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Abstract

Background: In the eco-epidemiological context of Japanese encephalitis (JE), geo-environmental features influ-
ence the spatial spread of the vector (Culex tritaeniorhynchus, Giles 1901) density, vector infection, and JE cases.

Methods: In Liyi County, Shanxi Province, China, the spatial autocorrelation of mosquito vector density, vector
infection indices, and JE cases were investigated at the pigsty and village scales. The map and Enhanced Thematic
Mapper (ETM) remote sensing databases on township JE cases and geo-environmental features were combined in a
Geographic Information System (GIS), and the connections among these variables were analyzed with regression and
spatial analyses.

Results: At the pigsty level, the vector density but not the infection index of the vector was spatially autocorrelated.
For the pigsty vector density, the cotton field area was positively related, whereas the road length and the distance
between pigsties and gullies were negatively related. In addition, the vector infection index was correlated with the
pigsty vector density (PVD) and the number of pigs. At the village level, the vector density, vector infection index,

and number of JE cases were not spatially autocorrelated. In the study area, the geo-environmental features, vector
density, vector infection index, and JE case number comprised the Geo-Environment-Vector-JE (GEVJ) intercorrelation
net system. In this system, pig abundance and cotton area were positive factors influencing the vector density first.
Second, the infection index was primarily influenced by the vector density. Lastly, the JE case number was determined
by the vector infection index and the wheat area.

Conclusions: This study provided quantitative associations among geo-environmental features, vectors, and the inci-
dence of JE in study sties, one typical northern Chinese JE epidemiological area without rice cultivation. The results
highlighted the importance of using a diverse range of environmental management methods to control mosquito
disease vectors and provided useful information for improving the control of vector mosquitoes and reducing the
incidence of JE in the northern Chinese agricultural context.
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Background

Japanese encephalitis (JE) is a major mosquito-borne dis-
ease transmitted among humans, pigs, and birds by insect
bites [1]. Culex tritaeniorhynchus (Giles, 1901) is con-
sidered a key vector of JE in northern China [2], and its
larvae can be found in rice paddies, ponds, channels, and
other sites with clear water as well as large water bodies
[3]. Without successful antiviral treatment for viral infec-
tion, JE fatality rate can reach 30%, and half of the survi-
vors have to face lifetime neuropsychiatric damage [4, 5].
In China, JE is currently the most broadly distributed and
dangerous mosquito-borne disease [6, 7]. Particularly in
the study area, which is located in northern China, JE is
considered the most important mosquito-borne disease
and poses a significant threat to public health [8]. Thanks
to safe and effective vaccines specific for JE, excellent
childhood vaccination programs can reduce the infection
rate and financial burden in JE epidemic countries.

Although immunization has previously kept the inci-
dence of JE in this region comparatively low [9], the
incidence of the disease has increased [10]. Particularly
in 2006, an outbreak of JE in Liyi County, Shanxi Prov-
ince, attracted widespread national interest because this
disease was thought to have been effectively controlled
in the region [10]. Previous research has shown that the
spatial distribution of mosquito vectors and the JE virus
are associated [11, 12]. Their spatial distribution appears
to be determined by various geo-environmental features,
mosquito density, and infection rate [13—15]. Thus, the
outbreak of JE in Liyi County, Shanxi Province, in 2016
led us to wonder about the relationship between geo-
environmental features and JE cases as well as their vec-
tors and which factors could contribute to the relapse of
JE.

The 3S technology, including geographic information
systems (GIS), remote sensing (RS), and global position-
ing systems (GPS), is widely used in vector-borne disease
epidemiology research [16, 17]. With the advantage of
being a large-scale, real-time, and accurate 3S technol-
ogy, researchers can discover the connection between
vector-borne disease (JEV, for example) and geo-environ-
mental features [18]. In this study, GPS was used to locate
the pigsties, RS was used to identify and quantify the geo-
environmental features, and GIS was used to construct
the spatial datasets of the vector and geo-environmental
features. Consequently, we attempted to determine the
spatial distribution characteristics and infection rate of
Cx. tritaeniorhynchus in Liyi County, Shanxi Province,
China, and the relationship between these and local

geo-environmental features by combining spatial analy-
sis, 3S methods, and regression.

