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Abstract 

Background:  The insect endosymbiotic bacterium Wolbachia is being deployed in field populations of the mosquito 
Aedes aegypti for biological control. This microbe prevents the replication of human disease-causing viruses inside the 
vector, including dengue, Zika and chikungunya. Relative Wolbachia densities may in part predict the strength of this 
‘viral blocking’ effect. Additionally, Wolbachia densities may affect the strength of the reproductive manipulations it 
induces, including cytoplasmic incompatibility (CI), maternal inheritance rates or induced fitness effects in the insect 
host. High rates of CI and maternal inheritance and low rates of fitness effects are also key to the successful spread-
ing of Wolbachia through vector populations and its successful use in biocontrol. The factors that control Wolbachia 
densities are not completely understood.

Methods:  We used quantitative PCR-based methods to estimate relative density of the Wolbachia wAlbB strain in 
both the somatic and reproductive tissues of adult male and female mosquitoes, as well as in eggs. Using correlation 
analyses, we assessed whether densities in one tissue predict those in others within the same individual, but also 
across generations.

Results:  We found little relationship among the relative Wolbachia densities of different tissues in the same host. The 
results also show that there was very little relationship between Wolbachia densities in parents and those in offspring, 
both in the same and different tissues. The one exception was with ovary–egg relationships, where there was a 
strong positive association. Relative Wolbachia densities in reproductive tissues were always greater than those in the 
somatic tissues. Additionally, the densities were consistent in females over their lifetime regardless of tissue, whereas 
they were generally higher and more variable in males, particularly in the testes.

Conclusions:  Our results indicate that either stochastic processes or local tissue-based physiologies are more 
likely factors dictating Wolbachia densities in Ae. aegypti individuals, rather than shared embryonic environments or 
heritable genetic effects of the mosquito genome. These findings have implications for understanding how relative 
Wolbachia densities may evolve and/or be maintained over the long term in Ae. aegypti.
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Background
The global geographic range of the mosquito vector 
Aedes aegypti, which transmits the human disease-caus-
ing viruses dengue, Zika, chikungunya and yellow fever 
[1], is expanding [2]. Because there are no viable vaccines 
for these viruses, vector control remains the primary 
mechanism for limiting human disease [3]. Wolbachia 
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pipientis is an endosymbiotic bacterium found in approx-
imately 50% of all known insect species [4]. The symbiont 
induces two phenotypes that complement one another, 
which can be used in vector-borne disease control. First, 
it causes cytoplasmic incompatibility (CI), whereby off-
spring from crosses between Wolbachia-infected males 
and Wolbachia-free females are non-viable. The result 
is that Wolbachia-infected females have greater relative 
reproductive success and because Wolbachia is mater-
nally inherited vertically via the egg, the symbiont 
spreads through populations [5]. Second, Wolbachia has 
also been found to limit the replication of co-infecting 
viruses in many insects, including Ae. aegypti [6–8], in a 
trait known as Wolbachia-mediated pathogen blocking 
(WMPB). Aedes aegypti in the wild are naturally free of 
Wolbachia, but laboratory populations have been artifi-
cially and stably infected with the symbiont [9–13].

In the field, Wolbachia is being evaluated for vector-
borne disease control through two strategies: popu-
lation suppression and population replacement [14]. 
Suppression involves releasing Wolbachia-infected 
males only, with the aim to prevent the successful repro-
duction of wild Wolbachia-free females, leading to 
population reductions. In replacement strategies, Wol-
bachia-infected females are released in large numbers 
to seed the next generation with Wolbachia-infected off-
spring. The daughters become part of the maternal trans-
mission cycle and the sons assist with Wolbachia spread 
via the action of CI. The result is a population with high 
rates of Wolbachia infection and a poor ability to trans-
mit viruses [15, 16]. Both strategies are showing high 
rates of efficacy in the field [17, 18]. The continued suc-
cess of these approaches relies on the ongoing strength 
of CI and WMPB expression. Studies appear to show that 
Wolbachia densities predict the strengths of both CI and 
WMPB [19–25].

