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Abstract 

Background:  Dengue is a major public health problem in Sri Lanka. Aedes vector surveillance and monitoring of 
larval indices are routine, long-established public health practices in the country. However, the association between 
Aedes larval indices and dengue incidence is poorly understood.  It is crucial to evaluate lagged effects and threshold 
values of Aedes larval indices to set pragmatic targets for sustainable vector control interventions.

Methods:  Monthly Aedes larval indices and dengue cases in all 10 Medical Officer of Health (MOH) divisions in Kalu-
tara district were obtained from 2010 to 2019. Using a novel statistical approach, a distributed lag non-linear model 
and a two-staged hierarchical meta-analysis, we estimated the overall non-linear and delayed effects of the Premise 
Index (PI), Breteau Index (BI) and Container Index (CI) on dengue incidence in Kalutara district. A set of MOH division-
specific variables were evaluated within the same meta-analytical framework to determine their moderator effects on 
dengue risk. Using generalized additive models, we assessed the utility of Aedes larval indices in predicting dengue 
incidence.

Results:  We found that all three larval indices were associated with dengue risk at a lag of 1 to 2 months. The rela-
tionship between PI and dengue was homogeneous across MOH divisions, whereas that with BI and CI was hetero-
geneous. The threshold values of BI, PI and CI associated with dengue risk were 2, 15 and 45, respectively. All three 
indices showed a low to moderate accuracy in predicting dengue risk in Kalutara district.

Conclusions:  This study showed the potential of vector surveillance information in Kalutara district in developing 
a threshold-based, location-specific early warning system with a lead time of 2 months. The estimated thresholds 
are nonetheless time-bound and may not be universally applicable. Whenever longitudinal vector surveillance data 
areavailable, the methodological framework we propose here can be used to estimate location-specific Aedes larval 
index thresholds in any other dengue-endemic setting.
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Background
Dengue is a rapidly spreading mosquito-borne viral dis-
ease with a substantial public health burden [1]. An esti-
mated 390 million dengue infections occur annually, with 
96 million people developing clinical manifestations [2]. 
Dengue virus (DENV) is transmitted by female Aedes 
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mosquitoes, primarily by Aedes aegypti and secondar-
ily by Aedes albopictus [3]. Dengue is endemic in Sri 
Lanka and was first serologically confirmed in 1962. The 
first island-wide outbreak occurred in 1965 [4]. Progres-
sively larger inter-annual epidemics have been reported 
since the early 2000s. Today, dengue is the most signifi-
cant public health problem among infectious diseases 
in Sri Lanka. Nearly 40% of the annual dengue cases are 
reported from Colombo, Gampaha and Kalutara districts 
in  Western province [5]. The peak transmission period 
usually starts in June with the southwest Monsoon 
(SWM) from May to September, followed by a less severe 
peak in October–December with the second inter-mon-
soon (SIM). The social and environmental determinants 
of dengue transmission appear to vary across the coun-
try. Weather events, unplanned urbanization and inad-
equate garbage disposal and recycling services give rise 
to breeding sites and the proliferation of dengue vectors 
[6]. Even if an effective vaccine is available in the future, 
sustained vector control interventions will be needed to 
curtail the continuous spread of dengue due to increasing 
urbanization and climate change impacts [7].

The Stegomyia indices in use today were developed 
about 100  years ago. These indices are based on the 
degree of infestation by immature mosquitoes and serve 
as a proxy measure of adult vector densities [8]. Vector 
surveillance is an essential tool for assessing the spatial 
and temporal distribution of dengue vectors, predicting 
outbreaks in advance and assessing vector control inter-
ventions [9]. The earliest indices were the House Index 
(HI; in this article, the HI is called the Premise Index [PI]) 
and the Container Index (CI), defined as the percentage 
of houses infested with larvae or pupae and the percent-
age of water-holding containers infested with larvae or 
pupae, respectively [8]. The Breteau Index (BI), which 
was developed later, is defined as the number of positive 
containers per 100 premises [10, 11], and it considered a 
more informative vector index because it describes the 
number of positive containers in relation to the number 
of houses [10, 12, 13]. Indices that directly describe pupal 
and adult vector densities appear to be superior to lar-
val indices in predicting dengue transmission [13–16]. 
An even better index of dengue risk is the presence of 
DENV-infected Aedes mosquitoes [17]. However, pupal 
and adult mosquito collections are both time-consuming 
and labor-intensive activities.

