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Abstract 

Background:  Every year, more than 700,000 people die from vector-borne diseases, mainly transmitted by mosqui‑
toes. Vector surveillance plays a major role in the control of these diseases and requires accurate and rapid taxo‑
nomical identification. New approaches to mosquito surveillance include the use of acoustic and optical sensors in 
combination with machine learning techniques to provide an automatic classification of mosquitoes based on their 
flight characteristics, including wingbeat frequency. The development and application of these methods could enable 
the remote monitoring of mosquito populations in the field, which could lead to significant improvements in vector 
surveillance.

Methods:  A novel optical sensor prototype coupled to a commercial mosquito trap was tested in laboratory 
conditions for the automatic classification of mosquitoes by genus and sex. Recordings of > 4300 laboratory-reared 
mosquitoes of Aedes and Culex genera were made using the sensor. The chosen genera include mosquito species that 
have a major impact on public health in many parts of the world. Five features were extracted from each recording 
to form balanced datasets and used for the training and evaluation of five different machine learning algorithms to 
achieve the best model for mosquito classification.

Results:  The best accuracy results achieved using machine learning were: 94.2% for genus classification, 99.4% for 
sex classification of Aedes, and 100% for sex classification of Culex. The best algorithms and features were deep neural 
network with spectrogram for genus classification and gradient boosting with Mel Frequency Cepstrum Coefficients 
among others for sex classification of either genus.

Conclusions:  To our knowledge, this is the first time that a sensor coupled to a standard mosquito suction trap has 
provided automatic classification of mosquito genus and sex with high accuracy using a large number of unique 
samples with class balance. This system represents an improvement of the state of the art in mosquito surveillance 
and encourages future use of the sensor for remote, real-time characterization of mosquito populations.
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Background
Approximately 80% of the world’s human population 
lives with the risk of one or more vector-borne diseases 
(VBDs), and every year > 700,000 people die as a result 
[1]. In an increasingly connected world, travel and trade 
contribute to the spread of VBDs. Furthermore, a global 
warming scenario may lead to more favourable condi-
tions for the survival and life cycle completion of the vec-
tors [2] and may affect their abundance and distribution 
[3]. Mosquitoes (Diptera: Culicidae), particularly those 
belonging to Aedes, Anopheles and Culex genera, are one 
of the deadliest vectors worldwide. Mosquito species 
can transmit diseases such as malaria, dengue, yellow 
fever, West Nile fever, Zika, chikungunya and others [4]. 
According to World Health Organization directives [5] 
and European Centre for Disease Prevention and Con-
trol guidelines [6, 7], appropriate surveillance methods 
and indicators are needed to: determine the composition 
and monitor changes in mosquito populations, identify 
the presence of new invasive species, monitor mosquito-
borne diseases, quantify the transmission potential 
of vectors and enable the design of accurate control 
programmes.

A range of insect trap types and methods are used in 
regular monitoring and surveillance of immature and/
or adult mosquito populations [8]. Although immature 
stage monitoring can be easier to set up, it is not useful 
for estimating adult abundance due to the lack of corre-
lation between egg, larval and pupal density indices and 
adult indices [9]. Studies show that the seasonal variation 
in mosquito abundance is better represented by adult 
trap monitoring than by other indices (e.g. House Index) 
based on immature stages [10]. Therefore, adult mos-
quito surveillance is generally the most widely applicable 
and accurate solution, especially for VBD risk assessment 
[11]. Many adult mosquito monitoring systems rely on 
traps using light, chemical attractants or CO2 as a bait. 
Most traps include a suction fan to draw approaching 
insects into a catch bag within the trap, and such types 
have been successfully used in many studies [12–14]. 
However, they require the catch bag to be periodically 
collected in the field, followed by a time-consuming pro-
cess of identification of the collected specimens by ento-
mologists. The time delay between insect trapping and 
analysis may limit the correct characterization of the 
temporal dynamics of mosquito populations. Such delays 
may also result in degradation of the insects in the catch 
bag because of desiccation or predation. New approaches 

to entomological surveillance include novel optical sen-
sors to sense the characteristics of flying mosquitoes and 
analysis methods including machine learning methods to 
enable classification of mosquitoes in near real-time [15–
19], which is crucial for surveillance programs.