In China, the JE cases were linked to the geo-environ-
mental features [19, 20], and the vector distribution map
coincided with areas of high JE incidence [21], which
emphasized the association of the geo-environmental
features with JE vectors as well as JE cases. In this study,
we present the results of the analysis on the spatial
dependence among the geo-environmental features, Cx.
tritaeniorhynchus density, and JE infection rate in vil-
lages in northern China. From an epidemiological stand-
point, the results in the present paper could provide an
environmental-ecological explanation for the outbreak of
JE cases in Shanxi Province. Furthermore, this study pro-
vides clues for reducing the incidence of JE in this region.

Methods

Study site

Liyi County is part of Yuncheng prefecture, which is
located in southern Shanxi Province. The major subsist-
ence crops in this region are corn and wheat, and the
major commercial crops are vegetables, orchards, and
cotton. In 2006, almost half the JE cases in Liyi County
were in Yuncheng prefecture [22]. We selected four dis-
tricts in Liyi County as study sites, and 54% (33/61) of all
the JE cases recorded in Liyi County between 2005 and
2009 were in these districts (Fig. 1).

Mosquito trapping in pigsties

The four districts selected as study area were first further
subdivided into 24 x 4 km? subareas (Fig. 2). In each sub-
area, one village was then randomly selected as a study
site, giving a total of 24 study sites. Additionally, three
or four pigsties in each village were selected as mosquito
surveillance positions. Finally, we had 93 pigsties for vec-
tor investigation.

In Liyi County, the Cx. tritaeniorhynchus population
density peaks in June, July, and August. Therefore, mos-
quitoes were trapped continuously over a 7-day period
in the middle of months with peak vector abundance
(June—August) from 2010 to 2011. Mosquitoes were
trapped with light traps (LTS-M02B Chinese CDC light
220 V/50HZ 24 W, Wuhan Lucky Star Environmental
Protection Technology Co., Ltd., Hubei, China) in 93
pigsties distributed throughout the 24 village study sites.
Inside each pigsty, one light trap was hung 1.5-m height
from the floor, and the light was turned on at 7:00 p.m.
and off at 7:00 a.m. daily. On bad weather days, trapping
was postponed one more day. Every day, the mosquito
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Fig. 1 Frequency of Japanese encephalitis cases at the district level in LiYi County, Shanxi Province, China
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Fig. 2 Map of Liyi County, Shanxi, China showing study area and the
locations of villages chosen as study-sites

samples were collected and transported to the laboratory
for later identification, and the trapped female mosqui-
toes were identified by morphology and counted.

Calculation of mosquito density and infection index
The mosquito density (N) was calculated from the light
trap density as follows:

N = MN/LN

where MN is the number of trapped mosquitoes, and LN
is the number of light traps. The vector densities of the
pigsty (PVD) and the village (VVD) were determined at
the pigsty and village scales, respectively.

Reverse transcription polymerase chain reactions (RT-
PCRs) were performed on mosquito batches to deter-
mine the proportion of mosquitoes infected with the JE

virus. The infection index was calculated according to the
method described by [23]

VI = Z N;P;

i=species

where N is the average mosquito density and Pi is the
estimated infection rate of the mosquito population [24].
The pigsty vector infection indices of the (PVII) and the
village (VVII) were also determined at the pigsty and vil-
lage scale, respectively.

JE epidemic in village sites

Baseline data on the incidence of JE in the 24 study vil-
lages over the 5-year period from 2005 to 2009 were
acquired from the Liyi County Centers for Disease Con-
trol (CDC). These data included detailed information on
each JE case, such as the name, sex, age, village, and diag-
nostic procedure, and they were incorporated into the
GIS spatial vector database by attaching them to each vil-
lage’s location. The JE case number of villages (VJC) was
deduced from the JE epidemic datasets.