The lagged relationships between weather condi-
tions and dengue outbreaks and incidence are well 
documented [18–20] and hold promise for the develop-
ment of early warning and response systems. Preven-
tive actions that target vectors are in the causal pathway, 
from weather conditions to dengue transmission. Fur-
ther, vector surveillance information indicates the type 

and distribution of vector breeding places and guides 
prioritization and targeting of vector control interven-
tions. It is, therefore, important to understand the delays 
from vector development to dengue transmission and 
the threshold values for vector indices to make evidence-
based decisions for effective vector management [16]. 
In this context, we have previously reported the lagged 
associations between weather variables and dengue inci-
dence on one hand [15], and weather variables and vec-
tor indices on the other hand [21] in Kalutara district in 
Western province of Sri Lanka. As shown by a systematic 
review conducted by Bowman et al., there is a knowledge 
gap in understanding the associations between Aedes 
larval indices and dengue transmission risk [16]. Sev-
eral attempts have been made to address this research 
question, and there is an increasing body of evidence in 
support of the existence of such associations in dengue 
endemic settings with varying results [22–27]. How-
ever, the associations between vector indices and dengue 
incidence need to be further clarified as they might be 
unique to specific locations due to spatiotemporal varia-
tions and the already available evidence depends on data 
and methods used. The objective of the present study was 
threefold. Using a novel two-stage hierarchical approach, 
we first investigated the non-linear and delayed associa-
tions between Aedes vector indices and dengue incidence 
using PI, CI and BI across 10 sub-district units (Medical 
Officer of Health [MOH] divisions) in Kalutara district. 
We next assessed the influence of MOH division-specific 
factors on the relationship between vector indices and 
dengue incidence. Last, we compared the utility of each 
vector index in predicting dengue outbreaks.

Methods
Study setting
Kalutara district is situated adjacent to the southern 
border of Colombo, the central metropolitan area in Sri 
Lanka. The district’s geographical boundaries fall within 
the latitudes of 6°47′ N and 6°91′ N and the longitudes of 
79°570′ E and 80°18′ E. It spreads from the coastal area 
in the west to the edge of the mountain ranges and rain-
forests in the central part of the island. The altitude is < 
150  m a.s.l. in most parts of the district. The district is 
divided into 10 MOH divisions, with a wide diversity in 
geographical characteristics, climate and population den-
sities among these MOH divisions. Kalutara has a popu-
lation of around 1 million over a land area of 1501  km2 
[28]. The average population density is 662 (range 208–
3352) persons/km2 across MOH divisions.

Disease surveillance
Dengue was declared a notifiable disease under the 
national integrated surveillance system for communicable 
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diseases in 1996. The system has island-wide cover-
age through trained clinical and public health staff [29]. 
The integrated surveillance system combines passive 
and enhanced sentinel surveillance methods and relies 
mainly on clinical diagnosis of dengue cases. According 
to a standard case definition for dengue, symptomatic 
patients are captured based on the 1997/2011 WHO 
classification [30–32]. In addition, a newly established 
online sentinel hospital-reporting system provides early 
warning for timely detection and mitigation of dengue 
outbreaks. Cases are notified to the MOH area where 
patients reside, triggering household-level control meas-
ures. For the present study, we extracted weekly dengue 
case count data for Kalutara district from the national 
integrated surveillance system.

Vector surveillance
Dengue vector surveillance in Kalutara district has three 
components: (i) long-term sentinel site surveillance; (2) 

routine site surveillance; and (iii) sporadic vector surveil-
lance in identified outbreak areas. In sentinel and routine 
site surveillance, entomological surveys are carried out 
systematically in pre-determined designated areas in the 
district. The “Grama Niladhari” (GN) divisions (smaller 
administrative units within each MOH division), where 
the most significant seasonal dengue outbreaks histori-
cally occurred, were selected as long-term sentinel or 
routine surveillance sites. Altogether, 10 such long-term 
surveillance sites were available in Kalutara district, 
distributed as one site per each MOH division (Fig.  1). 
Dengue vector surveillance is carried out by a team of 
Health Entomology Officers (HEOs) who are appointed 
to each district, with each team headed by a trained dis-
trict entomologist. Entomological surveys are routinely 
conducted according to Sri Lanka’s national guidelines 
on Aedes vector surveillance and control under the tech-
nical supervision of the National Dengue Control Unit 
[33]. Ground-level and above-ground areas both indoors 