Since the 1940s, microphones have been used to 
sense the audible flight tones emitted by flying mosqui-
toes, which may be associated with a particular mos-
quito genus, species or sex [20]. Acoustic methods are 
still employed today in applications such as sound traps, 
which emit species- and sex-specific sound frequencies 
to attract mosquitoes [21], and in classification systems 
such as those in which citizen scientists use their mobile 
phones to record mosquitoes [22, 23]. However, it is hard 
to obtain acceptable quality audio recordings of free-fly-
ing insects in the field because of the presence of back-
ground noise [18]. To address this, optical methods have 
been employed in which a light source is used to illumi-
nate the flying insect and a light sensor is used to detect 
the light reflected and scattered, or attenuated, by the 
insect in flight [24–30]. The use of optical methods in this 
field began in 1955 when a photoelectric cell was used to 
detect the light modulation produced by a flying insect 
crossing its field of view [31]. In recent years, several 
optoelectronic sensors have been developed and used in 
conjunction with machine learning techniques to classify 
flying mosquitoes, with promising levels of accuracy [16, 
17, 32–34].

Variables known to condition mosquito wingbeat fun-
damental frequency or its detection include taxonomy, 
sex, parity status, size, age, environmental temperature 
or wind speed [35–39]. Historically, wingbeat frequency 
has been used as the only predictor variable for mosquito 
classification, but it appears insufficient on its own to dif-
ferentiate between mosquito species, especially those of 
the same genus [18]. This could limit field applications, 
where different mosquito species can coexist, with the 
possibility of overlap in wingbeat frequency distributions 
[40]. Efforts have been made in recent years to improve 
classification methods to distinguish among mosquito 
species, sex and even parity status [16, 17, 35]. In some 
cases, more advanced optical approaches have been used, 
for example to determine insect body and wing depo-
larization ratio, to improve the accuracy of classification 
[17].

In addition to the selection of the proper predictor var-
iables and machine learning algorithms, the use of meta-
data such as the climatic conditions, the spatiotemporal 
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localization and other ecological features accompanying 
mosquito captures may also be relevant for remote mos-
quito classification in the field [18, 33], since different 
mosquito species have different behaviour and ecological 
needs (e.g. geographical distribution, climatic range, cir-
cadian rhythm, and peaks of activity). According to new 
paradigms of remote mosquito surveillance, wingbeat 
sensor information and metadata could be sent wirelessly 
in real time to a server using Internet of Things (IoT) tech-
nology [41–43] with the potential to improve entomolog-
ical surveillance.

Currently, there is only one commercial optical sensor 
product available for the remote monitoring of mosquito 
populations [41]. It is called the BG-Counter (Biogents, 
Germany), which according to the company, can distin-
guish mosquitoes from other insects and count mosqui-
toes. However, the sensor does not provide information 
about mosquito genus, species, sex or other attributes.

In this study, we present the results of a prototype 
optical sensor, which is coupled to the entrance of a 
commercial mosquito trap. The trap is of a type widely 
used for mosquito surveillance in the field and contains 
a suction fan. The fan causes the mosquitoes to pass 
through the sensor more quickly and with a more per-
turbed wingbeat compared to free flight conditions as 
described in another work [39]. For the present work, 
4335 flights from mosquitoes of Aedes and Culex genera 
were recorded using the sensor. The three species for the 
study, Aedes albopictus, Aedes aegypti and Culex pipiens, 
were chosen because they are major vectors of arbovi-
ruses, have a significant impact on public health and are 
a focus of vector surveillance and control programs in 
many parts of the world. A set of features were extracted 
from each recording and used to train a series of machine 
learning algorithms to determine which combination of 
feature and algorithm gave the best performance in clas-
sifying mosquitoes by genus and sex. Whilst the scope of 
this work is limited to the classification of genus (Aedes/
Culex) and sex (female/male), the inclusion of the two 
Aedes species in this study improves the genetic vari-
ability and permits future work on species classification 
using the data set from the present work.

