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Robust network stability of mosquitoes 
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Abstract 

Background:  The exact number of mosquito species relevant to human health is unknown, posing challenges in 
understanding the scope and breadth of vector–pathogen relationships, and how resilient mosquito vector–patho‑
gen networks are to targeted eradication of vectors.

Methods:  We performed an extensive literature survey to determine the associations between mosquito species and 
their associated pathogens of human medical importance. For each vector–pathogen association, we then deter‑
mined the strength of the associations (i.e., natural infection, lab infection, lab dissemination, lab transmission, known 
vector). A network analysis was used to identify relationships among all pathogens and vectors. Finally, we examined 
how elimination of either random or targeted species affected the extinction of pathogens.

Results:  We found that 88 of 3578 mosquito species (2.5%) are known vectors for 78 human disease-causing patho‑
gens; however, an additional 243 species (6.8%) were identified as potential or likely vectors, bringing the total of all 
mosquitos implicated in human disease to 331 (9.3%). Network analysis revealed that known vectors and pathogens 
were compartmentalized, with the removal of six vectors being enough to break the network (i.e., cause a pathogen 
to have no vector). However, the presence of potential or likely vectors greatly increased redundancies in the network, 
requiring more than 41 vectors to be eliminated before breaking the network.

Conclusion:  Although < 10% of mosquitoes are involved in transmitting pathogens that cause human disease, our 
findings point to inherent robustness in global mosquito vector–pathogen networks.
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Background
Mosquitoes are one of the main animal agents of 
human infectious disease, and the pathogens they 
transmit have likely been a selective force for human 
evolution (e.g., sickle cell disease [1]) and have also 
had profound political and historical effects [2]. With 
few exceptions, humans across the globe are suscep-
tible to a wide range of pathogens that are carried by 

adult mosquitoes, including debilitating and some-
times fatal diseases like malaria, dengue, yellow fever, 
and West Nile encephalitis. Considerable time and 
treasure have been spent on attempting to suppress 
mosquito populations, with the hope of controlling 
pathogen transmission among humans. Although there 
has been some success in these endeavors, even the 
best control approaches may be restricted to narrow 
geographical ranges, and often yield fleeting results 
(e.g., Aedes aegypti in Brazil [3]). At present we lack a 
comprehensive list of medically important mosquitoes, 
hampering our ability to target all species involved in 
pathogen transmission. Moreover, the relationships 
between mosquitoes and pathogens are varied, ranging 
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from natural infection by a pathogen, to being the 
known causative agent of human pathogen transmis-
sion. As relationships between vectors and pathogens 
vary among species for the same pathogen, it is likely 
that even with the elimination of a focal species, other 
competent vectors exist.

To eliminate or reduce mosquito-borne disease bur-
den, suppression of mosquito-borne pathogens often 
occurs for pairs of vectors and pathogens [4, 5]. How-
ever, this often ignores the fact that pathogens fre-
quently have several competent known or suspected 
vectors, and individual vectors can be responsible for 
transmitting several pathogens. One useful approach to 
consolidating these complex relationships for human 
disease is via ecological network modeling [6, 7], which 
can simultaneously consider the relationships among 
pathogens and vector species (i.e., a cluster) and the 
relationships among these clusters. Such an approach 
can lead to novel understanding of the ecological, epi-
demiological, and evolutionary patterns among ver-
tebrate hosts, vectors, and transmitted pathogens [6, 
8, 9]. Unlike some beneficial interactions among spe-
cies (e.g., plants-pollinators [10]), vector–pathogen 
networks are inherently asymmetrical, with the loss of 
a pathogen having a positive or neutral effect on vec-
tors, and the loss of vectors having negative effects on 
pathogens.