The factors that control Wolbachia densities are not 
fully understood [26], but appear to involve both host 
and symbiont genetics [27, 28] and a range of environ-
mental effects, including temperature and host nutrition 
[28–31]. Even within an individual insect, Wolbachia 
densities can vary highly between tissues, with reproduc-
tive tissues often exhibiting higher densities, although 
in Drosophila this can depend on the Wolbachia strain 
[30, 32]. Higher Wolbachia densities in reproductive tis-
sues have been noted in the mosquitoes Ae. aegypti [33], 
Ae. albopictus [34] and Culex pipiens [35]. The relative 
contributions of Wolbachia/vector genetics versus envi-
ronmental effects in determining Wolbachia tissue densi-
ties is not known. Studying the heritability of Wolbachia 
densities in female lineages is challenging, given that the 
shared environment of the ovaries/eggs confounds any 
estimates of contributions from genetic factors. In this 

study, we sought to understand the relationship between 
Wolbachia densities in somatic and reproductive tis-
sues within individuals and across generations in the 
artificially wAlbB strain-transinfected Ae. aegypti using 
quantitative PCR-based methods. An understanding of 
the relative role of genes and environment in determin-
ing Wolbachia densities may have consequences for the 
deployment and use of Wolbachia-based biocontrol 
where key phenotypes depend on density.

Methods
Aedes aegypti rearing
We used a population of Ae. aegypti infected with the 
wAlbB [11] strain of Wolbachia (kind gift from Zhiyong 
Xi, Michigan State University). Prior to experimentation, 
we outcrossed wAlbB-infected female mosquitoes to 
Wolbachia-free male mosquitoes recently obtained from 
Monterrey, Mexico (Pablo Manrique-Saide, Universidad 
Autónama de Yucatán) for three generations to increase 
genetic diversity. Eggs were hatched in 40 × 30 × 8-cm 
plastic trays containing 2  l of distilled deoxygenated 
water. Larvae were maintained at a density of approxi-
mately 250 per tray and fed Tetramin fish food (Tetra 
GmbH, Melle, Germany) ad  libitum. Pupae were col-
lected in plastic cups and placed in 45-cm square breed-
ing cages (BioQuip Products, Rancho Dominguez, CA, 
USA) in populations of approximately 300 individuals. 
Adult mosquitoes were fed a 10% sucrose solution ad libi-
tum. Mosquitoes were blood-fed when 9–11 days of age 
with human blood using a Hemotek feeder (Hemotek 
Ltd., Blackburn, UK) warmed to 37  °C. For experiments 
that involved egg collection, 3  days post blood-feeding, 
females were individually placed in 70-ml oviposition 
cups containing moist filter paper, with access to 10% 
sucrose.

Experimental design
Wolbachia densities were measured using three 
approaches: (i) between somatic and reproductive tissues 
in the same individuals; (ii) across generations in tissues 
of parents and offspring; and (iii) in tissues of the same 
individuals across their lifespan (Fig.  1). Our aim was 
to examine whether relative tissue densities correlated 
in these different contexts. For the within-individual 
mosquito comparisons (Fig.  1a), we set up two experi-
ments. First, we set up 206 mated blood-fed individuals 
as isofemales at 9–11 days of age. We dissected the ova-
ries and the carcass (remaining tissues) at 15–17 days of 
age, or at approximately 6 days post-feeding. Second, we 
set up two replicate groups of 18 blood-feed isofemales 
so that in addition to ovaries and the carcass we could 
also correlate egg densities within individuals. Eggs were 
extracted for DNA analysis in groups of 10 per isofemale, 
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after pilot experiments revealed this was the minimum 
pool size needed for consistent Wolbachia density esti-
mation. For across-generation comparisons (Fig.  1b), 
we also set up blood-fed isofemales (~ 200) in the same 
manner as described above. After collecting their eggs, 
we dissected ovaries and the carcass in the mothers (P1). 
We hatched the eggs laid by each isofemale separately, 
and then reared, fed and dissected these F1 families as 
described for P1. Wolbachia densities were estimated 
from tissues extracted individually from two to three 
F1 daughters per P1 mother and then averaged. We also 
wanted to correlate relative Wolbachia density in the 
eggs to Wolbachia density in the ovaries and the carcass 
across a generation. Therefore, we set up a new colony, 
collected eggs from P1 mothers and extracted pools of 10 
eggs per female. We hatched the remaining eggs to create 
20 cages of approximately 50 individuals. F1 families were 
dissected identically as described above for F1 families. 
Relative Wolbachia densities were estimated in tissues 
extracted from three to eight F1 daughters per P1 mother 
and then averaged. For the experiment examining relative 
Wolbachia densities in tissue over the mosquito’s lifespan 
(Fig. 1c) we set up a cage of approximately 250 individu-
als, and then dissected males and females not blood-fed 
for their reproductive tissues, abdomen, head and thorax 
at 5, 10 and 15 days of adulthood.