Methods
Mosquito rearing conditions
As stated, three species of mosquitoes, from two genera, 
were used to generate the dataset:

	 i.	 Aedes albopictus, population of Sant Cugat del 
Vallès (2005), Barcelona, Spain (41.4667°, 2.0833°).

	 ii.	 Aedes aegypti, population of Paea (1994), Tahiti, 
French Polynesia (− 17.6889°, − 149.5869°).

	iii.	 Culex pipiens, population of Gavà (2012), Barce-
lona, Spain (41.3000°, 2.0167°).

The mosquito populations were all reared under con-
trolled environmental conditions in a climatic cham-
ber at a temperature of 28  °C and a relative humidity of 
80%, with a light:dark photoperiod of 12:12  h, except 
for Cx. pipiens (with a light:dark photoperiod of 11:11 h 
plus 1  h of dusk and 1  h of dawn). Culex pipiens and 
Ae. albopictus were reared in a biosafety level 2 (BSL2) 
laboratory and Ae. aegypti in a biosafety level 3 (BSL3) 
laboratory at IRTA-CReSA facilities. Larvae were main-
tained in plastic trays with 750  ml of dechlorinated tap 
water (renewed three times per week) and were fed with 
fish pellets (Goldfish Sticks-TETRA, Melle, Germany) 
ad  libitum. Pupae, upon appearance, were immediately 
placed in insect cages (BugDorm-1 Insect Rearing Cage 
W30  ×  D30  ×  H30  cm, MegaView Science, Talchung, 
Taiwan). After metamorphosis, adults were fed with 
sucrose solution (10%) ad  libitum. Females were not fed 
with blood to avoid any body size or flight variation. For 
Aedes females, the sucrose solution was removed 24  h 
before the sensor tests. For Cx. pipiens females, this was 
done 48 h before to improve their affinity for the attract-
ant used in the trap.

Sensor and trap description
The prototype sensor was designed and produced by 
Irideon SL (Barcelona, Spain) and was coupled to the 
entrance of a commercial BG-Mosquitaire suction trap 
from Biogents AG (Regensburg, Germany), as shown in 
Fig. 1a.

The trap coupled to the sensor was placed 
in an insect-rearing cage (BugDorm-4S4590 
W47.5 × D47.5 × H93.0  cm, MegaView Science, Tal-
chung, Taiwan). The trap was fitted with a sachet of BG-
Sweetscent chemical attractant from Biogents AG. The 
air flow generated by the fan was approximately 3 m/s in 
the downward direction. When a mosquito flies close to 
the entrance funnel of the sensor, it may be sucked in by 
the fan, detected by the sensor and then trapped in the 
catch bag inside the body of the trap, as shown in Fig. 1b.

The sensor contains an optical emitter panel and an 
optical receiver panel, which face each other through a 
transparent flight tube with a diameter of 105 mm. The 
optical emitter comprises a two-dimensional (2D) array 
of 940-nm wavelength infrared light-emitting diodes 
(LEDs), and the optical receiver comprises a 2D array of 
940-nm photodiodes. The optical sensor has an active 
length of 70 mm in the downward direction. These ele-
ments are also shown in Fig. 1b.

The output of the optical receiver is amplified and 
acquired by an analog to the digital converter (ADC) 
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with a sampling frequency of 9603 samples per second. 
When a mosquito enters the sensing volume, it automati-
cally triggers a recording of up to 1024 samples, i.e. of up 
to 107  ms duration. The duration of a typical mosquito 
flight is around 50  ms. The sensor automatically adds a 
timestamp to each recording, along with the measured 
ambient temperature.

Data acquisition process
Mosquitoes from Aedes and Culex genera were anesthe-
tized with carbon dioxide 48 and 72 h respectively before 
each experiment. They were separated into groups by 
species (Cx. pipiens, Ae. albopictus and Ae. aegypti) and 
sex (male, female).

Culex pipiens and Ae. albopictus were introduced 
into the insect rearing cage in batches of 20 individu-
als to reduce the chance of multiple mosquitoes passing 
through the sensor simultaneously. Batches of ten indi-
viduals were used for Ae. aegypti because of their greater 
affinity to the attractant. All mosquitoes were intro-
duced at a distance of 20 to 30 cm from the entrance of 
the sensor to ensure that they could fly freely until they 

approached it and were sucked in to approximate field 
conditions.

