, Aedes and Culex mos-
quitoes as well as in many non-vector insect orders [206, 
207]. Interest in Serratia has previously been centred 
around the potential use of these bacteria for controlling 
the malarial parasite in the mosquito host (e.g. [208]). 
This Plasmodium-inhibitory activity of Serratia spp. has 
been shown to result from multiple mechanisms, includ-
ing the upregulation of the mosquito immune system 
[209] by the direct production of anti-malaria factors by 
the bacteria themselves [157, 209–211], and by blocking 
ookinete penetration through the vector midgut epithe-
lial cells [210]. The possibility therefore exists of transfect-
ing mosquitoes with specific strains of Serratia to control 
malaria although much additional work is required and 
Wolbachia-based strategies have been given priority at 
the present time [62–64]. However, as mentioned earlier 
in this article, the use of Wolbachia in paratransgenesis 
has not been developed so far as the bacterium cannot be 
genetically transformed and is difficult to culture (it is an 
obligate intracellular symbiont) [56, 57, 212]. Reveillaud 
et al. [213], however, reported Wolbachia from four wild 
Culex pipiens mosquitoes carrying a plasmid (pWCP), 
indicating that future paratransgenesis utilising Wol-
bachia may be possible.

The potential use of Serratia for paratransgenesis has 
also been recognised [121, 122, 211, 214, 215]. Wang 
et al. [122] previously engineered natural symbiotic Pan-
toea agglomerans to secrete anti-Plasmodium effector 
molecules (see section  Pantoea agglomerans (= Entero-
bacter agglomerans of present article) but failed to 
address the problem of infecting wild mosquito popu-
lations. These researchers then discovered, in Anoph-
eles stephensi, a strain of Serratia called AS1 which has 
no fitness costs following engineering to produce anti-
Plasmodium effectors in An. stephensi or An. gambiae 
[122]. Using fluorescent markers incorporated into the 
bacteria, the colonisation of the mosquitoes by Serratia 
AS1 was studied in laboratory cage experiments. In just 
one mosquito generation, AS1 was venerally transmit-
ted horizontally from males to females during mating 
and then vertically to the offspring. It also survived larval 
metamorphosis to multiply in the mosquito midguts and 
other organs for multiple generations. The transformed 
Serratia AS1, producing multiple anti-Plasmodium effec-
tors, were also fed to mosquitoes and inhibited the Plas-
modium falciparum life-cycle [121]. Koosha et  al. [215] 
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also used Serratia AS1 labelled with mCherry fluorescent 
protein to study the acquisition of bacteria by arthro-
pod vectors, including An. stephensi, Culex pipiens, C. 
quinquefaciatus and C. theileri. Subsequently,  all adult 
mosquitoes took up the bacteria from the host skin dur-
ing blood-feeding and from the water when larvae. The 
larvae then transferred them to the adults transstadially 
and these finally returned them back to the water during 
egg-laying (Fig. 2).

More recently, Huang et al. [134, 162] have addressed 
possible regulatory concerns about the release of engi-
neered bacteria into the environment and any uncertain 
consequences that might occur. They have designed a 
self-limiting paratransgenesis using Serratia marcescens 
AS1 and An. stephensi. In this system, plasmids were 
used to transform Serratia AS1 bacteria, but these plas-
mids were lost in 130 generations so that the bacteria 
returned to wild type. Thereby, the plasmids were lost in 
three mosquito generations. Equally important, for satis-
fying regulators, there was no evidence, following feed-
ing of plasmid-transformed AS1 to vector insects or their 
incubation in culture with high concentrations (1012) of 
E. coli or P. agglomerans, for horizontal transfer of plas-
mid genetic material to other bacteria (Table  1) [134, 
162].

Enterobacter, Escherichia, Chromobacterium, Elizabethk-
ingia and Pseudomonas  Apart from Asaia, Pantoea 
and Serratia described above, Enterobacter, Escherichia, 
Chromobacterium, Elizabethkingia and Pseudomonas are 
examples of other members of the phylum Proteobacteria 
with potential use in paratransgenesis but for which less 
published information is  available. Enterobacter infec-
tions in Anopheles arabiensis and An. gambiae, without 
engineering, were shown to block Plasmodium falci-
parum parasites [216, 217]. Also, following an infected 
bloodmeal, Enterobacter cloacae rapidly colonised the 
midgut of An. stephensi and the bacteria were amenable 
to transformation but only weakly transferred from lar-
vae to adults so of no use for multigeneration recycling 
[218]. Escherichia coli was transformed and shown to 
inhibit Plasmodium berghei in An. stephensi but the effect 
was suboptimal, the effector molecules stuck to the bac-
terial surface and the E. coli strain used survived poorly 
in the mosquito gut [81]. Chromobacterium isolated from 
the midgut of Aedes and Anopheles mosquitoes has been 
shown to have both anti-Plasmodium and anti-dengue 
virus activity in vitro and to kill Anopheles coluzzii after 
infective feeding [153, 219, 220]. These toxic properties 
are probably at least partially due to a secreted protease, 
suggesting that the bacteria could be engineered to pro-
duce this effector in the midgut of mosquitoes [220].

Elizabethkingia is also common in anopheline mos-
quito microbiomes from western Thailand [179], can 
be transmitted transstadially and has been transformed 
to re-infect Anopheles mosquitoes [221]. It is, however, 
a potential human pathogen with resistance to some 
antibiotics so caution would be required [222]. Simi-
lar pathogenic concerns exist for Pseudomonas isolated 
from the common Asian vector, Anopheles culicifacies 
[160] and from Culiseta longiareolata [223]. It is present 
in both larvae and adults and so may be transstadial and, 
depending upon the species, may be a possible candidate 
for paratransgenesis.