GPS, RS, and GIS analysis of the study site image dataset

The location of each sampled pigsty was determined
by GPS (Trimble GeoXT 2005, Sunnyvale, CA) before
trapping. The Enhanced Thematic Mapper (ETM) sat-
ellite images (LandSat ETM 2009-9-27 with 15-m
resolution) covering Liyi County were ordered from
EarthView Image Inc. (Beijing, China), which also took
responsibility for correcting the scan line error on the
ETM images that minimized the error for remote sens-
ing as much as possible. The numbers of pigsties and
vegetation, such as wheat, orchards, cotton, corn, and
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vegetables, were regarded as geo-environmental fea-
tures that could potentially affect the mosquito density.
First, we investigated the environment around each
pigsty and village and recorded the vegetation type,
position, and living stage for the field period. Then, the
ETM images were classified with ENVI 4.7 (ESRI, Red-
lands, CA) using unsupervised classification method-
ISODATA (number of classes: maximum 20, minimum
10; maximum iteration: 5; change threshold%: 5.00).

Some geographic factors, such as rivers, roads, and
gullies, could also potentially affect mosquito abun-
dance in pigsties. The vectorization of these factors was
performed in ArcGIS10.0 (ESRI, Redlands, CA) based
on the Liyi county road transport map.

Extraction of spatial factors

On the ETM image of each study site, a 1-km circular
buffer around each pigsty and village was drawn in Arc-
GIS using the Buffer tool in the Arc Toolbox. The veg-
etation and geographic factors inside each buffer circle
(around the pigsty and village) were then generated
through spatial extraction with the HawthsTools (v3.x)
extension (Beyer, H L, 2004). With HawthsTools, the
resulting polygonal factor area was then extracted with
the “Polygon in Polygon Analysis” tool, while the line
cause length was finished using the “Sum Line Lengths
in Polygons” tool. The distances from the pigsties to the
land cover and geographic factors were measured in
ArcGIS with the Near tool in Arc Toolbox.

Geo-environmental features for analysis

The geo-environmental features that were potentially
correlated with the abundance of vectors, the vector
infection index, and the village Japanese encephalitis
case number in the study area are pictured in Fig. 3.
The major geo-environmental features included the
cotton area [area-area of the features within a 1 km
buffer around the village (pigsties)], corn area, orchard
area, vegetable area, and wheat area. The geographic
features were the river length [length-length of features
within a 1 km buffer around the villages (pigsties)],
road length, gully distance [distance-distance between
villages (pigsties) and features], road distance, river dis-
tance, Xiangjie (division line of districts) distance, and
Yellow River distance. Lastly, the pig number (growing
pig number) was also counted because of its important
host role in JE transmission. We performed the study
at the pigsty and village scales, considering the spatial
scale influence of the geo-environmental features on
the local vector and the epidemiology of JE (see Addi-
tional file 1: Table S1).
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Fig. 3 Geo-environmental features potentially correlated with the
vector density, vector infection index, and Japanese encephalitis
cases at the scales of pigsty and village. PVD pigsty vector density; PVII
pigsty vector infection index; VWD village vector density; Wil village
vector infection index; VJC village Japanese encephalitis case number

Statistical analysis scales and significance threshold

The spatial autocorrelation and regression analyses were
conducted at the pigsty and village scales, respectively.
All statistical analyses were performed using R version
3.4.4 (R Core Team, 2018). Statistical significance was set
at P<0.05. The Bonferroni correction was applied when
required in the evaluation of multiple comparison results.

Distribution and correlative test of the variable

First, the variables of the geo-environmental features
were normalized using BOX-COX transformation in R.
Then, the one-sample Kolmogorov-Smirnov test was per-
formed to detect the statistical distribution of the vector
variables (PVD, PVII, VVD and VVII) and the JE case
number (VJC); if they obeyed the normalization distribu-
tion, the Pearson correlative analysis and linear regres-
sion model were used; otherwise, the Spearman rank
correlative analysis and generalized linear regression
model were employed.