Each recording corresponds to a different mosquito, i.e. 
trapped mosquitoes were not re-used to generate more 
recordings. Wingbeat files were tagged with species and 
sex class by the operator. After each experiment, the 
wingbeat recordings were downloaded from the sensor 
and processed using a Python script to produce playable 
and viewable audio files, as depicted in Fig. 2a. Wingbeat 
recordings were examined manually, and those deemed 
to be invalid, such as recordings containing more than 
one mosquito or where a mosquito may have hit the wall 
of the flight tube, were excluded from the dataset. The 
excluded recordings represented 2.3% of the data.

The resulting dataset contained 4335 wingbeat record-
ings, comprising 2472 of Aedes genus (882 Ae. aegypti 
and 1590 Ae. albopictus) and 1863 of Culex genus (all 
Cx. pipiens). There were 1211 Aedes females, 1261 Aedes 
males, 964 Culex females and 899 Culex males. Females 
were in an age range of 2 to 16 days old and males were in 
an age range of 2 to 9 days old. These age ranges provide 
a representative variety in the dataset.

Fig. 1  a Prototype sensor (top) fitted to a BG-Mosquitaire trap (bottom). b Side view diagram of sensor and trap to illustrate operation. The exterior 
of the sensor unit (1) is formed by an inlet tube with a diameter of approximately 100 mm (2), sensor housing (3) and outlet tube (4). The housing 
contains an optical emitter (5), which projects collimated beams of light through the transparent flight tube (6) and onto an optical receiver (7) 
to create a sensing zone (8) within the flight tube. The trap (9) contains a suction fan (10), a removable catch bag (11) made of textile mesh and a 
perforated lid (12). The fan produces a flow of air downward through the inlet tube, flight tube and catch bag and upward through the perforated 
lid as indicated by the blue arrows. An insect (13) which flies close to the entrance of the inlet tube may then be sucked downwards through the 
sensing zone where it will be recorded and then trapped in the catch bag. As the mosquito passes through the sensing zone it casts a shadow 
upon the optical receiver according to the so-called optical extinction mode of operation. As the insect flaps its wings within the sensing zone, the 
light falling on the optical receiver is modulated, giving rise to changes in the amplitude in the recorded waveform
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All recordings took place with the sensor and trap 
located in the laboratory facilities of IRTA-CReSA during 
daylight hours. The average ambient temperature meas-
ured was 25.8 (standard deviation = 1.2 °C).

Feature extraction
The following five features were extracted from each 
wingbeat recording via the application of digital signal 
processing methods:

•	 The power spectral density (PSD) shows the power 
of the signal at different frequencies. It is calculated 
using Welch’s method [44], in which the wingbeat 
recording is divided into several overlapping seg-
ments. A windowing function is applied to each 
of the segments and a series of periodograms is 
obtained by calculating the power spectrum of each 
windowed segment. Finally, the periodograms are 
averaged to give the PSD [45]. A PSD plot of a typical 
mosquito recording is shown in Fig. 2b.

•	 Wingbeat fundamental frequency in Hertz (Hz) is 
determined from the PSD as shown in Fig. 2b using 
a peak search method. The wingbeat fundamental 
frequency is the frequency at which a mosquito flaps 
its wings. It is characteristic of mosquito taxonomy 
and sex and varies depending on intrinsic variables 
of mosquito biology (size, age, parity status, mating 
behaviour) [16, 35, 36, 38] and environmental vari-
ables such as temperature [37]. The typical range of 
mosquito wingbeat fundamental frequencies is 300 
to 900 Hz [40].

•	 The fundamental peak power density (dB/Hz) (here-
after referred to as fundamental peak power) is also 
determined from the PSD as shown in Fig.  2b and 
represents the peak power density of the sensor 
output at the wingbeat fundamental frequency. It is 
equivalent to the intensity of the sound produced by 
a flying mosquito, typically ranging from 40 to 80 dB 
[46, 47].