Mosquito microbiomes: viruses and fungi
The choice of symbiotic microorganisms for develop-
ing paratransgenesis in mosquitoes has also now been 
extended from bacteria to include viruses and fungi, 
although the majority of studies have utilised bacte-
rial symbionts (e.g. [83, 86]). Details of potential viral 
and fungal candidates for paratransgenesis have been 
discussed in previous sections (see section  Analysis of 
microbiomes of present article). Gurung et  al. [224] 
believe that focussing attention too much on bacteria in 
the microbiome and ignoring the other microbial com-
ponents, such as the fungi, viruses, archaea and protozo-
ans, may hamper full understanding of the true impact of 
the microbiome on the insect pest. This is just as likely 
to apply to the effect of the microbiome on invading 
parasites.

Mosquito microbiomes: RNAi‑based paratransgenesis
This is a relatively new technique in vector insects in 
which the transformed symbionts deliver dsRNA instead 
of the usual effector proteins to silence or knock down a 
specific host or even parasite genes (for more details, see 
section Transformation of symbionts of present article). 
In addition, the use of RNAi for the control of mosquitoes 
and malarial parasites is growing [115] although techni-
cal difficulties exist. For example, both Aedes aegypti and 
Ae. albopictus contain 10 dsRNases which would rapidly 
degrade any dsRNA in the gut lumen [225]. Subsequent 
dsRNA knockdown of two key dsRNases resulted in a 
high efficiency of gene knockdown by dsRNA targeting 
a cyan fluorescent protein (CFP) reporter gene given by 
feeding [225]. Another way to enhance the survival of the 
dsRNA in the insect would be to use symbiotic bacteria 
to both protect and produce the dsRNA rather by feeding 
or injecting naked dsRNA [74, 114, 226].

For a summary of this section, see Table 2.
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Triatomine microbiomes
There are approximately 152 described species of tri-
atomine bugs, of which 67 occur in Brazil [227]. About 
half of these species can carry Trypanosoma cruzi, the 
causative agent of Chagas disease. This disease also 
induces chronic inflammation of the heart, colon and 
nervous system, and the parasite DNA can undergo verti-
cal transmission to the progeny of mammals [228].

There has been an increased interest in the microbiome 
of these insects since details of the roles of the compo-
nent bacteriome in the host physiology and interactions 
with the flagellate parasite, T. cruzi, were revealed (e.g. 
[54, 229–236]). Resistance to conventional insecticides 
also stimulated research on the triatomine microbiome 
[237], resulting in the introduction of paratransgenesisis 
as an alternative control technique, for the first time in 
vector insects, in Rhodnius prolixus (e.g. [69]).

The expansion in this research area with triatomines 
was also mediated by the application of molecular tech-
niques, including high-throughput 16S rRNA and, more 
recently, next-generation sequencing and bioinformat-
ics, to identify most members of the microbiome (e.g. 
[233, 234, 238–252]). These studies have looked at the 
microbiomes of varying numbers of wild and laboratory-
reared triatomine species with and without parasites. In 
addition, these insects were from different geographical 
regions and ecological niches, at various developmen-
tal stages, and involved different feeding regimes, sexes, 
physiological states and tissues, utilising alternative sam-
pling and analytical techniques. Therefore, and similar 
to the situation in mosquitoes (see section  Mosquito 
microbiomes in present article), generalisations have 
been difficult to make. Fortunately, Duarte Silva et  al. 
[253] and Salcedo-Porras et  al. [234] have recently ana-
lysed and rationalised the results of some of these studies 
in detail although many contradictions still exist. In addi-
tion, Brown et al. [250] designed their research to elimi-
nate some of these variables by, for example, using five 
wild Triatoma species sampled from the nests of white-
throated woodrats in which all five instars plus adults 
could be found occasionally, as well as other species, 
all feeding on the same blood source. Some basic but 
not universal conclusions that can be drawn from these 
papers on the triatomine microbiome are as follows:

	 i.	 Most triatomines have a low diversity of bacterial 
genera in comparison with other insects, but vari-
ability exists between species even when they origi-
nate from identical environments, such as the same 
nest [245].

	 ii.	 The triatomine microbiome, which shows similari-
ties to other vector insects [246], contains mem-
bers of the Gram-negative phylum Proteobacteria 

(e.g. Serratia, Enterobacter, Pantoea, Acinetobac-
ter, Arsenophonus, Pseudomonas and Wolbachia) 
and the Gram-positive phylum Actinobacteria 
(including Rhodococcus, Nocardia, Dietzia, Gordo-
nia, Corynebacterium and Mycobacterium), which 
together make up 20–50% of the microbiome. In 
addition, Gram-positive Firmicutes (20%; e.g., 
Enterococcus, Staphylococcus, Bacillus) and Gram-
negative Bacteroidetes (e.g. Proteiniphilum; 5–7%) 
are also present [234]. However, in only three spe-
cies of triatomines were mutualistic symbionts 
identified, all Actinobacteria [254].

	iii.	 Many Proteobacteria, but particularly the Entero-
bacteriales (e.g. Arsenophorus, Serratia and Entero-
bacter) and Corynebacteriales (e.g. Rhodococcus, 
Nocardia, Dietzia, Gordonia, Corynebacterium 
and Mycobacterium), are present in multiple tri-
atomines.

	iv.	 Similar changes occur in the microbiome in wild 
triatomines throughout development and from 
one gut compartment to another. These involve 
a change from high microbiome diversity to low 
diversity from first instars to adults which are often 
dominated by a single bacterial genus, including 
Dietzia, Mycobacterium or Proteiniphilum [245].

	 v.	 Wild insects naturally infected with T. cruzi have 
a more diverse microbiome than uninfected wild 
insects or infected or uninfected cultured insects 
[164, 241], but see [244, 247].

	vi.	 Rhodnius spp. and Triatoma infestans are the only 
triatomines in which Wolbachia has been reported 
in both wild and laboratory populations [234, 249, 
252].