Dissections and DNA extraction
Females were anesthetized using CO2 and dissected in 
1× phosphate buffered saline (PBS). Tissues were col-
lected and placed in a 2-ml tube containing 50 μl of PBS 
and a 3-mm glass bead. Dissected tissues were stored at 
− 80 °C until processing. Similarly, eggs were collected in 
groups of 10. To extract DNA from the eggs, tubes con-
taining eggs were filled with 50  μl of extraction buffer 
(10 mM Tris buffer, 1 mM EDTA, 50 mM NaCl, and pro-
teinase K). The samples were then homogenized with a 
bead ruptor (OMNI International, Kennesaw, GA, USA) 
for 90 s, centrifuged at 2000 g for 2 min and then incu-
bated at 56  °C for 5 min and at 98  °C for 5 min. A final 
centrifugation step was performed at 2000 g for 2  min 
to pellet any remaining mosquito tissue. Samples were 
diluted 1:10 using DNAse/RNAse-free water prior to 
quantification.

Wolbachia quantification
While there are methods for estimating absolute num-
bers of Wolbachia [36],  we chose to measure relative 
abundance. This method is more appropriate when the 
aim is to capture Wolbachia density in a given tissue 
and to compare  Wolbachia density across tissues where 
the size of tissue (number [n] cells) will vary. Densities 
rather than absolute numbers may be more revealing 
when attempting to capture the ‘concentration’ of Wol-
bachia, which may affect the strength of Wolbachia-
mediated phenotypes [19–25]. The relative method 
of estimation could be misleading, however, if ploidy 
numbers differ across tissues [36]. Since ploidy by cell 
or tissue type has scarcely been studied in mosquitoes, 
in addition to providing Wolbachia gene to host gene 
ratios, we also provide our raw crossing point (CP) val-
ues for the mosquito control gene in the Additional files 
to demonstrate their uniformity. Average rps17 values 
for all tissues were found to vary by less than twofold 
across the samples (see specific figures/Additional files 
in Results section), suggesting low variability. Relative 
Wolbachia densities were quantified by real-time PCR 
(qPCR) using Livak’s method [37] and a set of previ-
ously published primers for  the wAlbB ankyrin repeat 
domain gene [38] and the mosquito ribosomal subunit 
protein S17 (RpS17)  [39]. The Wolbachia primers were 
wAlbB_F (5′-CCT​TAC​CTC​CTG​CAC​AAC​AA) and 
wAlbB_R (5′-GGA​TTG​TCC​AGT​GGC​CTT​A) [38], and 
the mosquito primers were RPS17_F (5′-TCC​GTG​GTA​
TCT​CCA​TCA​AGCT) and RPS17_R (5′-CAC​TTC​CGG​
CAC​GTA​GTT​GTC) [39]. qPCR was carried out on a 
LightCycler 480 Real-Time PCR System (Roche, Basel, 
Switzerland), using the equation 2

−wAlbB

2−RPS17  [37], in a total 
reaction volume of 10  μl (5  μl of 2× PerfeCTa SYBR 
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Fig. 1  Tissues collected for each experiment. a Within-individual 
tissue correlation, b parent–offspring (P1–F1) correlation, c Tissue 
comparisons over the mosquito’s lifespan
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Green SuperMix [Quantabio, Beverly, MA, USA], 0.2 μl 
of each forward and reverse primers [10  μM], 2.6  μl 
of nuclease-free water, 8 μl template DNA). The qPCR 
cycling profile was: denaturation at 95 °C for 5 min; 45 
cycles of 95 °C for 10 s, 60 °C for 15 s and extension at 
72 °C for 10 s; followed by a melt curve analysis.