Here we quantified the pathogens of human medi-
cal importance that are transmitted by mosquitoes, 
and then for each pathogen assessed the current state 
of knowledge for the relationships with potential or 
known mosquito species (i.e., wild infection, lab infec-
tion, lab dissemination, lab transmission, or known 
vector). Our approach to use all associations (both in 
the lab and from the wild) across the entire geographi-
cal range of vector–pathogen networks allows for a 
broad understanding of the difficulties and challenges 
of mosquito-borne disease elimination. This broad 
approach assumes that range expansion and species 
introductions are still likely to occur, and that our cur-
rent knowledge regarding all species implicated in mos-
quito-borne disease is incomplete. This process also 
allowed us to quantify, for the first time, the number 
and species of mosquitoes of human medical impor-
tance. This data set was then used in a network analysis 
to ascertain the associations of vectors and pathogens 
within and among clusters. We use these data to con-
sider both known associations among vectors and path-
ogens, and potential or likely vectors for each pathogen. 
Finally, we determined the degree to which random 
or targeted removal of mosquito species would break 
the network (i.e., lead to the extinction of one or more 
pathogens).

Methods
We conducted an extensive review of the scientific lit-
erature, secondary sources (e.g., https://​wwwn.​cdc.​gov/​
arboc​at/), and authoritative books on mosquitoes or 
human disease e.g. [11–13] to establish a comprehen-
sive list of pathogens that are known to be transmitted 
by mosquitoes and that cause documented human ill-
ness (e.g., fever, death). In one case, Fort Sherman virus, 
although this pathogen can cause human illness and 
has been identified as mosquito-borne, no data exist to 
specify which species are involved (although Aedes are 
implicated [14]). All four serotypes of dengue were con-
solidated to a single pathogen group, as were all species 
of Plasmodium. Consolidating these pathogens in this 
way was consistent with our global approach to under-
standing the vector–pathogen relationships.

Next, we identified all mosquito species that have a 
documented role in the scientific literature or secondary 
sources in carrying, disseminating, or transmitting each 
identified pathogen. Searches were conducted using sci-
entific literature databases (e.g., Web of Science, Google 
Scholar) to search for each pathogen, with abstracts and 
documents reviewed to identify articles with relevant 
information (e.g., field or lab studies documenting infec-
tion, dissemination, or transmission; cited references) on 
mosquito species associated with that pathogen. Cited 
references within articles suggesting or identifying poten-
tial mosquito-related information were also reviewed, as 
well as secondary sources (e.g., https://​wwwn.​cdc.​gov/​
arboc​at/) and certain texts, e.g. [11, 12], until additional 
searches produced no new relationships that hadn’t 
already been identified. As a final check for complete-
ness, we searched the databases Crossref (https://​www.​
cross​ref.​org) and Entrez (https://​www.​ncbi.​nlm.​nih.​
gov/​search/) for every possible pairwise combination of 
identified pathogens and identified mosquito species, to 
verify that no potential relationship had been overlooked. 
Genus-level vector information (i.e., unknown species) 
was used for a pathogen only if it represented a new 
genus for which no species-level information was other-
wise available. Genus-level information was retained for 
ten vectors, paired with six pathogens, and was assumed 
to be uniquely associated with each pathogen (e.g., Man-
sonia sp. paired with Guama virus not assumed to be the 
same species as Mansonia sp. paired with western equine 
encephalitis). In all cases we assumed species names 
were used in the sensu stricto (s.s.) sense (e.g., Anoph-
eles gambiae) based on the publications that listed them. 
We could not discern this in all cases, as many papers did 
not list species as s.s. or sensu lato (s.l.), but given the 
nature of those publications, we assumed they were s.s. 
Herein we also hold to traditional taxonomic affiliations 
for the genus Aedes given the current uncertainty of new 
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designations. Finally, one observation of wild infection 
of St. Louis encephalitis virus in Toxorhynchites amboin-
ensis was dropped because this mosquito species is not 
a blood-feeder and is known to play no role in human 
transmission.