Spatial autocorrelation detection

The univariate Moran’s test (Queen Contiguity Weight
was used) in GeoDa (095i) (GeoDa Center for Geospatial
Analysis and Computation, Tempe, AZ) was first used
to detect the spatial autocorrelation of PVD, PVIL, VVD,
VVII, and V]JC by Moran index calculation. Second, the
inference for the Moran index was based on a random
permutation procedure in GeoDa with 999 rounds. If the
P-value of the permutations was < 5%, then the spatial
autocorrelation was statistically significant; otherwise,
the spatial distribution was random. If significant spatial
autocorrelation was detected, the relationship between
the dependent variable and geo-environmental features
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(covariates) was analyzed using the spatial regression
package within GeoDa. If not, this type of analysis was
conducted using a linear model or generalized linear
model (Poisson GLM) in the R system [25], according
to the statistical distribution test (Kolmogorov-Smirnov
test).

Spatial regression

If spatial autocorrelation was detected for the vector
variables and JE case number, the ordinary least squares
(OLS) model, spatial lag model (SLM), and spatial error
model (SEM) were applied simultaneously, and the
P-values of the OLS (F test), spatial lag model (Lagrange
multiplier test), and spatial error model (Lagrange mul-
tiplier test) were compared to confirm whether spatial
regression is necessary. Furthermore, a comparison of
the Akaike information criterion (AIC) value between
the spatial lag model and spatial error model was used to
diagnose which spatial model would be more fitted for
the spatial regression analysis.

Once the spatial regression model was determined, the
independent variables correlated to the dependent vari-
able were included in the spatial regression model with
diversity variable combinations. The model with the
lowest AIC value was considered the most appropriate
model, and an AIC value difference of < 2 between the
two models suggested that there was no significant differ-
ence in explanatory power of two models.

Linear and generalized linear model regression

Using the linear regression model [with Im () function in
R system], the correlated features of the dependent varia-
bles were included in the model in a stepwise way, which
could exclude possible collinearity in the dependent vari-
ables and result in the most explanatory model.

In the generalized linear model regression [with glm
() function in R system], the independent variables cor-
related to the dependent variable were included in the
regression model with diversity variable combinations,
excluding possible collinearity among the dependent
variables. The model with the lowest AIC value was con-
sidered the most appropriate model, and the AIC value
difference was < 2 between the two models, suggesting
that there was no significant difference in their explana-
tory power.

Results

Surveillance data

In 93 pigsties of 24 villages, 13,492 mosquitoes were
captured by light traps, including Cx. tritaeniorhynchus,
Cx. pipens pallens (Coquillett, 1898), Anopheles sinensis
(Wiedemann, 1928), Armigerini subalbatus (Coquillett,
1898), Aedes dorsalis (Meigen, 1830), and Ae. Albopictus
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(Skuse, 1894). The number and percentage of these spe-
cies were ranked as Cx. tritaeniorhynchus (6462, 47.90%),
Cx. pipens pallens (6252, 46.34%), An. sinensis (386,
2.86%), Ar. subalbatus (225, 1.67%), Ae. dorsalis (120,
0.98%), and Ae. Albopictus (47, 0.53%).

Regression analysis of PVD and selected
geo-environmental features

As shown by the regression results in Geoda (see Addi-
tional file 1: Table S2), the P-value of OLS was > 0.05,
and the P-values of both the Lagrange multiplier (lag)
test and Lagrange multiplier (error) test were < 0.05. In
addition, the AIC value of the robust LM (error) test was
significantly smaller than that of the robust LM (lag) test.
Finally, the Moran index and its random permutation test
showed that there was significant spatial autocorrela-
tion in the PVD (see Additional file 1: Table S3, Fig. S1).
Consequently, the spatial error model provided a better
approximation of the PVD.

As shown by spatial error regression model results,
the cotton area (P=0.002), gully distance (P=0.027),
and road length (P=0.027) were significant coefficients
with the PVD in the context of the spatial error regres-
sion model, without intercorrelation among them. Thus,
these three factors were introduced into the spatial error
regression model in a stepwise fashion, which resulted in
seven models (see Additional file 1: Model S0.1-Model
S0.7). Following a spatial error regression analysis on
these seven models and comparing the AIC value, the
AIC values of models 0.3, 0.5, and 0.7 were significantly
smaller than those of model 0.1, 0.2, 0.4, and 0.6.