•	 The spectrogram is a series of spectra calculated 
from multiple overlapping segments of the wingbeat 

Fig. 2  a Example of a recorded mosquito flight with ADC sample number (0 to 1023) on the x-axis and amplitude on the y-axis, scaled to a range 
of [− 1, 1], which equates to the full-scale range of the ADC. A high pass filter in the optical receiver attenuates frequencies < 300 Hz to remove 
electronic offsets and low-frequency noise, which also attenuates the signal due to the body of the insect. Baseline correction has been applied 
by subtracting the average value of the recording from each data point in the recording. b Power spectral density (PSD) plot of a typical mosquito 
flight. The wingbeat fundamental peak is labelled as f1. The fundamental frequency is indicated by the vertical arrow and the fundamental peak 
power by the horizontal arrow. The various peaks to the right of f1 are harmonics of f1, i.e. at frequencies of 2*f1, 3*f1, etc. The power density has 
units of (units2/Hz) on a logarithmic (dB) scale. A level of 0 dB/Hz corresponds to a white noise signal time domain signal with a power density of 
1.0 unit2/Hz. The fundamental peak power density levels in this study are typically < − 40 dB/Hz, i.e. < 1 × 10–4 units2/Hz. The noise floor of the 
system, i.e. with sensor active but with no insect in the sensing zone, is < − 85 dB/Hz from 0 to 300 Hz and < − 90 dB/Hz from 300 Hz
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recording. Each spectrum is generated by applying a 
Fourier transform to the segment to provide infor-
mation about the amplitude of the various frequency 
components in the segment. The spectrogram repre-
sents the variations of the frequency content of the 
signal over time rather than an average for the whole 
signal as given by the PSD [48].

•	 Mel Frequency Cepstral Coefficients (MFCCs) are 
calculated by converting the frequencies of a spectro-
gram to the Mel scale and applying overlapping tri-
angular filter banks before calculating the cepstrum 
by transforming the spectra to a logarithmic scale 
and then applying an inverse Fourier transform [49]. 
Please refer to Additional file 1: Text S1 and Fig. S1 
for further details.

The PSDs have 257 values, generated using a window 
length of 512 samples. The spectrograms and MFCCs are 
obtained using nine segments of 512 samples; then, 16 
Mel filter banks are applied to each spectrum to give a 
total of 144 values. All the MFCC coefficients are used.

Each individual feature and one combined feature (fun-
damental frequency and fundamental peak power) were 
used for the machine learning models.

A scatter plot of the wingbeat fundamental frequency 
and peak power features is shown in Fig. 3a for the entire 
dataset, in Fig. 3b for all Aedes samples and in Fig. 3c for 
all Culex samples. In Fig. 3a, which is coloured by genus, 
a high degree of overlap between the genera is observed. 
In Fig. 3b and c, which are coloured by sex, two clearly 
separated clusters are observed. The distributions of the 

two single-value features, fundamental frequency and 
fundamental peak power, for the three classifications are 
shown in Additional file 1: Fig. S2.

Machine learning
The goal of the machine learning process was to com-
pare the performance of five selected machine learning 
algorithms using the features described above, in clas-
sifying mosquito genus and sex. A labelled dataset con-
sisting of the feature set was used to train, evaluate and 
compare the classification models. The following five 
machine learning algorithms were used: logistic regres-
sion (LR), gradient boosting (GB), random forests (RF), 
support vector machines (SVM) and a fully connected 
deep neural network (DNN). These algorithms were cho-
sen because of their widespread usage and good perfor-
mance [50]. A brief overview of each algorithm is given in 
Additional file 1: Text S2. Of these algorithms, the more 
complex ones, such as DNN or RF, were also used with 
the single-value features (fundamental frequency and 
fundamental peak power) because they can model non-
linearities, unlike LR.

Three classification tasks were performed: one genus 
classification (Aedes/Culex) and two sex classifications 
(male/female), one for each genus (sex of Aedes, sex of 
Culex). The logic of the classification process is shown in 
Additional file 1: Fig. S3.

Balanced datasets, i.e. datasets that contained an equal 
number of samples in each class, were used to make an 
unbiased assessment. They were obtained by randomly 

Fig. 3  a Scatterplot of wingbeat fundamental frequency and peak power for the full dataset showing Aedes genus in red and Culex in blue. b 
Scatter plot of wingbeat fundamental frequency and peak power for Aedes genus showing females in red and males in blue. c Scatter plot of 
wingbeat fundamental frequency and peak power for Culex genus showing females in red and males in blue
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under-sampling the classes which had a higher number 
of available samples.