Mosquito species-pathogen relationships were scored 
from 1 to 5 based on the strongest evidence for the rela-
tionship across available studies: (1) successful infection 
of females under laboratory conditions (lab infection), 
(2) successful dissemination of the pathogen within the 
vector in the laboratory (lab dissemination), (3) success-
ful transmission from infected vector to an uninfected 
organism under laboratory conditions (lab transmis-
sion), with one additional point scored if the pathogen 
was documented to be isolated from a wild-caught adult 
female mosquito (wild infection). Widely agreed upon 
vectors of a specific pathogen in humans, as identified in 
more than one primary or secondary source as a known 
vector, were scored the highest possible strength of evi-
dence, 5. Each mosquito–pathogen pair was assigned the 
maximum score across all documented evidence, such 
that, for example, a mosquito documented to have been 
lab infected in one study and lab-disseminated in another 
would be assigned a maximum score of 2, based on the 
strongest documented relationship. Note that the final 
assigned score for a mosquito–pathogen relationship 
may be obtained in more than one way. For instance, a 
species could be scored as a 1 either because it is docu-
mented as lab infected or wild infected; a 2 either because 
it is known to be infected in the wild and in the lab (1 + 1) 
or because it shows dissemination in the lab (2) and thus 
is also assumed to have been lab infected; and a 3 either 
because it is known to be infected in the wild and lab-dis-
seminated (1 + 2) or because it shows transmission in the 
lab (3) and thus is also assumed to have been lab infected 
and disseminated. The two highest categories were from 
known vectors (5), or successful laboratory transmission 
and documented wild infection (3 + 1). Scores were used 
as importance weights for each vector–pathogen pair in 
subsequent network analysis.

We used networks to describe the relationships 
between mosquito vectors and pathogens in terms of 
nodes that symbolize each mosquito species or patho-
gen, and edges that represent evidence for a potential 
or known relationship between a mosquito vector and 
a pathogen. Network edges were weighted according to 
the evidence score (1–5) assigned to each vector–patho-
gen pair. We compared the full network of all potential 
vector–pathogen associations to a network that included 
only known vector–pathogen associations (i.e., score 
of 5). For each network, we used the Louvain clustering 
algorithm to group vectors and pathogens into “com-
munities” by optimizing modularity, which measures the 

density of links within the community relative to outside 
the community [15]. We characterized each network 
structure as the degree to which clusters were connected, 
nested, or isolated from other nodes by calculating meas-
ures of nestedness and modularity. The nestedness metric 
based on overlap and decreasing fill (NODF) estimates 
how many nodes are connected to other nodes, with 
values of 0 indicating non-nestedness, 100 perfect nest-
ing, and 50 random associations [16]. The mean standard 
deviation within clusters is a straightforward estimate of 
modularity that ranges between zero and one [17]. Mod-
ularity measures, “the tendency of a network to be com-
partmented into separated clusters of interacting nodes” 
[17]. These two values have been shown to be inversely 
correlated although not perfectly so [18]. Node central-
ity, calculated as the betweenness centrality index (BCI), 
is a measure of how pivotal each node is to the network, 
in particular as bridges between nodes or clusters, and 
has been proposed as a measure of generalists in polli-
nator networks [19]. Computations were carried out with 
the package “igraph” in R (www.r-​proje​ct.​org). Measures 
of network structure were calculated using the package 
“bipartite”.

Results
Our analysis identified 894 mosquito–pathogen pairs 
from 78 disease-causing pathogens (Additional file  1: 
Table S1). Of the described 3586 mosquito species (mos-
quito-taxonomic-inventory info/valid-species-list/), 331 
(9.2%) were identified as having some relationship to at 
least one pathogen, with 243 (6.8%) species showing wild 
or laboratory infection, laboratory dissemination, or 
transmission, and 88 (2.5%) identified as known vectors 
(Additional file 1: Table S1). Of the 78 pathogens, 28 have 
known vectors, whereas 50 did not (Additional file  1: 
Table S1). Of the 331 total vector species, 76% belonged 
to three genera (98 species of Aedes, 85 Anopheles, and 
68 Culex), with 20 other genera adding between one and 
13 species. The majority of the 78 identified pathogens 
were arboviruses, in the families Bunyaviridae (40), Fla-
viviridae (17), Togoviridae (15), Reoviridae (2), and Picor-
naviridae (1). Besides viruses, pathogens also included 
bacteria (Francisellaceae), Plasmodium spp. (malaria), 
and nematodes (Filaridae, Onchocercidae) (Additional 
file 1: Table S1).