Among models 0.3, 0.5, and 0.7, model 0.7 provided
a full explanation of the link between the geo-environ-
mental features and the PVD, and the test of heteroske-
dasticity (Breusch-Pagan test, P=0.54) and spatial error
dependence (likelihood ratio test of P=0.04) also sug-
gested that model 0.7 performed better than model 0.3
and 0.5. According to model 0.7, the cotton area corre-
lated positively with the PVD (coefficient=1.45 e—004)
with 95% confidence intervals (1.36 e—004, 1.54 e—004)
and the gully distance (coefficient=— 0.014) with 95%
confidence intervals (— 0.0161, — 0.0136); road length
(coefficient=— 0.041) with 95% confidence intervals
(— 0.044, — 0.036) correlated negatively to the PVD at a
significant level.

Generalized linear model (GLM) regression analysis of PVII

The PVII followed the Poisson distribution and dis-
played non-significant spatial autocorrelation (see Addi-
tional file 1: Table S3, Fig. S2). So, the PVD (P=0.007)
and pig number (P=0.043) were selected by Spearman
rank analysis and introduced into the Poisson regression
model in a stepwise way, which resulted in three models
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(see Additional file 1: Model S1.1-Model S1.3). Follow-
ing a GLM regression analysis on these three models and
comparing the AIC value, model 1.3 had a significantly
smaller value than models 1.1 and 1.2. Subsequently,
a Poisson GLM was conducted on model 1.3, and its
results are listed in Table 1. Based on the GLM regres-
sion results, model 1.3 fit our data well and was signifi-
cantly different from the model with only one intercept
(likelihood ratio chi-square=20.213, P<0.001), and the
PVD (P<0.001) and pig number (P<0.001) were all sig-
nificantly and positively correlated with the PVIL

Linear regression analysis of the vector density of villages
(VVD) and geo-environmental features

At the village level, the village vector density (VVD) fol-
lowed the normal distribution and displayed non-sig-
nificant spatial autocorrelation (see Additional file 1:
Table S3, Fig. S3), and the cotton area (P=0.019) and
pig number (P=0.024) were significantly associated
with VVD. Consequently, the cotton area and pig num-
ber were incorporated into the linear regression analysis
of the relationship between the vector density and geo-
environmental features (Table 2). The analysis of vari-
ance (ANOVA) results for the linear regression model
(Table 2) indicated an F value of 6.06 (P=0.009), which

Table 1 Results of Poisson regression in model 1.3
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indicated that the linear regression model significantly
accounts for the linear relationship from the actual trap
data. In addition, the model coefficients (Table 2) showed
a significant, positive relation among the cotton area
(P=0.036), pig number (P=0.046), and VVD.

Generalized linear regression on the village vector
infection index (VVII) and geo-environmental features

The VVII obeyed the Poisson distribution and displayed
non-significant spatial autocorrelation (see Additional
file 1: Table S3, Fig. S4). Thus, the VVD (P<0.001), river
length (P=0.021), and pig number (P=0.031) were
selected and involved in the GLM regression model in
a stepwise way, which resulted in five models (see Addi-
tional file 1: Model S2.1-Model S2.5). Note that the pig
number and VVD could not be input into the model at
the same time because of the significant intercorrelation
between the VVD and pig number.