Some of the above bacteria, and many more reported 
in the papers cited previously, would be good candidates 
for paratransgenesis, assuming that they can be cultured, 
are non-pathogenic for humans or animals and can be 
genetically manipulated with no adverse effects on their 
stability or fitness or on the host vector. Serratia, Pantoea 
and Enterobacter have already been tested in mosquitoes 
(see section  Mosquito microbiome: native endosymbi-
otic bacteria in paratransgenesis of present article) as 
have Corynebacterium, Escherichia and Rhodococcus in 
triatomines (see section Transformation of symbionts of 
present article). Another factor in choosing bacteria for 
paratransgenesis is to select a species with high GC-con-
tent since, in the triatomine gut, bacterial species with 
high GC-contents have been shown to outcompete those 
with low GC-content [242].
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Triatomine microbiomes—native endosymbiotic bacteria 
in paratransgenesis
The pioneering steps in the development of paratransgen-
esis were made with the triatomine, Rhodnius prolixus, 
utilising the genetically transformed actinimycete bac-
terium, Rhodococcus rhodnii, to deliver the trypanolytic 
antimicrobial peptide (AMP), cecropin A [66–71, 77]. 
The target of this peptide was Trypanosoma cruzi (for 
details see section  Development of paratransgenesis of 
present article). The use of cecropin A was a successful 
proof of concept study and led to further experiments 
with other effector molecules in order to improve both 
the efficiency of parasite killing and reduce the likeli-
hood of resistance developing  (Tables  1 and 3). Several 
other single AMPs tested in  vitro killed T. cruzi, but 
when AMPs were combined, for example, apidaecin with 
cecropin, melittin or magainin, the results with all pair-
wise combinations achieved 100% lethal concentration 
(LC100) levels, in contrast to the single AMPs [80]. Strains 
of R. rhodnii have been transformed in vitro to produce 

these AMPs although the results of in vivo experiments 
with T. cruzi have not appeared. Instead, single-chained 
antibodies and recombinant β-glucanase have been 
developed as effector molecules against T. cruzi [70, 72, 
255, 256] (Table 3).

Durvasula et al. [72, 255] and Hurwitz et al. [82] have 
proven the feasibility in R. prolixus and Triatoma 
infestans of the expression and secretion by engineered 
symbionts of functional fragments of the murine three-
domain antibody (rDB3) capable of recognising and 
binding to progesterone. For this, the genetically engi-
neered symbionts R. rhodnii and Corynebacterium sp., 
respectively, for R. prolixus and T. infestans, expressed 
and secreted functional fragments of rDB3 into the 
insect gut. The recombinant strains of R. rhodnii and 
Corynebacterium sp. were added to the blood meal of 
aposymbiotic first instar nymphs and shown to synthe-
sise and secrete rDB3 for 6 months of the study [72, 82, 
255]. Subsequently, small antibody molecules were pro-
duced against the sialyl-Tn and sialyl-(le)a surface glycans 

Table 3  Genetic manipulation of bacteria with potential use for paratransgenic control of Trypanosoma and Leishmania spp.

gfp green fluorescent protein, DR Enterobacter cloacae  expressing red fluorescent protein plus defensin (EC-DR), dsRHBP + dsCA  dsRNA forRhodnius heme-binding 
protein (RHBP) and catalase (CAT), dsNP1 dsRNA for Nitrophorin-1, dsNP2 dsRNA for Nitrophorin-2, dsVg  dsRNA for Vitellogenin, Nb_An46  a potent trypanolytic 
nanobody, i.e. Nb_An46. (Nanobody®)

Transformed microbes used + effector genes Insect vectors Experimental results with transformed microbes Key references

R. rhodnii + pRr1.1 shuttle plasmid with antibiotic 
resistance

R. prolixus First proof of concept in insect vectors. Success-
ful transformation and maintenance of symbiotic 
bacteria in vector

[66, 67, 70]

R. rhodnii + RrThioCec-(transformed R. rhod-
nii + cecropin A)

R. prolixus Elimination or reduction of T. cruzi in vivo [69, 71]

R. rhodnii + rDB3 antibody fragment R. prolixus Secretion of antibody fragments into gut lumen 
in vivo

[72]

Corynebacterium sp. + rDB3 Triatoma infestans Secretion of antibody fragments into gut lumen 
in vivo

[82, 255]

R. rhodnii + recombinant Arthrobacter luteus β-1,3-
glucanase

Potential additional effector 
in R. prolixus in vivo

Lysates of β-1,3-glucanase transformed R. rhodnii 
kill T. cruzi in vitro

[256]

R. rhodnii + rDB3 antibody fragment R. prolixus Semi-field simulation of transgenic bacteria spread 
in Cruzigard

[73]

E. coli + dsRHBP + dsCAT​ R. prolixus Proof of concept with transgenic symbiont -medi-
ating RNAi in adults and nymphs

[111]

R. rhodnii + dsNP1
R. rhodnii + dsNP2
R. rhodnii + dsVg

R. prolixus Proof of concept with transgenic symbiont -medi-
ating RNAi in aposymbiotic nymphs

[74, 113, 260]

Sodalis glossinidius-fp Glossina morsitans morsitans Transfection study to progeny [287, 288]

S. glossinidius-gfp G. m. morsitans
Glossina fuscipes fuscipes

Reciprocal transinfection occurs with no fitness 
costs

[270]

S. glossinidius + Nb_An46 G. m. morsitans The nanobody was expressed in vivo by the trans-
formed Sodalis

[289, 290]

S. glossinidius-gfp G. m. morsitans Much impoved bacterial colonisation of progeny [291]

S. glossinidius G. m. morsitans Paratransgenesis combination advocated with 
sterile insect technique

[294]

Bacillus subtilis-gfp Phlebotomus argentipes Laboratory transfection study in larvae and trans-
stadial transmission

[330, 331]

Enterobacter cloacae-DR Phlebotomus papatasi Laboratory transfection study with limited tra-
nasstadial transmission

[325]
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of T. cruzi [257] and shown by confocal microscopy to 
specifically bind to fixed T. cruzi epimastigotes [76].