Model performance was assessed using the accuracy 
metric, which is calculated by dividing the number of 
correct predictions by the total number of predictions. 
The accuracy metric is a simple evaluation metric, which 
makes it easy to interpret, and is appropriate when using 
balanced datasets.

The typical machine learning process consists of train-
ing, validation and testing. In the training phase, the 
model is fitted to the data with different configurations 
of the algorithm determined by hyperparameters, which 
can have a significant impact on performance. In the 
validation phase, the performances of the models trained 
with the different configurations are compared and the 
best one is selected. The testing phase assesses how well 
the model generalizes on previously unused data. A sche-
matic overview of the training, validation and testing 
approach employed in this work is shown in Additional 
file 1: Fig. S4.

Seventy-five percent of the recordings in each dataset 
were chosen randomly to create a training set for use in 
the training and validation phase. Training and valida-
tion were done using fourfold cross-validation, in which 
the training set is split into four parts of equal size and 
the model being optimized is trained on three of the 
four parts and validated on the fourth part. This process 
is done four times using a different part of the training 
set for the cross-validation in each iteration. The final 
cross-validation score was obtained by averaging the four 
cross-validation results. The model with the best cross-
validation score was then selected for testing.

The remaining 25% of each dataset, i.e. that part which 
was not allocated to training and validation, was used to 
test the performance of the trained model. Since the data 
in the test set are completely new to the model, accuracy 
results for the test set are an indication of how well the 
model generalizes on new data, and good results cannot 
be attributed to overfitting of the model.

Error analysis consists of analysing the training and 
validation accuracies obtained during the training and 
validation phase. If the training accuracy is considerably 
higher than the validation accuracy, it indicates overfit-
ting, so more samples could help to improve the model. 
If, on the other hand, training and validation accuracies 
have a similar low score, it indicates that the model is too 
simple and that more training data would probably not 
help. In this case, the model could possibly be improved 
by using a different algorithm which is able to learn more 
complex relationships or to use more features.

Programming was done in Python [51]. For model gen-
eration, scikit-learn [52], TensorFlow [53] and XGBoost 
[54] were used. Regarding execution times, training of 

the models took days to weeks, but once done, each new 
sample was classified in under 1 s.

Results
Genus classification
In the genus classification, mosquitoes were classified 
into Aedes and Culex genus. A total of 2688 samples were 
used comprising: 1344 Aedes (672 Ae. albopictus and 
672 Ae. aegypti) and 1344 Culex (all Cx. pipiens) with an 
equal number of males and females for each species. The 
dataset was split 75%/25% into the training data set (2016 
samples) and the test set (672 samples). The accuracy 
results for genus classification on the test set are shown 
in Table  1 with the best performing algorithm for each 
feature shown in bold. The best result for genus classifi-
cation was obtained for the DNN algorithm trained on 
the spectrogram feature, with an accuracy of 94.2%.

Sex classification of Aedes
In this classification, mosquitoes of the Aedes genus were 
classified into males and females. A total of 1344 samples 
were used, comprising 672 females and 672 males, with 
each sex group comprising 336 Ae. aegypti and 336 Ae. 
albopictus. The dataset was split 75%/25% into the train-
ing data set (1008 samples) and the test set (336 samples). 
The results for this classification on the test set are shown 
in Table 2. The best performing algorithms for sex classi-
fication of Aedes were logistic regression trained on spec-
trogram and MFCC, and gradient boosting trained on 
MFCC, with an accuracy of 99.4% in each case.

Sex classification of Culex
In this classification, mosquitoes of the Culex genus (all 
Cx. pipiens) were separated into males and females. A 
total of 1560 samples were used comprising 780 females 
and 780 males. The dataset was split 75%/25% into the 
training data set (1170 samples) and the test set (390 
samples). The results for this classification on the test 

Table 1  Accuracy results for genus classification with best 
results per feature indicated by a superscript letter

Feature Algorithm

LR (%) GB (%) RF (%) SVM (%) DNN (%)

Fundamental frequency 55.2 67.3a 65.9 65.5 66.1

Fundamental peak power 68.9 70.1a 69.6 69.8 70.0

Fundamental frequency 
and peak power

70.1 77.7 77.2 77.2 77.8a

PSD 84.8 92.3a 89.0 90.5 90.3

Spectrogram 90.5 93.2 91.2 93.4 94.2a

MFCC 89.3 93.2a 90.2 93.0 93.2a
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set are shown in Table  3. For Culex sex classification, 
an accuracy of 100% was achieved by all five algorithms 
trained on MFCC; by logistic regression, SVM and DNN 
trained on spectrogram; and by SVM trained on PSD.