Following the GLM regression analysis on these five
models and comparing the AIC value, model 2.1 had a
significantly lower AIC than model 2.2, 2.3, 2.4, and 2.5.
Subsequently, the results of Poisson GLM on model 2.1
are listed in Table 3. In Table 3, model 2.1 fitted our
data well and significantly different from the model with
only one intercept (likelihood ratio chi-square=11.13,

Factor Coefficient 95% confidence intervals Hypothesis test Model omnibus test
Lower limit Upper limit Wald chi-square Sig Likelihood ratio chi-square Sig

Intercept — 1937 —3.197 — 0677 9.077 0.003 20.213 <0.001
PVD 0.01 0.006 0.014 22,628 <0.001
Pig number 0.015 0.007 0.022 12916 <0.001
Table 2 Linear regression model analysis on the vector density and geo-environmental features
Factor Pearson correlation Coefficient analysis t Sig ANOVA model

Correlation Sig Coefficients 95% confidence intervals F Sig

Lower limit Upper limit
(Constant) Na Na 1.392 0.612 2172 3.721 0.001 6.06 0.009
Pig number 0.469 0.024 0.013 0.00023 0.025 213 0.046
Cotton area 0486 0.019 4.35e—006 0.00 e—006 8.0e—006 2.25 0.036
Table 3 Results of Poisson regression in model 2.1
Factor Coefficient 95% confidence intervals Hypothesis test Model omnibus test
Lower limit Upper limit Wald chi-square Sig Likelihood ratio chi-Square Sig

Intercept —636 — 8583 — 4137 31439 <0.001 1113 0.001
VWD 1.448 0.928 1.968 29.79 <0.001
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P<0.001), and the VVD (P<0.001) was significantly and
positively related to the VVII.

Because of the lower P value of Moran’s index test of
VVII (pseudo-P-value=0.084), we also performed the
diagnostics for spatial dependence test on spatial lag
regression and spatial error regression model on VVIIL
Both the probability of LM [Lagrange multiplier (lag),
P=0.774] test and LM [Lagrange multiplier (error),
P=0.736] were significantly bigger than 0.05, which con-
firmed that the spatial regression was not appropriate for
VVIL

Generalized linear regression on village JE cases
and geo-environmental features
The VJC obeyed Poisson distribution and displayed non-
significant spatial autocorrelation (see Additional file 1:
Table S3, Fig. S5). Thus, the VVII (P=0.026), wheat area
(P=0.031), Xiangjie distance (P=0.027), and pig number
(P=0.024) were introduced into the Poisson regression
model in a stepwise way, which resulted in four models
(see Additional file 1: Model S3.1-Model S3.4).
Following a GLM regression analysis on these five
models and comparing the AIC value, model 3.2 had a
significantly lower AIC value than models 3.1, 3.3, and
3.4. Subsequently, the results of Poisson GLM on model
3.2 are listed in Table 4. In Table 4, model 3.2 fit our data
well and was significantly different from the model with
only one intercept (likelihood ratio chi-square=9.429,
P<0.001), and the VVD (P<0.001) and wheat area
(P<0.001) were positively and significantly associated
with the V]JC.

Correlation net among geo-environmental features,

vector density, vector infection index, and JE case number
at the pigsty and village levels

In the study area, there was a net correlation among the
geo-environmental features, vector density, vector infec-
tion index, and JE case number at the pigsty as well as the
village level. At the pigsty scale, the geographic features
(gully distance and road length) were first related to the
PVD and thus indirectly related to PVII (gully distance
and road length were discarded because of their correla-
tion with the PVD); moreover, the cotton area was related
to the PVD and then the PVII (cotton area was discarded

Table 4 Results of Poisson regression in model 3.2
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because of its correlation with the PVD); in addition, the
pig number was directly related to the PVIIL. On the vil-
lage scale, the geo-environmental features (cotton area
and pig number) were first related to the VVD, then to
the VVII, and finally to the VJC (the cotton area and pig
number were discarded because of their correlation with
the VVD); in addition, the wheat area was directly related
to the VJC. Overall, there was a JE epidemiological inter-
relation net in the study area, as shown in Fig. 4.