Regarding recombinant β-glucanase as an effector 
molecule in paratransgenesis, the surface of T. cruzi is 
covered in a layer of mucin-like glycoproteins that are 
probably essential for the in  vivo development of the 
parasite by mediating its binding to the triatomine mid-
gut and hindgut cells [258, 259]. Jose et  al. [256] con-
cluded that disruption of the surface glycocalyx of T. 
cruzi would therefore inhibit the development of the 
parasite. To prove this, R. rhodnii was transformed to 
express β-1,3-glucanase, as this protease was previously 
shown to efficiently promote cells lysis in T. cruzi [76, 
256]. Jose et al. [256] inserted the complementary DNA 
(cDNA) encoding the Oerskovia xanthineolytica β-1,3-
glucanase gene (i.e. Arthrobacter luteu strain 73–14) into 
plasmid pRrExpA used for manipulation of R. rhodnii. 
In vitro assays performed with T. cruzi incubated in cul-
ture medium together with the recombinant R. rhodnii 
showed a more than 80% inhibition of parasite growth. 
The results proved the efficiency of the recombinant bac-
teria-expressed β-1,3-glucanase in lysing T. cruzi cells. 
Therefore, recombinant β-1,3-glucanase represents a val-
uable additional effector molecule for paratransgenesis 
against T. cruzi in its triatomine hosts.

These studies show that it is potentially possible to 
produce effector molecules targeting a range of different 
sites in T. cruzi to reduce the likelihood of the parasite 
becoming resistant.

A significant problem for paratransgenetic control of 
diseases in insect vectors is the delivery of transformed 
symbionts to specific wild insect vector populations in 
the field [127]. In the case of the triatomine, R. prolixus, 
this problem is readily solved with coprophagy spread-
ing the transformed symbionts naturally to the whole 
population. The newly emerging R. prolixus nymphs 
are aposymbiotic (devoid of gut symbionts) but soon 
become infected from the surrounding faeces produced 
by the whole colony. To study transgenesis in simulated 
field conditions, Durvasula et  al. [73] used large cages 
containing local Guatemala dirt and thatch with panels 
impregnated with CRUZIGUARD, a paste containing 
transformed R. rhodnii suspended in sterile phosphate-
buffered saline plus guar gum powder. Newly emerging 
first instar R. prolixus from eggs of field-caught insects 
were housed in the cages, and guts were sampled at 
the third and fifth instar and adult stages and tested for 
transformed R. rhodnii. Approximately 56% of the experi-
mental insects contained the transformed bacteria to the 
exclusion of other competing bacteria in the environment 
[73]. In addition, when nymphs were allowed to develop 
for 9  months in the cages, approximately 50% of adults 
were shown to contain transformed R. rhodnii. This 

technique could potentially be used along with insecti-
cides to prevent reinfestations of homes.

Triatomine microbiome: RNAi‑based paratransgenesis
It is significant that it has been nearly 30  years and > 
20  years, respectively, since the pioneering works of 
Beard et al. [66] and Durvasula et al. [71] were published 
on paratransgenesis in R. prolixus and, although signifi-
cant advances have been made, approval for use in the 
field has yet to be obtained.

Recent work on the use of symbiotic bacteria to deliver 
dsRNA for knockdown of specific genes in triatomines 
represents a significant step forward (see section Trans-
formation of symbionts in present article) [74, 111, 113, 
260]. This technique has also been adapted for develop-
ment in mosquitoes and may help to satisfy the regula-
tory process for the release of transgenic bacteria in the 
field (see section  Concluding remarks including safety 
and environmental concerns of present article).

For a summary of the above, see Table 3.

Tsetse fly microbiomes
Tsetse flies (genus Glossina) are viviparous with 30–33 
species and subspecies having been described [58]. These 
are usually divided into the Morsitans, Palpalis and Fusca 
groups containing various species and subspecies which 
are particularly important medically and economically 
due to transmission of African trypanosomes [58]. Afri-
can trypanosomiasis affects both people and their live-
stock (e.g. [261, 262]). Cases of human sleeping sickness 
rapidly declined from 1997 to 2019, with many countries 
reporting no new cases for the last decade [14]; however, 
there is a constant risk of re-emegence from animal and 
human reservoirs. There are also no vaccines for sleeping 
sickness, and chemotherapy is both expensive and toxic, 
and the parasites are showing increasing resistance [262, 
263].

A number of studies have been made of the tsetse 
microbiome [264–279]. The results indicate that tsetse 
flies host a large range of bacterial species, often includ-
ing four maternally transmitted endosymbiotic bacte-
ria present in both wild and laboratory-reared flies (e.g. 
[269, 274]), namely Wiggleworthia glossinidia, Sodalis 
glossinidius, Wolbachia and Spiroplasma. Wiggleworthia 
glossinidia occurs intracellularly in bacteriocytes in the 
anterior gut to produce supplements for tsetse nutrition 
and often dominates to form 34.5–99.8% of the micro-
biome [272]. Sodalis glossinidius is present in the mid-
gut, muscle, fat body, salivary glands and milk glands, 
while Wolbachia is found in the ovaries, with both vary-
ing greatly in incidence (e.g. [264, 269, 274, 280]). Spi-
roplasma is a more recently discovered transovarially 
transmitted endosymbiont present in the Palpalis group 
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and culturable in vitro [281–283]. In addition, the tsetse 
microbiome has a diversity of commensal bacteria from 
the environment, which usually account for < 1% of the 
bacteriome [269, 273]. The number and incidence of 
these bacterial species vary from one study to another 
depending both on the methodology used and the species 
of tsetse fly sampled (e.g. [272]). For example, of the 103 
species of bacteria described in Glossina palpalis palpa-
lis by Jacob et al. [272], Gram-negative bacteria predomi-
nated as did the phylum Proteobacteria (97% of isolates), 
with members of the phyla Bacteroidetes, Actinobacte-
ria and Firmicutes also represented and the microbiome 
showing some resemblance to those of Anopheles and 
Aedes. In contrast, with the Glossina pallidipes microbi-
ome, Malele et al. [269] reported that of 113 isolates, the 
descending order of prevalence was Firmicutes (86.6%), 
Actinobacteria (7.6%), Proteobacteria (5.5%) and Bac-
teroidetes (0.3%). Examples of bacteria identified in 
Glossina microbiomes include the genera Bacillus, Ser-
ratia, Pantoea, Acinetobacter, Arthrobacter, Enterobacter, 
Enterococcus, Providencia, Sphingobacterium, Chryseo-
bacterim, Exiguobacterium, Lactococcus, Staphylococcus, 
Pseudomonas, Spiroplasm and Xylella (e.g. [268, 275, 278, 
283, 284]).