Summary of the best classification results
A summary of the classification results, which includes 
the best performing algorithms and features for each 
classification, is given in Table  4 in which training and 
validation accuracies are also listed, with an indication of 

how the results might be improved. The corresponding 
hyperparameters are listed in Additional file 1: Table S1.

The best accuracy results were 94.2% for genus classifi-
cation, 99.4% for sex classification of Aedes and 100% for 
sex classification of Culex.

For genus, the training accuracy was 100% and the 
cross-validation accuracy was significantly lower (95%), 
which indicates that the model overfits slightly and its 
performance could possibly be improved with more 
training samples.

For Aedes sex classification, although the best models 
gave a near perfect accuracy, the training accuracy and 
cross-validation accuracy are similar (99.5%), which indi-
cates that the model could possibly be improved with a 
more complex algorithms and/or features rather than 
with more training samples. In case of Culex sex classi-
fication the accuracy was 100%, so no error analysis was 
necessary.

Discussion
In the present study, 4335 mosquito flights were recorded 
using a novel optical sensor. The sensor was attached 
to the entrance of a commercial mosquito suction trap 
inside an insect rearing cage, with mosquitoes flying 
freely within the cage until they were sucked in by the 
trap, through the sensor and into the catch bag within 
the trap. Each flight recording made by the sensor cor-
responded to a different mosquito. Five features were 
extracted from each recording and used with five dif-
ferent machine learning algorithms for classification of 
mosquito genus and sex.

One of the features used was wingbeat fundamental 
frequency, which has been used in many studies for 
insect characterization and classification [15, 16, 23, 25, 
35, 38, 55]. Differences in reported values of wingbeat 
frequency between studies can be due to intrinsic and/
or extrinsic variables such as size, parity status, age and 
ambient conditions [16, 34, 36, 42, 46]. In this study, the 
wingbeat fundamental frequency feature gave a high 

Table 2  Accuracy results for sex classification of Aedes with best 
results per feature indicated by a superscript letter

Feature Algorithm

LR (%) GB (%) RF (%) SVM (%) DNN (%)

Fundamental frequency 95.5 95.5 95.5 95.5 95.5

Fundamental peak power 86.9 89.5a 89.5 89.2 89.3

Fundamental frequency 
and peak power

98.2 96.7 97.0 98.5 97.9a

PSD 97.0 98.8a 97.9 98.8a 98.2

Spectrogram 99.4a 98.8 98.8 99.1 98.8

MFCC 99.4a 99.4a 98.8 98.8 98.8

Table 3  Accuracy results for sex classification of Culex with best 
results per feature indicated by a superscript letter

Feature Algorithm

LR (%) GB (%) RF (%) SVM (%) DNN (%)

Fundamental frequency 98.0 98.0 98.0 98.0 98.0

Fundamental peak power 83.4 81.3 81.5 83.1 83.6a

Fundamental frequency 
and peak power

98.7a 98.7a 98.5 98.7a 98.7a

PSD 99.7 99.2 99.2 100a 99.7

Spectrogram 100a 99.7 99.7 100a 100a

MFCC 100a 100a 100a 100a 100a

Table 4  Summary of machine learning classification results

Classification task Using the test set Using the training dataset Error analysis indication

Best test 
accuracy (%)

Best feature Best algorithm No. of samples Training 
accuracy (%)

Validation 
accuracy (%)

Genus 94.2 Spectrogram DNN 2016 100 95 Slight overfitting: more 
training samples

Sex Aedes 99.4 Spectrogram LR 1008 99.5 99.5 No overfitting

MFCC LR, GB

Sex Culex 100 PSD SVM 1170 100 100 No error

Spectrogram LR, SVM, DNN

MFCC All algorithms
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accuracy in sex classification in both Aedes (95.5%) and 
Culex (98%), but it scored lower (67.3%) in genus clas-
sification. These results are consistent with the funda-
mental frequency histograms in Additional file  1: Fig. 
S2, which show very little overlap between the distribu-
tions of males and females, especially for Culex (Addi-
tional file 1: Fig. S2c) and considerable overlap between 
genera (Additional file 1: Fig. S2a). In the fundamental 
peak power histograms of Additional file 1: Fig. S2b, c, 
a higher degree of overlap is observed between the dis-
tributions of males and females, especially for Culex, 
which helps explain why the accuracy for sex using this 
feature alone (89.5% for Aedes and 83.6% for Culex) was 
lower than that of fundamental frequency alone.