Statistical analysis
All statistical analyses for the ‘within-individual’ 
(Fig.  1a) and ‘across-generation’ (Fig.  1b) experiments 
were performed using GraphPad Prism version 9.1.0 
for Windows (GraphPad Software, San Diego, CA, 
USA). Data were checked for normality before per-
forming the analysis and logarithmically transformed 
when necessary. All relative densities when depicted 
in scatter plots were plotted on a log axis; fitted regres-
sion lines, although linear, can therefore appear curved. 
Paired t-tests were performed when comparing ovaries 
and carcass. A one-way analysis of variance (ANOVA) 
was used to compare relative Wolbachia densities with 
‘Tissue’ as a fixed effect. Tukey’s post hoc compari-
sons were used to individually compare the densities 
in the ovary, carcass and eggs. Analysis of Wolbachia 
densities in the ‘across-mosquito lifespan’ experiment 
(Fig.  1c) was performed in JMP 16.0.0 (SAS Institute 
Inc., Cary, NC, USA). A three-way ANOVA was used 
to compare the factors sex, time and tissue, followed by 
selected post hoc comparisons.

Results
Within‑individual relative Wolbachia tissue density 
comparisons
Relative Wolbachia density between ovaries and carcass 
was measured at approximately 6  days after blood-feed-
ing (15–17  days of adulthood) in the same individuals 
to see whether tissue densities were correlated with one 
another (Fig.  1a). We found that Wolbachia densities 
were significantly greater in the ovaries (twofold higher) 
than in the carcass (P < 0.0001) (Fig. 2; Additional file 1: 
Figure S1 [raw CP data]). Relative densities ranged from 
~ 2 to ~ 491 in the ovaries and from ~ 0 to ~ 230 in the 
carcass; these values also reflect a wider variation in den-
sity in the reproductive tissue. We found no correlation 
between the relative Wolbachia densities of the ovaries 
and carcass (P = 0.13) (Fig.  3). We then measured rela-
tive Wolbachia densities between the ovaries, carcass and 
eggs in the same individuals to assess whether there were 
any correlations (Fig. 1a). To accomplish this, we set up 

Fig. 2  Relative Wolbachia densities (ankyrin repeat domain to rps17) 
in the ovaries and the carcass of Aedes aegypti in the same generation 
of mothers (P1)(n = 206; P < 0.0001, paired t-test). Bars indicate tissue 
means ± standard error (SE). Asterisks indicate significant difference at 
****P ≤ 0.0001

Fig. 3  Relationship between relative Wolbachia densities (ankyrin 
repeat domain to rps17) in the ovaries and the carcass of Ae. aegypti in 
the same generation of mothers (P1). n = 206

Fig. 4  Relative Wolbachia densities (ankyrin repeat domain to rps17) 
in the ovaries, carcass and eggs of Ae. aegypti. One-way analysis of 
variance P < 0.0001, post-hoc Tukey’s test: ovaries vs eggs: P < 0.0001; 
carcass vs eggs: P < 0.0001; ovaries vs carcass: P < 0.0001. n = 18 
individuals. Bars indicate tissue means ± SE. Asterisks indicate 
significant difference at ****P ≤ 0.0001