Discussion

In northern China, the present study uncovered that
arid crop growth could also affect the mosquito vec-
tor population and JE cases. Generally, rice cultivation
is considered a major factor that influences the spread
of JE in southern China [26, 27]. In northern China,
arid crops are predominantly grown because of the
shortage of water particularly at our study site. The pri-
mary crops include cotton, wheat, corn, orchard, and
some vegetables. Because of water shortages, this type
of agricultural pattern provides few breeding sites for
mosquitoes [28], and there is no previous study that
mentions the association among arid crop growth, JE
cases, and vector density. Our results were the first to
our knowledge to indicate that the JE vector density at

Geographic Environmental

features scales

features
Olff®

Fig. 4 Correlation network diagram on geo-environmental features,
vector density, vector infection index, and Japanese encephalitis case
number at the scales of pigsty and village. PVD pigsty vector density;
PVII pigsty vector infection index; VWD village vector density; Wi
village vector infection index; VJC village Japanese encephalitis case
number

Pigsty Village

scales

Factor Coefficient 95% confidence intervals Hypothesis test Model omnibus test

Lower limit Upper limit Wald chi-square Sig Likelihood ratio chi-square Sig
Intercept —1.170 —1.817 —0.523 12.571 <0.001 9429 0.009
WII 1.345 0.633 2.056 13.724 <0.001
Wheat area 0.6 0318 0.881 17436 <0.001
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the pigsty and village levels was positively correlated
with the cotton farming area. In our study area, cot-
ton farmers usually water their cotton fields by periodic
flooding, which creates abundant favorable breeding
sites for JE vector mosquitoes, the larvae of which are
often found in cotton fields [29]. Thus, cotton irriga-
tion methods may explain the positive association
between cotton farming and vector density. However,
the positive connection between the wheat growing
area and the JE cases at the village scale was difficult
to explain here. We suspected that it could be an arti-
fact of a positive relation between wheat production
and pig farming, and further investigation is necessary.
Although rice cultivation is considered a major factor
contributing to epidemiology of JE in southern China
[26, 27], the relationship between geo-environmental
features and JE in northern China has not previously
been determined. Therefore, the study also verified the
association of crop growth with the mosquito vector
population and JE epidemiology. Moreover, Liyi County
is part of a major cotton production area and JE epi-
demic county in Shanxi Province [30, 31]. The present
article not only provided the first information to our
knowledge on the potential causal factors of JE cases
in a non-rice-growing area of northern China but also
suggested that irrigation management in cotton fields
could be as important for JE control in this region as
rice irrigation management in southern China.

In this study, the pig number per pigsty was positively
related to the vector density in the villages (VVD) and the
vector infection index in the pigsty (PVI). Pigs are major
hosts of Cx. tritaeniorhynchus and are a key reserve host
of the JE virus [32], and the close relationship among the
pig numbers and vector density [33] and vector infec-
tion rate [33], and the number of human JE cases [34]
has been documented in many studies. Generally, the pig
is the preferred host of Cx. tritaeniorhynchus [35], so it
would be expected that the density of this mosquito in
pigsties would be positively correlated with that of pigs.
In this study, there was a positive connection between the
pig numbers and vector density together with the vec-
tor infection index, confirming the importance of pigs
in the JE transmission process. Our study site is located
in the northern dry-farming region of China where
no rice is grown; thus, our results may suggest that pig
farming plays a key role in the incidence of JE in this
region. Regarding the key risk of JE infection in pigs,
special management considerations should be applied
to decrease the infection rate among local people in Liyi
County. The management choices used to reduce the
incidence of JE in northern China could include the pig-
sty location, placing mosquito control devices in pigsties,
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immunizing pigs against JE, and JE virus surveillance in
pigs.

In addition to the geo-environmental features (e.g.,
the growing crop and pig), the geographic features dis-
played a relation to the vector density. The gully, which
originated from soil erosion caused by seasonal floods,
is a typical geographic feature of the Loess Plateau in the
northern part of China [36]. In general, the gully could
flood in summer and be dry in winter [36]. Thus, floods
in gullies could be viewed as a major water source in
summer when mosquito vectors are prevalent in local
areas. In this study, the vector density in the pigsty was
negatively correlated with the distance of the pigsty from
the gully. Although no previous study has confirmed the
relationship between the PVD and the gully, the depend-
ence between the PVD and gully here would be reason-
able if the gully was considered a water flood in summer.
As shown by other studies, the distance from the rice
field was negative relative to the JE vector density in the
rice growing area [37], and the JE vector density was also
negatively dependent on the distance from the water
flood in southern China [38]. In this study, our results
hinted that seasonally flooding gullies could be the key
geo-environmental feature affecting the local JE vector
population. Therefore, the gully should be considered an
important breeding source for vector mosquitoes to be
investigated, and the corresponding management meas-
ures should be applied to the gully to decrease the vector
density by slowing down the gully erosion or eliminating
the gully.