Tsetse fly microbiomes: native endosymbiotic bacteria 
in paratransgenesis
The four maternally transmitted endosymbiotic bacteria, 
Wiggleworthia, Sodalis, Wolbachia and Spiroplasma, are 
the dominant symbionts in Glossina and are transmitted 
maternally so that these were the natural candidates for 
developing paratransgenesis in tsetse flies. Of these sym-
bionts, however, Wigglesworthia cannot be cultured, Wol-
bachia is not genetically transformable or easily cultured 
and Spiroplasma is a recent discovery. Thus, to date, 
Sodalis, which can be both cultured and transformed, 
has been utilised for paratransgenesis-related experi-
ments in Glossina [13, 261, 264, 270, 285–295]. There is 
also evidence that some Sodalis genotypes can favour the 
establishment of trypanosme infections in tsetse flies by 
inhibiting the trypanocidal activity of the Glossina mid-
gut lectin (e.g. [269, 274, 296–298]), although this varies 
with species, location and study [271, 276].

As a first step in developing paratransgenesis in Gloss-
ina, Cheng and Aksoy [287] studied the transmission of 
S-symbionts (presumably Sodalis) to the vector prog-
eny. For this, they injected transformed S-symbionts 
expressing GFP into the hemolymph via the thorax of 
mated female G. m. morsitans and collected the F1 and 
F2 progeny. The gut tissues of the progeny were sampled 
and analysed for S-symbionts by PCR amplification using 
GFP-specific primers. The progeny haemolymph was also 
cultured and tested for the presence of GFP-expressing 

symbionts. Both techniques detected the transformed 
S-symbionts in the F1 and F2 flies to confirm the verti-
cal transmission from mother flies. The presence in the 
milk glands of fluorescent recombinant symbionts also 
indicated that the route of transmission was from the 
haemolymph to the intrauterine larvae via secretion of 
these glands [287]. This work indicated two important 
factors necessary for successful paratransgenesis in tsetse 
flies: (i) the vertical transmission of the symbiont from 
the mother to the progeny and (ii) the ability of the trans-
formed symbiont to express the heterologous gene effec-
tively and stably in the insect vector [287].

An additional study advancing paratransgenesis in 
Glossina is that by Aksoy et  al. [288] who describe why 
Sodalis is well-suited for paratransgenesis in tsetse flies 
since it occurs in the gut together with the trypanosomes, 
can be cultured, is resistant to trypanocidal peptides and 
can be genetically transformed and transmitted to the 
progeny.

Transformation in Sodalis has previously been per-
formed with plasmids [286, 289–291]; however, this may 
not be optimal for field experiments as plasmid mainte-
nance may require constant selection. This possibility 
has been recognised by both Aksoy et  al. [288] and De 
Vooght et al. [291] who have utilised alternative methods. 
Aksoy et al. [288] undertook transformation using a piece 
of non-replicating circular DNA, with a sequence homol-
ogous to the desired chromosomal loci, which allowed 
transgenic symbionts to be maintained without selection. 
De Vooght et al. [291] also used the chromosomal expres-
sion of a reporter gene under the control of a native or a 
heterologous constitutive promoter. More recently, it was 
also discovered in Sodalis glossinidius that conjugation 
can be used as a DNA delivery method to conduct for-
ward and reverse genetic experiments [299].

In  another fundamental study providing key back-
ground information for paratransgenesis in tsetse flies, 
reciprocal swopping of Sodalis populations between G. 
fuscipes fuscipes and G. morsitans morsitans flies had 
no dentrimental fitness effects compared to the wild-
type flies in terms of fecundity and longevity [270]. For 
these experiments, newly emerged adult flies were fed 
with blood plus antibiotic to clear the bacteria and then 
injected with the Sodalis strain from the other Glossina 
species of the pair, i.e. reciprocal transinfection. In these 
flies, the bacteria were also successfully transmitted 
to their progeny. These results indicate that in the field 
it would be possible to simultaneously control African 
trypanosomatid transmission by different Glossina spe-
cies with a single recombinant strain of Sodalis express-
ing anti-parasitic effectors [270].

The next step in paratransgenesis is to identify effec-
tor molecules produced by the transformant symbionts 
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and capable of expression and killing trypanosomes in 
Glossina without loss of fitness of the symbiont or the 
host insect. Glossina attacin is one possibility as it can kill 
trypanosomes both in vitro and in vivo without affecting 
Sodalis [300]. The first report, however, of the successful 
use of an anti-trypanosome effector molecule expressed 
in  vitro and in  vivo in Glossina was of a single domain 
antibody (Nanobody® molecules), Nb_An33, targeting 
conserved epitopes of the variant surface glycoprotein 
(VSG) of Trypanosoma brucei [290–292, 301].