As other studies have indicated [16, 18, 39, 40], the 
use of the wingbeat frequency alone as a feature to dif-
ferentiate between taxonomical classes or other attrib-
utes of mosquito biology can be challenging because of 
overlap in wingbeat frequency distributions. To address 
this, other authors have used additional features (i.e. 
depolarization ratio) [16] or metadata (i.e. localization, 
environmental variables and circadian rhythm) [18] in 
combination with fundamental frequency to improve 
their classification methods. In the present work, we 
have tested several features apart from or in combina-
tion with the fundamental frequency to better classify 
mosquito genus and sex.

The use of both fundamental frequency and funda-
mental peak power yielded better performance in sex 
and genus classification than fundamental frequency 
alone. Although the effect of signal intensity or power 
has been investigated in mosquito mating and court-
ship behavioural experiments [46, 47], to the best of our 
knowledge, fundamental peak power has not been used 
as a feature in mosquito classification studies. In other 
sensor systems, the reported signal intensity or power 
may depend on the position and orientation of the fly-
ing mosquito with respect to the sensor [56], whilst our 
optical setup was designed to measure wingbeat power 
relatively independently of the position and orientation 
of the mosquito within the sensing volume.

Despite the better results obtained in this work using 
the fundamental frequency and power features com-
pared with fundamental frequency alone, the more 
complex spectrogram and MFCC features provided 
the best performance for genus and sex classifica-
tion. MFCCs are normally used in applications such as 
speech recognition [57] or music information retrieval 
[58], and although MFCCs are based on human percep-
tion of pitch, they have given good results in sound rec-
ognition studies with mosquitoes and other insects [34, 
49, 59, 60].

In this study, the best performing machine learning 
algorithm depended on the classification task. For genus 
classification, DNN showed the best performance, with 
an accuracy of 94.2%, trained on the spectrogram feature. 
In another work [33], DNN also gave the best perfor-
mance for genus classification between Aedes and Culex. 
For sex classification, the best performing algorithms and 
features were LR with spectrogram or MFCC and GB 
with MFCC. Different machine learning algorithms were 
also compared for mosquito classification in a previous 
study [17], and it was concluded that the best algorithm 
for complex classification tasks was SVM. In our study, 
SVM had an accuracy of 93.4% for genus, although DNN, 
which was not studied in [17], performed slightly better 
(94.2%). The classification of mosquito genus achieved 
a high accuracy of 94.2% while the classification of sex 
achieved 99.4% and 100% for Aedes and Culex respec-
tively. The training and validation accuracies indicate 
that genus classification could possibly be improved with 
more training samples.

Other studies have successfully achieved automatic 
classification of genus [25, 33] and sex [16, 24] using 
machine learning with relatively large datasets [34] and 
placing emphasis on class balance [17]. However, only 
a small number of sensor studies have been performed 
using a mosquito suction trap, either without an auto-
matic classification system [39] or with only mosquito 
and non-mosquito counting and without differentiat-
ing mosquito genus and sex [61]. To our knowledge, we 
present the first sensor system for use with a commercial 
mosquito suction trap, which provides automatic classi-
fication of genus and sex with high performance, based 
on a large number of training samples, with class balance. 
Planned further work includes the study of species clas-
sification, study of age groups, training of models with 
more features and feature combinations, and testing of 
the system in the field.

Conclusions
In this work, we have presented the results of a novel 
sensor system for genus and sex classification of Aedes 
and Culex mosquitoes captured by a commercial suc-
tion trap in laboratory conditions. The obtained results 
are encouraging for the use of the sensor with standard 
suction traps in the field, for the remote surveillance 
and classification of genus and sex of Aedes and Culex 
mosquitoes.
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