The road length was negatively related to the vector
density in the pigsties here. In this study, the road was
located in a 1-km buffer area around the pigsty; thus,
the road length was the same as the road density in a
1-km buffer area around the pigsty. Generally, the den-
sity of roads ranked as high risk for the spread of West
Nile Virus (WNV) in Mississippi, USA [39]; moreover,
the road net also affects the spatial distribution of den-
gue vector mosquito species [40] and malaria risk [41].
However, the present investigation seemed to show the
opposite effect of road in the above references setting, in
which the negative association between the PVD and the
road length implied that the higher the road density was,
the lower the vector density in the local area. Why? The
environmental and socioeconomic background in the
local region provided answers for this result. In the study
area, the higher road density around the pigsties indi-
cated that the site was closer to downtown areas where
there were fewer pigs and fewer cotton areas around
the pigsty because local people depended primarily on
vegetables and orchards for their economic interests. In
addition, a closer downtown area indicates a higher liv-
ing status and sanitary rank for the local people, which
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could also decrease the breeding sites for mosquito vec-
tors. Overall, the negative relation of the vector density to
road density was consistent with the ecoepidemiology of
JE and its vector.

In this study, the geographic features, geo-environmen-
tal features, vector density, vector infection index, and
JE case number comprised the GEV] [geography-envi-
ronment-vector (density and infection index)-JE (cases)]
intercorrelation net in the study area. The number of JE
cases is influenced by the vector density, vector infec-
tion index, human-vector interaction rate, and level of
immunization [42-44]. In addition, the vector density,
vector infection index, and number of JE cases are the
key aspects of the JE transmission cycle, and the spatial
distribution of these three parameters effectively charac-
terizes the local JE epidemiology [45, 46]. In this study,
the mosquito vector density, vector infection index, and
JE cases were interrelated and determined by the geo-
environmental features through the correlated net in
the study area. This study not only demonstrated that
there was an association among the vector density, vec-
tor infection index, and JE cases, as in previous studies,
but it also shed light on the relationship between the geo-
environmental features and JE epidemiological factors,
including the vector density, vector infection index, and
JE cases.

Apparently, model 1.3 and model 2.1 did not add new
knowledge because the vector infection indices (PVII
and VVII) depended respectively on the vector density
(PVD and VVD) by the definition of VI. However, these
two models confirm the vector density influence on the
vector infection and quantitated the relationship between
VII and VD, which could aid the control of JE epidemi-
ology. Moreover, this article constructed an interrelated
net covering the JE epidemiological factors and geo-
environmental features, which would assist local disease
control staff in decreasing the JE transmission risk in the
study area. For example, the local residents could relocate
pigsties to decrease the vector density according to the
spatial associations of vector density with the geo-envi-
ronmental features, which would result in a lower vec-
tor density, vector infection index, and human infection
cases successively.

Conclusion

This study was the first quantitative analysis on the
association among geo-environmental features, vector
density, vector infection index, and incidence of JE in
northern China, which could help understand and con-
trol the epidemiology of JE in northern China. First,
environmental management, e.g., cotton irrigation
management as well as slowing down or eliminating
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the gully, could be applied to decrease mosquito vec-
tor density. Second, selecting pigsty location, placing
mosquito control devices in pigsties, immunizing pigs
against JE, and JE virus surveillance in pigs should also
be used, considering the key role of pig. Finally, regres-
sion models among various geo-environmental factors,
the vector density, vector infection index, and number
of JE cases provided a useful predictive tool to aid JE
epidemiology control in the study area.
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