For this work, a FliCpelBNb46fliC plasmid-based Soda-
lis strain was initially produced that expressed the tryp-
anolytic nanobodies. This system was shown to be highly 
stable in vitro after 27 generations; therefore, the ability 
of the recombinant Sodalis (recSodalis) to colonise the G. 
morsitans morsitans tissues after intrathoracic injection 
was assessed. In order for the recSodalis to succesfully 
colonise the flies, it was first necessary to remove the 
wild-type Sodalis present in the recipient Glossina with 
streptomycin [290]. The recSodalis also persisted at high 
densities in the thorax and gut tissues for up to 28 days 
without affecting the population of Wigglesworthia, an 
essential Glossina endosymbiont, or the fecundity of the 
flies. Furthermore, the recombinants were also transmit-
ted to the F1 progeny, but at only very low levels. Finally, 
nanobody concentrations were quantified over time with 
a VSG-binding enzyme-linked immunosorbent assay; 
functional Nb_An33 was found to accumulate in the 
haemolymph and thorax, indicating the expression of the 
injected transgene [290]. It was calculated that the lev-
els of nanobody produced would probably be sufficient 
to deal with the average parasitiaemia of 103 T. brucei in 
cattle.

The above results are very encouraging for the devel-
opment of paratransgenesis in tsetse flies although the 
transmission levels to the F1 progeny were very low. This 
could be due, as mentioned above, to instability of the 
plasmid and the need for a more stable transformation 
system. De Vooght et  al. [291], therefore used chromo-
somally GFP-tagged recSodalis to colonise various tis-
sues of tsetse flies and follow their transmission to the 
F1 progeny using different infection procedures. Inject-
ing adults intrathoracically resulted in high-density 
colonisation of the tissues but limited infection of the 
reproductive organs (milk glands, etc.) and no vertical 
transmission to the progeny. Oral feeding of Glossina 
with recSodalis also failed to infect either the adults or 
the offspring. Finally, injection of the third instars gave 
stably infected adults and subsequent vertical colonisa-
tion of the next generations of flies. Apparently, in the 
larvae, certain invasion and motility genes are upregu-
lated, such as invC and fliC and motA, and these may be 
required for vertical transmission (e.g. [302]).

These studies are important steps forward in the devel-
opment of paratransgenesis in tsetse flies. In the future, 
populations of the resistant recSodalis-infected tsetse 
flies might be driven into suscepible field populations 
utilising the cytoplasmic incompatibility induced in flies 
by Wolbachia infections [288]. This possibilty has been 
modelled by Gilbert et  al. [293] with human African 
trypanosomes that could potentially be eliminated over a 
25-year period if colonisation by Wolbachia had minimal 
fecundity or mortality impacts on tsetse flies. The chance 
of recombinant Sodalis vertical transmission was also 
> 99.9%. In addition, control of African trypanosomiasis 
coud be mediated by paratransgenesis in tsetse flies com-
bined with the the sterile insect technique, as advocated 
by Demirbas-Uzel et al. [294].

Sand fly microbiomes
About 500 sand fly (phlebotomine) species are known, 
of which more than 90 transmit leishmaniasis. The main 
vectors of human leishmaniasis are species and subspe-
cies of Phlebotomus in the Old World and Lutzomyia 
in the New World [12]. East Africa, Brazil and India are 
particularly affected by visceral (fatal) leishmaniasis. 
Sand flies also vector several pathogenic viruses, includ-
ing phleboviruses causing encephalitis, meningitis and 
haemorrhagic fever [303, 304]. Like mosquitoes, the 
female sand fly needs blood for egg development and 
transmits the pathogens during feeding. There are > 20 
species of Leishmania, with most infected people show-
ing few symptoms. In 2019, 97 countries were endemic 
with > 1 billion people at risk of infection and almost 1 
million new cases of cutaneous leishmaniasis occurring 
annually [12]. An inactivated/killed Leishmania major 
vaccine with Bacillus Calmette–Guérin was developed 
but failed to protect against the disease [305]. Recently, 
scientists have characterised a new strain of Leishmania 
for use in a human infection model and are seeking vol-
unteers for an initial trial [306]. Medicines for treatment 
of leishmaniasis may be limited in poorer countries, with 
toxicity and emerging resistance problematic and compli-
cations arising from HIV co-infections [12]. In addition, 
pesticide resistance by sand flies has also been detected 
[307]. The conclusion, therefore, is that new tools are also 
required to control this disease [308].

The main requirements for the development of para-
transgenesis in sand flies are the same as those in other 
vector insects (summarised in section  Requirements 
for successful paratransgenesis of present article), and 
have been reviewed for phelbotamines by Wijerathna 
et  al. [309]. The prime requirement is the identifica-
tion of appropriate bacterial species in which to develop 
the technique. There have been many studies on the 
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commensal bacteria in Lutzomyia (e.g. [310–317]), 
and Phlebotamus (e.g. [97, 318–328]). Fortunately, the 
extensive reviews of sand flies by Telleria et  al. [315], 
Wijerathna et  al. [309]  and Omondi and Demir [329] 
provide summaries of many of these studies which, taken 
together, identify numerous species of bacteria.

These bacteria are dominated by Gram-negative mem-
bers belonging to the phylum Proteobacteria, with the 
Gram-positive phyla Firmicutes and Actinobacteria 
also represented, and include Ochrobactrum, Serratia 
marcescens, Klebsiella, Enterobacter, Escherichia coli, 
Pseudomonas aeruginosa, Pantoea agglomerans, Acine-
tobacter baumannii, Methylobacterium, Wolbachia, Spi-
roplasma, Enterococcus faecalis, Staphylococcus aureus, 
Bacillus cereus, B. anthracis, B. subtilis and B. megate-
rium [309, 315, 319, 328]. Several of these species belong 
to the phylum Proteobacteria, with Serratia and Entero-
bacter in the family Enterobacteriales and Pseudomonas 
forming core taxa, as has been described above in some 
other vector insects. There is also divergence in the bac-
teriome between wild and laboratory-reared sand flies as 
well as a reduction in taxa from Leishmania-parasitised 
insects [314].