The full network included 894 edges (mosquito–
pathogen pairs) and 419 nodes, representing the 78 
disease-causing pathogens and 331 likely or known vec-
tors (Fig.  1). The Louvain clustering algorithm identi-
fied eleven clusters (Additional file  2: Table  S2). Only 
one cluster (cluster 1) was not connected to any others, 
reflecting a potential group of specialists (Taeniorhyn-
chus sp.) uniquely capable of transmitting mengovirus. 

http://www.r-project.org
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All other clusters were connected by one or more gener-
alist vectors potentially capable of transmitting many dif-
ferent types of pathogens. Vectors tended to cluster with 
pathogens of similar type, indicating that vectors with the 
ability to transmit one type of virus may be able to trans-
mit other pathogens of that type. In particular, cluster 4 
contained vectors of hemorrhagic arboviruses (e.g., den-
gue, yellow fever), whereas cluster 11 contained vectors 
of several encephalitis-causing viruses (e.g., West Nile, St. 
Louis, western equine).

For clusters and their vector–pathogen associations, 
the most complex clusters included cluster 4 (20 patho-
gens), cluster 10 (11 pathogens), cluster 8 (nine patho-
gens), and cluster 11 (seven pathogens). Other clusters 
ranged from one to six pathogens. Cluster 4 was domi-
nated by Aedes (29 species) and Haemogogus (six spe-
cies) and contained multiple arboviruses, including 
many considered hemorrhagic or those that cause high 
fever and severe joint pain (e.g., Ross River, Mayaro, yel-
low fever, dengue, chikungunya). This cluster also linked 
to two of the most important vectors, Aedes aegypti 
and Aedes albopictus. Cluster 10 contained 13 species 
of Culex, and 11 Aedes, as well as one to six species of 
several other genera. Of the 10 pathogens (all viruses) in 
this cluster, eight were bunyaviruses. Cluster 8 had a wide 
range of genera, with seven species of Culex dominat-
ing, and eight other genera of 1–3 species each. Cluster 
7 included 24 mosquito species, of which most (17) were 

Aedes, including the widespread Aedes vexans. Of the 
eight pathogens identified, seven were viruses belonging 
to several genera, and Francisella tularensis, the bacteria 
that causes Tulmermia, one of the only bacterial patho-
gens known to be transmitted by mosquitoes. Cluster 
6 was centered exclusively on malaria and as such con-
tained 59 species of Anopheles; however, it was also con-
nected via some species to other clusters (e.g., clusters 2, 
5, 10). Cluster 11, with 58 vectors, had several pathogens 
that cause symptoms involving the nervous system (Japa-
nese encephalitis, St. Louis encephalitis, West Nile virus), 
most of which have Culex as vectors. This cluster also 
contained the most connected mosquito in the network, 
Culex quinquefasciatus. Besides several arboviruses, 
cluster 5 (six mosquito species) included lymphatic fila-
riasis, transmitted via a nematode, which is the causative 
agent of elephantiasis.