Page 5 of 10Mejia et al. Parasites & Vectors          (2022) 15:128 	

two replicate groups of 18 individuals each. We found 
that Wolbachia densities in the ovaries were fivefold 
(Fig. 4; Additional file 2: Figure S2 [raw CP data]) and ten-
fold (Additional file 3: Fig. S3) higher, respectively, than 
those in eggs produced by the same individuals (Tukey’s 
multiple comparison test: P ≤ 0.0001).  Wolbachia den-
sities in the carcass were also twofold (Fig.  4) (Tukey’s 
multiple comparison test: P ≤ 0.0001) and fourfold (Addi-
tional file 3: Figure S3) (Tukey’s multiple comparison test: 
P ≤ 0.0001) higher than those in the eggs. In one group,  
Wolbachia densities in the ovaries were twofold higher 
than those in the carcass (Fig. 4) (Tukey’s multiple com-
parison test: P ≤ 0.0001), but there was no significant dif-
ference in the second replicate (Additional file 3: Figure 
S3) (Tukey’s multiple comparison test: P = 0.33). Both 
groups exhibited the same trend of higher relative Wol-
bachia density in eggs correlating with higher Wolbachia 
density in the ovaries for replicate 1 (P = 0.043) (Fig. 5a) 
and replicate 2 (P = 0.0062) (Additional file  4: Figure. 
S4A). In both replicate 1 (P = 0.91) (Fig. 5b) and replicate 
2 (P = 0.13) (Additional file  4: Figure S4B) there was no 
correlation between Wolbachia densities in the egg and 
carcass. Overall,  Wolbachia densities in eggs were far 
less variable than those in the ovaries or carcass.

Across‑generation relative Wolbachia tissue density 
comparisons
We then examined whether tissue densities in female 
offspring could be predicted based on densities in 
the female parent (Fig.  1b). We saw no relationship 
between Wolbachia densities in P1 ovaries and F1 carcass 
(P = 0.25) (Fig.  6a; Additional file  5: Figure S5 [raw CP 
data]), nor between Wolbachia densities in P1 carcass and 
F1 ovaries (P = 0.97) (Fig. 6b). Similarly, we found no cor-
relation between Wolbachia densities in P1 and F1 ovaries 
(P = 0.58) (Fig.  6c), nor between Wolbachia densities in 

P1 and F1  carcass (P = 0.33) (Fig. 6d). A negative correla-
tion was found between Wolbachia densities in P1 eggs 
and F1 ovaries (P = 0.0005) (Fig. 7a; Additional file 6: Fig-
ure. S6 [raw CP data]). No correlation was found between 
Wolbachia densities in  P1 eggs and F1 carcass (P = 0.51) 
(Fig. 7b).

Across‑lifetime relative Wolbachia tissue density 
comparisons
To assess whether symbiont densities change with time, 
relative Wolbachia density was measured in the repro-
ductive tissue, the abdomen and a combination of the 
head and thorax (H + T) of male and non-blood-fed 
female mosquitoes at 5, 10, and 15 days of age. A three-
way ANOVA between sex, time and tissue resulted in sex 
(P < 0.001) and tissue (P < 0.001) being significant, as well 
as the interaction between these two factors (P = 0.0004) 
(Fig. 8). Wolbachia densities in the H + T (Tukey’s mul-
tiple comparison test: P = 0.0098) and abdomen (Tukey’s 
multiple comparison test: P = 0.0007) remained largely 
stable over the lifetime in both males and females. On 
average across all days, Wolbachia densities in the repro-
ductive tissue in males were more variable over time and 
higher than those in female reproductive tissue (Tukey’s 
multiple comparison test: P < 0.0001).

Discussion
The distribution of Wolbachia in somatic tissues var-
ies between species, but the symbiont can be found 
in the head, muscles, midgut, salivary gland, fat body, 
and reproductive tissues [40–42]. In keeping with pre-
vious findings for Drosophila [43] and Aedes [44], the 
relative Wolbachia densities reported in our study were 
higher in reproductive tissues compared to somatic tis-
sues. Additionally, we found that Wolbachia densities 
in the ovaries and carcass, and those in the carcass and 

Fig. 5  Relative Wolbachia densities (ankyrin repeat domain to rps17) in the ovaries, carcass and eggs of replicate group 1 of Ae. aegypti. a Wolbachia 
densities in the eggs vs the ovaries of Ae. aegypti in replicate group 1, b Wolbachia densities in the eggs versus the carcass of Ae. aegypti in replicate 
group 1. n = 18 individuals per group
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eggs, in the same individual, are largely independent of 
one another. One of the primary drivers of this discon-
nect could be the distribution of Wolbachia in the early 
embryo. In Drosophila, Wolbachia attach to the pro-
liferating nuclei and use this relationship to hitchhike 
through the oocyte [45]. This places some Wolbachia in 
the periphery of the egg, where reproductive cells are 
formed [46]. However, a high fraction of the bacteria 

remains throughout the oocyte [47]. It is believed that 
this early embryonic distribution is  what dictates 
which somatic tissues will have Wolbachia and partially 
explains their relative Wolbachia densities [41]. Little is 
known about Wolbachia’s life-cycle during the embry-
onic development of mosquitoes. However, Drosophila 
and Aedes have very similar embryonic developmental 
stages that differentiate by timing [48].