Sand fly microbiome: native commensal bacteria 
in paratransgenesis
Regarding the choice of bacteria for paratransgenesis in 
sand flies, S. marcescens, P. agglomeratus and Enterobac-
ter cloacae have already been tested in mosquitoes while 
E. coli has been utilised in triatomines (see preceding 
sections on different vectors). These isolates have been 
reported in sand flies so that the appropriate technology 
could be tranferred for use. There are, however, reports of 
pathogenicity for strains of these bacteria in humans so 
that alternative species have been identified for develop-
ing paratransgenesis in sand flies. In fact, the first experi-
ment on the transstadial passage of commensal bacteria 
in sand flies was successful but with a potentially major 
pathogen, Ochrobactrum sp. in Phlebotomus duboscqi 
[319]. Subsequently, Hillesland et  al. [320] identified 
several particularly suitable non-pathogenic bacteria, 
including B. subtilis, B. megaterium and Brevibacterium 
linens, for developing paratransgenesis in Phlebotomus 
argentipes. All three species are sold as probiotics, with 
B. megaterium also having potential as a biofertiliser for 
spreading in the environment [320].

The first study of the possibility of genetically manipu-
lating sand fly commensal bacteria capable of effectively 
colonising the insect and remaining permanent through-
out the life-cycle was conducted by Hurtwitz et al. [330, 
331] with B. subtilis, previously isolated from P. argen-
tipes. For this work, B. subtilis expressing a GFP reporter 
gene was added in the diet and offered to fourth stage 

sand fly larvae; the insects were then dissected and the 
midgut homogenates analysed for colonisation by recom-
binant bacteria using PCR and colony-forming units. 
The Bacillus-gfp colonised the fourth stage larvae of P. 
argentipes effectively and stably and could be recovered 
throughout the different stages of insect development. 
The recombinant strain was isolated from all larvae and 
pupae and from 75% of adults. In addition, sand fly adult 
emergence over 18 days was similar in B. subtilis-treated 
larvae and controls [330]. There was also no apparent 
horizontal transfer of the plasmid used for transforma-
tion to other bacteria in the gut. Whether the bacteria 
affected the female sand fly fecundity or were transmit-
ted to the progeny was not determined. The transforma-
tion of B. megaterium to express a single chain antibody 
has also been reported [320], as has the development of 
melittin and human histone 2B as anti-Leishmania effec-
tor molecules [332].

More recently, Abassi et al. [325] also studied the trans-
formation of the commensal sand fly bacterium, Entero-
bacter cloacae subsp. dissolvens, to express a defensin and 
colonise Phlebotomos papatasi. This defensin is of plant 
origin and able to kill parasites but not bacteria [325]. The 
bacteria were transformed with a red fluorescent protein 
plus defensin plasmid. When first instar larvae were fed 
just once on a diet containing the transformed bacteria, 
the latter could be detected up to 36  days post-feeding 
but there was no transstadial transmission to adult sand 
flies. This may be due to the loss of the bacteria during 
pupation and/or the inability of bacteria to colonise the 
gut due to physiological changes, such as those of the pH 
gradients [333].

In conclusion, much additional work is required with 
sand flies before paratransgenesis can be fully instigated 
for field trials.

Concluding remarks including safety 
and environmental concerns
This overview describes progress in the development of 
paratransgenesis in vector insects and shows that the 
majority of the research, not surprisingly, is currently 
focussed on mosquitoes. As mentioned previously, the 
original technique was pioneered nearly 30 years ago and 
although significant technical advances have been made 
with regulatory laws in mind, approval for use in the field 
has yet to be obtained. Many of these advances are shown 
in Table 1, but reasons for failure to have paratransgene-
sis adopted into IPM programmes are manifold. Some of 
the problems to be addressed have been identified previ-
ously (e.g. [34, 69, 83, 334, 335]) and their partial resolu-
tions are indicated in Table 1.

To gain support from regulatory bodies, there are 
important requisites, including proof that the released 
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transformed bacteria are stable and non-pathogenic to 
other animals and humans, and that they do not infect 
harmless insects by horizontal gene transfer. In addition, 
it is necessary to have detailed studies of the tripartite 
interactions of vector microbiomes from different eco-
systems with vector immunity and invading parasites in 
order to identify suitable candidate microbes for para-
transgenesis [83, 157]. Furthermore, ideal properties of 
transgenic bacteria include ease of spread into wild pop-
ulations, the ability to pass transstadially and the ability 
to persist in different generations of the vector without 
inducing resistance (e.g. [336, 337]).

Table  1 gives examples of studies satisfying many of 
these requirements. For example, horizontal gene trans-
fer in vivo was shown by Huang et al. [134] not to occur 
in Anopheles stephensi infected with fluorescent Serratia. 
Additionally, Matthews et al. [133] modelled the chances 
of horizontal gene transfer in the gut of Rhodnius pro-
lixus and predicted the frequency of this process occur-
ring at less than 1.14 × 10–16 per 100,000 generations 
with a 99% certainty level. Other attempts to allay fears 
about the effects of transgenic bacteria released into the 
environment and prevent their excessive spread have 
also been reported using microencapsulation techniques 
(Table 1). For example, in semi-field trials with Rhodoc-
occus rhodnii in R. prolixus, the bacteria were enclosed 
in guar gum to form CRUZIGARD [71] while with Pan-
toea agglomerans in Homalodisca vitripennis an algi-
nate hydrogel was used [128]. The work of Huang et  al. 
[134] on Serratia ASI in An. stephensi also specifically 
addresses the concerns of regulators about the effects of 
the release of transgenic bacteria on the environment if 
something goes wrong. These authors showed that the 
plasmids used for transforming Serratia were only tran-
sient and lost in vivo after three generations of mosqui-
toes, with the bacteria returning to the wild type [134] 
(Table 1). Also, concerns about the possible pathogenic-
ity of any released transgenic bacteria towards animals 
and humans must be considered. For example, species/
strains of insect endosymbionts used in paratransgenesis, 
such as P. agglomerans, Asaia and Serratia, have all been 
described as opportunistic pathogen in humans [203, 
338, 339], although it is unlikely that these pathogens 
are the same as the bacteria isolated from insects. There 
are even reports of probiotics like Lactobacilli acting as 
human pathogens [340].