Network centrality is a measure of how connected 
each node is to other nodes in the network [20]. A mos-
quito node with high centrality is capable of transmitting 
many pathogens that may also be transmitted by many 
other mosquitos in the network, and thus helps maintain 
pathogen circulation from vector to host to other vectors 
within the network. The top three vectors based on the 
BCI were Cx. quinquefasciatus (BCI = 0.092, 27 patho-
gen associations), Ae. aegypti (BCI = 0.086, 38 pathogens 
associations), and Ae. albopictus (BCI = 0.065, 24 patho-
gen associations). Other species in the top 12 (Culex 

Fig. 1  Full pathogen and vector network illustrating vectors and pathogens within each cluster (color-coded and outlined in light gray). The 
relative size of the shape indicates the betweenness centrality index (BCI) score in the full network, with circles indicating vectors and squares 
indicating pathogens. Larger symbols indicate higher BCI values. Lines connect vectors and pathogens, with known vectors/pathogen relationships 
connected by solid lines, and potential vector/pathogen relationships with dashed lines
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tarsalis, Anopheles quadramaculatus, Aedes vexans, 
Culex nigripalpus, Culex taeniopus, Psorophora ferox, 
Culex pipiens, Anopheles coustani, Aedes triseriatus) had 
BCI values about half that of the three top species (rang-
ing from 0.020 to 0.043), with 190 species having BCI ~ 0.

The network restricted to known vectors included 28 
pathogens and 88 mosquito species as nodes with 108 
mosquito–pathogen pairs (Fig.  2), distributed into 15 
clusters by the clustering algorithm (Additional file  1: 
Table  S1). In contrast to when all associations were 
included, there were few connections among clusters, 
with only two sets of clusters sharing vectors [clusters 
7 (malaria) with 9 (Spondweni virus) and 14 (eastern 
equine encephalitis, Rift Valley fever, Venezuelan equine 
encephalitis) with 15 (chikungunya, dengue, dirofila-
riasis, jungle yellow fever, urban yellow fever urban, and 
Zika virus)].

Nestedness and modularity were used to evaluate the 
degree to which clusters were connected or were isolated 
from other nodes in the full model (Fig. 1) as compared 
with the model of known vectors (Fig.  2). When only 
known vectors were considered, the mosquito–pathogen 
network was highly compartmentalized (NODF = 3.71; 
modularity = 0.73), with clusters moderately isolated 
from each other and minimal connections among clus-
ters. However, the degree of redundancy among clus-
ters increased and the degree of compartmentalization 
decreased when the full network of possible vectors was 
considered (NODF = 8.77; modularity = 0.67), indicating 
that additional potential vectors were not simply added 

to each cluster uniformly, but instead often formed con-
nections, or bridges, among clusters. The robustness of 
mosquito–pathogen associations in each network was 
then evaluated by estimating extinction curves as the 
number of pathogens that become disconnected from 
the network as mosquito vectors were removed, one by 
one, either randomly or in order of most connected to 
least connected using BCI values [21]. Vector extinction 
in the network, and secondary extinction of associated 
pathogens, thus essentially represents long-term sup-
pression of the vector population to the point where the 
reproductive rate of each pathogen for human infections 
is decreasing toward zero. When mosquito species were 
randomly eliminated in the restricted model of known 
vectors, it required the elimination of on average 6.4 spe-
cies to “break” the network, such that a pathogen was 
disconnected and left without a vector (Fig. 3, solid gray 
line). However, in the full network model when all pos-
sible associations were considered, it took an average of 
41.1 mosquito species to be eliminated before a single 
pathogen was disconnected from the network (Fig.  3, 
solid black line). In fact, under this scenario, it would 
require > 90% of mosquito species to be removed to elim-
inate 50% of all pathogens. Robustness was calculated as 
the area under the extinction curve (0.0–1.0, 22), and was 
high for both the full network (0.84) and the known vec-
tor network (0.63) when mosquito vectors were randomly 
removed. For the known vector network, if the most con-
nected mosquito vectors were preferentially targeted for 
elimination, the known vector network showed some 

Fig. 2  Subset of the full pathogen and vector network (as visualized in Fig. 1), showing the placement of known vectors and their pathogens. The 
relative size of the shape indicates the BCI score in the full network, with circles indicating vectors and squares indicating pathogens (labeled)
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instability with a robustness value < 0.5 (0.38), such that 
removal of mosquito vectors led to a greater than one-to-
one removal of pathogens (Fig. 3, dashed gray line). But 
when possible and likely vectors were also included in the 
network, robustness increased (0.56, Fig. 3 dashed black 
line).