Fig. 6  Relative Wolbachia densities (ankyrin repeat domain to rps17) in the tissues of mothers (P1) vs daughters (F1). a Wolbachia densities in the 
ovaries of P1 vs carcass of F1 in Ae. aegypti. b Wolbachia densities in the carcass of P1 vs the ovaries of F1 in Ae. aegypti. c Wolbachia densities in the 
ovaries of P1 versus the ovaries of F1 in Ae. aegypti. d Wolbachia densities in the carcass of P1 vs the carcass of daughters F1 in Ae. aegypti. Each data 
point represents the average of 2–3 individuals. n = 31 data points in a, b; n = 30 data points in c, d 

Fig. 7  Relative Wolbachia densities (ankyrin repeat domain to rps17) in the eggs of mothers (P1) vs tissues of daughters (F1). a Wolbachia densities in 
the eggs vs the ovaries of Ae. aegypti,  b Wolbachia densities in the eggs vs the carcass of Ae. aegypti. Each data point represents the average of 3–8 
individuals. n = 20 data points
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Local tissue-specific factors could also be driving dif-
ferences in relative Wolbachia densities, such as immu-
nity, physical niches or access to nutritional resources. 
For example, the insect immune response can positively 
or negatively affect Wolbachia densities, in a tissue-spe-
cific manner. Autophagy is a pathway that involves the 
degradation of “unwanted” components, such as patho-
genic bacteria. In the somatic cells of male Drosophila, 
the autophagic response reduces Wolbachia density, but 
the opposite occurs in germ cells of females [49]. In mul-
tiple studies, infection with another bacterium [50] or 
virus [51, 52] that triggers the innate Toll and immune 
deficiency (IMD) pathways appears to also cause reduc-
tions in Wolbachia density. We know from transcrip-
tional studies that the activity of these pathways varies 
across mosquito tissues, including the midgut, carcass 
and salivary gland, when induced by infection [53], but 
their basal expression can also vary as per an examina-
tion of the control data for these same studies [54, 55]. 
One somatic tissue with a very high Wolbachia relative 
density in Ae. aegypti is the Malpighian Tubules [40]. 
These tissues are the main site of nitrogen secretion and 
as such they may especially facilitate Wolbachia growth, 
given that the symbiont primarily consumes host nucleo-
tides [56], a large source of nitrogen. This same study also 
revealed pockets of cells within particular tissues, such 
as the midgut epithelia, thoracic ganglia and the salivary 
glands, that exhibit higher relative densities than the sur-
rounding tissues [40]. The reason for either Wolbachia’s 
tropism to particular cell types or greater replicative suc-
cess in these sub-tissue level environments is unknown.

Our results did show a correlation between relative 
Wolbachia densities in the ovaries and eggs produced 
from the same individual, which is expected given the 
egg’s origin and Wolbachia’s vertical inheritance [57]. The  

ongoing success of Wolbachia’s transmission depends on 
its density in the ovaries. A range of studies on Drosoph-
ila shed light on the interactions between Wolbachia and 
the female germline that may also be relevant for mosqui-
toes. For example, Wolbachia increases the production of 
fly proteins in the ovaries that protect the germline from 
iron toxicity and oxidative stress, and increase the rate 
of stem-cell division [58]. The increased prevalence of 
these proteins may aid Wolbachia’s own proliferation and 
ensure transmission [58]. Also, Wolbachia has a tropism 
for the ovarian stem-cell niche. Once there, Wolbachia 
increases germline stem-cell division and stops pro-
grammed cell death, resulting in higher egg production 
[59]. Additionally, Wolbachia’s tropism to ovarian stem-
cell niches has been found to increase bacterial density 
in the germline [60]. Therefore, Wolbachia ensures verti-
cal inheritance by increasing egg production and its own 
density in the germline.