Nevertheless, it will be necessary to undertake risk 
assessment tests on the potential pathogenicity of trans-
genic bacteria of the sort described by Beard et al. [69], 
before their release into the environment [337]. Finally, 
the question of the target parasite potentially develop-
ing resistance to the effector molecules expressed by the 
transgenic bacteria has been addressed by Wang et  al. 

[120], working with transformed Serratia AS1 in An. ste-
phensi. The Serratia were engineered to produce, simul-
taneously, multiple effector genes with different targets in 
Plasmodium falciparum, significantly reducing the likeli-
hood of possible resistance, and when the bacteria were 
fed to mosquitoes, 48  h before an infected blood meal, 
oocyst loads were reduced > 91% (Table 1).

While the above examples appear to answer many of 
the concerns of the regulatory bodies, they are insuf-
ficient by themselves to gain approval. First, semi-field 
experiments are limited in terms of number of insects uti-
lised and subsequent risk assessments made of the effects 
on other insect species and the environment. Types of 
experimental data required by the European Food Safety 
Authority/European Commission (EFSA/EC) report on 
risk assessment [338] include: (i) demonstration of an 
exact understanding of the genetic modification of the 
GM organism; (ii) details of the release method and the 
receiving environment; (iii) any interactions (intended or 
unintended) between the GM organism and the recipient 
environment; and (iv) validated protocol details for mon-
itoring and control of the GM organism following release 
[336]. Secondly, it is relatively early days in seeking 
approval for the use of paratransgenesis in the field and, 
as such, the structure of regulations governing the release 
of the engineered bacteria used may be insufficient.

The authors recommend consulting the EFSA docu-
ment “Guidance on the environmental risk assessment of 
genetically modified animals” [337], which states clearly 
that “scientific activities in the area of GM animals indi-
cate that future applications may include traits related to 
disease resistance” and “insects (e.g. mosquitoes, agricul-
tural pests, bees)” are now part of the remit of this organ-
isation. Other countries have their own bodies regulating 
the release of GM organisms; these include Brazil (the 
National Biosafety Technical Commission [CTNBio]) 
[341] and the USA (the Food and Drug Administration 
Center for Veterinary Medicine [FDA-CVM], the Centers 
for Disease Control and Prevention [CDC] and the Envi-
ronmental Protection Agency [EPA]) [342]. Only now 
are some of these bodies developing regulations for the 
release of GM animals [341]. A search of the USA regu-
latory bodies (20 March 2021) identified only one refer-
ence to paratransgenesis, and this was for development 
of a paratransgenesis system to control Pierce’s disease 
of grapes (see EPA TSCA [343]). Contacting the relevant 
bodies above for guidance is highly recommended.

Anybody applying for approval for the release of trans-
formed bacteria/vector insects in the environment should 
read the EPA documents submitted for field testing of 
genetically modified baculoviruses in the 1990s for the 
control of insect pests on plants [342]. Much of the work 
was concerned with the addition of scorpion toxin genes 
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to enhance the kill rate of polyhedrosis viruses without 
a consequent change in host range of the viruses. These 
scorpion toxins modulate sodium channels but do not 
affect vertebrate activity, and testing with surrogate spe-
cies and human cell lines also revealed no toxicity. It is, 
therefore, significant that scorpine has already been used 
successfully against Plasmodium berghei in Anopheles 
gambiae and An. stephensi mosquitoes in paratransgeni-
sis experiments [e.g. 121]. However, regulations relevant 
to the 1990s would, no doubt, have been updated by now.

Apart from the need for the appropriate scientific 
experimental work and satisfying the regulatory laws, 
there are important additional considerations before the 
GM organism can be released (Fig. 3). These include the 
social and public health aspects [344, 345], which were 
dealt with in detail during the field releases of Oxitec’s 
GM transgenic Aedes aegypti mosquitoes in the Cayman 
Islands, Brazil and Mexico [344–346]. The public health 
dimension provides evidence to justify the interven-
tion of the GM organisms in a particular health risk. The 
failure of present control strategies to contain dengue 
infections would provide the need for such new strate-
gies. The people actually involved in this process would 
include those at risk from dengue, scientists and regula-
tory bodies [344]. The social aspect is also very impor-
tant as it involves the local community in the project and 
is essential for nurturing trust and approval for the GM 
mosquito release process [344, 345, 347]. Details for for-
mulating these scientific, regulatory, public health and 
social dimensions are given in the references cited above. 
The whole of the GM release process can take years of 
collaborative work due to lack of any pipeline created 
by previous successful projects. Even with these dimen-
sions fulfilled, there has recently been strong opposition 

to GM mosquito release in Florida despite EPA and CDC 
approval [347, 348].

Regarding the future of paratransgenesis, progress 
to approval is slow and the processes involved daunt-
ing. However, increases in pesticide and drug resistance 
and climate change have resulted in enhanced zoonoses 
and losses in food crops due to insect pests [349, 350], 
so that alternative strategies like paratransgenesis will be 
required in IPM schemes [351]. The development of par-
atransgenesis is one answer to the recent World Health 
Organisation’s “call for innovation” for “new malaria-
fighting tools and approaches” [352]. The value of such 
new approaches will become self-evident once epidemio-
logical results begin to show impacts on disease for the 
use of GM mosquitoes and paratransgenesis, and also 
indicate that the techniques could be cost-effective [346].
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Fig. 3  Some of the important considerations, apart from the 
laboratory and field experiments, which are vital for gaining approval 
prior to the release of genetically modified organisms, including 
mosquitoes, containing transgenic bacteria
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