Finally, for a given pathogen, the difference between 
our current certainty about known vectors (i.e., the pro-
portion of potential identified vectors that are known to 
be vectors) and the scale of the problem (i.e., the total 
number of potential vectors) is indicative of the level 
of challenge being faced to eradicate these pathogens 
through mosquito control (Fig.  4). Pathogens with few 
total vectors and a high proportion of known vectors 
(low scale of problem, high certainty, lower right quad-
rant of Fig. 4) may be relatively easy to eliminate with tar-
geted eradication efforts. However, there were only two 
pathogens in this category (Germiston, O’nyong’nyong), 
both of which cause relatively few annual human cases. 
Pathogens with few overall vectors but with more uncer-
tainty (lower left quadrant, Fig.  4) may be manageable 
with additional research to improve our understanding 
of known vectors. This category includes many impor-
tant pathogens, including dirofilariasis, lymphatic filaria-
sis, La Crosse encephalitis, Mayaro, and dengue. Finally, 
the upper two quadrants highlight pathogens where the 
scale of the problem is relatively large, and where control 

efforts may be more daunting given the number of poten-
tial species involved. Pathogens with a large scale of 
problem and low certainty (upper left quadrant, Fig.  4), 
represent the greatest challenges, as these have a higher 

Fig. 3  Extinction curves for the network with all vector and pathogen combinations (black lines), or only those of known vectors (gray lines) 
indicating the proportion of pathogens that remain transmitted as mosquito vectors are either randomly removed (solid lines) or removed in order 
from most to least connected (dashed lines). For the ordered removals, individual pathogens (abbreviations) are placed on the ordered lines for all 
vectors and known vectors where those pathogens would be removed (extinctions) from the network after removing vectors

Fig. 4  Relationship for individual pathogens of human medical 
importance between the total number of vectors with any 
association (scale of the problem) and the proportion of those that 
are known vectors (certainty). The dashed line for the y-axis was 
based on the median number of total vectors per pathogen (13), 
whereas the dashed line in the x-axis was placed at 0.5 to demarcate 
pathogens with either less than half or more than half of the vectors 
considered as known vectors
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redundancy of species and few species that are obvious 
targets of suppression. This group contains problematic 
and widely dispersed pathogens like West Nile virus, chi-
kungunya, Zika, and urban yellow fever (Fig. 4). The only 
pathogen we identified as high certainty and a large-scale 
problem was malaria, which contains many known vec-
tors (and pathogen species) and many others likely impli-
cated (all Anopheles).

Discussion
Our work points out that mosquitoes of human medi-
cal importance are rare among the Culicidae, with less 
than 10% having any known or potential role in disease 
transmission. However, this is probably an underesti-
mate, for a number of reasons. First, other unidentified 
species may have the capacity to be important for human 
disease transmission but are understudied. For exam-
ple, Evans et  al. [5] predicted that > 25 species of mos-
quitoes could be important for the transmission of Zika 
worldwide, but noted that most control efforts for man-
aging outbreaks were focused on only two (Ae. aegypti 
and Ae. albopictus); our analysis identified 25 species in 
total. For neglected and obscure pathogens, an underes-
timate is almost certainly true, especially in areas of the 
world where vector surveillance is underfunded or non-
existent. Second, other mosquito species likely exist with 
respect to importance in disease cycles. Specifically, our 
analyses do not consider mosquitoes involved in zoonotic 
cycles (e.g., West Nile virus, eastern equine encephalitis) 
that do not bite humans. This could make the issue of 
eradication even greater if one considers that these other 
species act as reservoir vectors to maintain those patho-
gens outside of humans. Thus, even with targeted sup-
pression of the known human vectors, the pathogen may 
still remain in the environment for introduced species of 
those experiencing range expansion to transmit.