In contrast to the ovary/egg relationship, we did not 
see predictability of relative Wolbachia densities across 
generations for other tissues. In our comparison of Wol-
bachia density across generations, we considered the 
relative contributions of genes and environment to the 
determination of density versus stochastic processes. 
Temperature and diet have been shown to affect relative 
Wolbachia densities [28, 29, 61, 62]. However, a previous 
study showed that wAlbB remains at a constant density 
between 26 °C and 37 °C [63], and under laboratory rear-
ing conditions our temperatures should be largely con-
stant. Similarly, given the low-density rearing of larvae 
and ad libitum food delivery in both juveniles and adults, 
nutrition should have minimal impact on densities in our 
study design. Host genetic factors cause varying Wol-
bachia density in arthropods [26, 30]. Our poor cross-
generation predictability, however, is more in keeping 

Fig. 8  Relative Wolbachia densities (ankyrin repeat domain to rps17) across Ae. aegypti lifetime. a Relationship between Wolbachia densities 
in the ovaries, abdomen and head + thorax (H + T) of Ae. aegypti females at different time points. n = 14–15 individuals. (Tissue = P ≤ 0.0001; 
Time = P = 0.50; Time × Tissue = P = 0.60). b Relationship between Wolbachia densities in the testes, abdomen and H + T of Ae. aegypti males at 
different time points. n = 12–15 individuals. Only sex (P < 0.001) and tissue were significant (P < 0.001)
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with the results from a recent study demonstrating that 
genetic drift is a more likely dictator of density [64]. The 
cause of this drift can likely be attributed to the uneven 
passage of Wolbachia from mother to egg, causing sib-
lings to have varying densities [64].

One caveat to our study is that we focused only on 
the wAlbB Wolbachia strain. Future studies may wish 
to assess the generality of our findings for other strains 
in Ae. aegypti. While a previous study in Ae. albopictus 
[9] also showed no relationship between mother to off-
spring densities for both the wAlbA and wAlbB strains, 
the more distantly related wMel strain could differ. A 
recent study in flies showed very large differences in rela-
tive Wolbachia tissue densities depending on the Wol-
bachia strain:host species pairing [30]. Our findings have 
potential implications for Wolbachia-based biocontrol 
in the field. In the longer term, any directional selec-
tion on Wolbachia densities in the ovaries may not have 
a similar predictable effect on the body-wide densities, 
as well as the converse. This is important as the former 
is thought to maintain transmission and CI expression 
[65, 66], whereas the latter is likely to control pathogen 
blocking [67]. Infection of both types of tissues may have 
direct impacts on host fitness [68]. This also means that 
artificial selection to create mosquito lines with higher 
or lower Wolbachia densities in their various tissues is 
unlikely to be effective. Identifying Wolbachia strains for 
transinfection that exhibit differences in density either 
singly or when in superinfection with other strains [33, 
40, 69] may offer the most effective means for generating 
strain density diversity [70].

Conclusions
The results of this study suggest that, in Ae. aegypti, 
local tissue-based environments (e.g. nutrition, cellu-
lar niches, immunity), initial differential distributions 
of Wolbachia in the dividing embryo or stochastic fac-
tors (e.g. partitioning of density-associated Wolbachia 
genotypes in the embryo) are likely to be more power-
ful determinants of  relative symbiont densities than 
shared embryonic environments and shared inherit-
ance through a female genetic line. Our finding of a rel-
atively narrow variation in Wolbachia densities in eggs, 
ultimately resulting in highly variable densities in adult 
tissues, is also in keeping with this hypothesis. Future 
comparative studies may seek to understand how dis-
tinct tissue and cellular niches either promote or limit 
relative Wolbachia densities. The growing use of sin-
gle-cell RNAseq approaches in insects [71] may assist 
with these comparisons. At the level of the vector, the 
effect of environmental conditions, more representa-
tive of natural field settings [72], may introduce further 

variability in densities, Wolbachia inheritance and the 
expression of Wolbachia-induced traits that are key for 
biocontrol strategies.
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