By design, our analysis did not consider the geographi-
cal range of vectors or pathogens as a factor in the net-
work, as we were focused on understanding global 
patterns of vector–pathogen associations and global sup-
pression of pathogens. However, several prominent vec-
tors have worldwide or nearly worldwide distributions, 
including the three species with the highest BCI (Cx. 
quinquefasciatus, Ae. aegypti, Ae. albopictus). Ultimately, 
the robustness of individual mosquito–pathogen associa-
tions is likely dependent on vector ecology and behavior, 
in particular local factors, such as the overlapping pres-
ence of resident mosquito species and the pathogen(s), 
land-use and environmental variation, as well as the pop-
ulation density and composition of human hosts and host 
preference [22]. Thus, we might expect that local eradi-
cation of vectors (and thus pathogens) may be a more 
manageable goal than suppression of the several common 

worldwide invasive species. However, this could be com-
plicated by several factors, including government interest 
in and funding of eradication and the logistics of mos-
quito suppression. As much as focusing on vector–path-
ogen networks at a narrower geographical scale could 
make these findings more meaningful, this approach 
would also belie the fact that pathogens can jump into 
new hosts or expand their range due to a number of cir-
cumstances. For instance, Zika saw a rapid expansion out 
of Africa in the last seven years into several new conti-
nents, with devastating effects on human hosts [4]. Such 
expansion is unpredictable, but should novel pathogens 
expand into areas where existing vectors reside, it can 
cause significant outbreaks among naive human hosts. 
Thus, having a more inclusive global perspective, like the 
one we use here, is potentially more useful in these cases.

Another take-away from our analysis is that focusing 
on a single mosquito would not greatly affect network 
stability, given the high degree of redundancy in vectors 
for each pathogen. Removing the most connected vector, 
Cx. quinquefasciatus, would leave > 90% of the network 
intact. Notably, our approach considered two extreme 
possibilities of vector–pathogen relationships: known 
vectors only versus all potential vectors at a global scale. 
Reality, however, likely lies somewhere in-between these 
two possibilities and considering a general lack of knowl-
edge about the specific role of many of these vectors in 
humans, including overlaps in geographical distribu-
tion, invasion potential, effective population size, or bit-
ing rates toward human hosts, we suggest it lies closer to 
results including all potential vectors. Current strategies 
to target specific known mosquito vectors (e.g., Aedes 
aegypti, Anopheles gambiae) for elimination to reduce 
pathogen transmission may be inadequate, especially 
with the presence of potential or likely vectors that can 
create redundancies in the global mosquito–vector net-
work. Potential vectors, particularly those with high con-
nectedness in mosquito–pathogen networks, warrant 
further investigation to better understand their roles in 
human disease transmission, their potential for intro-
ducing pathogens to novel geographical areas, and their 
need to be integrated into pest management strategies. 
Although mosquitoes of medical importance are rare 
among Culicidae, they remain the greatest global threat 
to human health.

Conclusion
Mosquitoes that transmit pathogens to humans are 
rare among the Culicidae, accounting for between 2.5 
and 9.3% of all species, with most concentrated within 
three genera (Aedes, Anopheles, Culex). Although rare, 
mosquitoes of human medical importance, along with 
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78 disease-causing pathogens, support a robust net-
work that appears to be resilient to elimination of both 
specific and random mosquito species. This inherent 
robustness is likely a main reason why it remains dif-
ficult to eliminate specific pathogens, like dengue, yel-
low fever, and malaria, across the world. Future work 
may examine smaller geographically restricted net-
works, as it is at these smaller scales that elimination 
of pathogens is likely, and where targeted mosquito 
control efforts will have higher success. Our findings 
however also point to deficiencies in our understand-
ing of the specific role of all mosquito species in trans-
mitting pathogens to humans and add to the urgency 
of our attempts to understand both the past, present, 
and future role of mosquitoes in vector-borne disease 
outbreaks [2].
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