Fig. 1  Dengue incidence and location of meteorological monitoring stations and entomological sentinel sites in Kalutara district, Sri Lanka. Black 
solid lines in the map represent the boundaries of Medical Officer of Health (MOH) divisions. Blue circles and red triangles show the location of 
rainfall and temperature monitoring stations, respectively. Green-shaded boxes indicate the location of long-term entomological surveillance sites. 
Annual dengue incidence was calculated per 100,000 population from 2010 to 2019. Source of the base file: https://​data.​humda​ta.​org/​datas​et/​
sri-​lanka-​admin​istra​tive-​levels-​0-4-​bound​aries

https://data.humdata.org/dataset/sri-lanka-administrative-levels-0-4-boundaries
https://data.humdata.org/dataset/sri-lanka-administrative-levels-0-4-boundaries
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and outdoors are examined thoroughly to identify vector 
breeding sites. Teams use standard dipping, siphoning 
and pipetting methods to collect larvae [34]. A minimum 
of 100 randomly selected houses or premises in a senti-
nel and a routine site are surveyed at least once a month 
to observe trends in vector density. At the end of each 
survey, all mosquito species are identified, and the lar-
val indices and the distribution and types of breeding 
sites for Ae. albopictus and Ae. aegypti are reported. In 
the present study in Kalutara district, Ae. albopictus was 
the most prevalent species, having a period prevalence 
of 97% of all positive containers over the study period; in 
contrast, the period prevalence of Ae. aegypti was only 
3%. Due to the ubiquitous nature of the spatial distribu-
tion of Ae. albopictus, in our study, we used combined 
vector indices (presence of either Ae. albopictus or Ae. 
aegypti alone or together) to quantify the spatial risk of 
dengue. We used monthly values for the combined PI, 
BI, and CI from long-term sentinel and routine sites in 
MOH divisions from 2010 to 2019 collected and com-
piled at the office of the Regional Director of Health Ser-
vice Kalutara.

MOH division‑specific characteristics
A set of 13 MOH division-specific characteristics that 
could affect vector density and dengue transmission were 
included in the analysis. These characteristics include 
land area, human population density, per-capita land use, 
household land use, number and type of houses (luxury 
houses, slums or huts), land area of rubber cultivation, 
number of manufacturing industries, number of schools, 
size of school-going population at each MOH division 
and related data. All data were extracted from the Dis-
trict Statistics Book published by the Department of 
Census and Statistics [35]. Rainfall and temperature data 
were obtained from eight rainfall and two temperature 
monitoring stations run by the Department of Meteorol-
ogy. The geographic locations of weather monitoring sta-
tions and vector surveillance sites are shown in Fig. 1.

Statistical analysis
A two-stage hierarchical procedure was used to exam-
ine the association between Aedes larval indices (i.e. PI, 
BI and CI) and dengue incidence in Kalutara district. In 
the first stage, non-linear lagged vector-to-dengue asso-
ciations were derived for each MOH division using a 
quasi-Poisson time series regression model [36]. We used 
a distributed lag non-linear model (DLNM) and imple-
mented it in the R package dlnm for this estimation [37]. 
The DLNM method employs the concept of cross-basis 
function to describe the delayed relationship between 
vector indices and dengue incidence flexibly. In the sec-
ond stage, we combined the lagged vector-to-dengue 

associations for each MOH division in a hierarchical 
meta-analysis model to derive a pooled association. We 
used R package mvmeta for the meta-analysis [38]. Fur-
ther, we examined the contribution of the MOH division-
specific characteristics (Table  1) to the heterogeneity in 
the vector-dengue relationship in Kalutara district. All 
statistical analyses were done in the R statistical environ-
ment using R software version 4.1.0 [39].

First‑stage division‑specific model

where E(D(ti)) is the expected number of dengue cases in 
month t in a MOH division denoted by i; β is the inter-
cept in the MOH division i; f(LIti, vardf, lagdf ) is the 
cross-basis function for larval index in each MOH divi-
sion i with corresponding degree of freedom (vardf) and 
its lagged association (lagdf); s(Tt,timedf) is the smooth 
function of time with corresponding degree of freedom 
timedf. Monthly dengue cases were assumed to follow a 
quasi-Poisson distribution, which allows overdispersion 
[36]. Mid-year population in each MOH division was 
included in the model to adjust for changes in popula-
tion growth and disparities in different sub-divisions over 
the decade. A detailed description of the definition of the 
cross-basis functions, adjustments for seasonality and 
trend, sensitivity analysis and model selection procedure 
are given in Additional file  1: Text S1; Table  S1. Model 
diagnostic plots are given in Additional file  1: Figures. 
S1–S3.

Second‑stage meta‑analysis
The estimated associations at the MOH division level 
were pooled with a multivariate meta-analysis using 
the maximum likelihood approach [40]. We plotted the 
pooled lag-specific associations for Kalutara district at 
time lags of 0–3 months for each vector index. The het-
erogeneity in the associations across the MOH divisions 
was assessed using the Cochran Q-test of residual heter-
ogeneity [41]. The proportion of total variation between 
divisions attributable to heterogeneity was further quan-
tified by the related I2 index [42]. To examine if the het-
erogeneity observed could be explained in part by MOH 
division-specific characteristics (as given in Table 1) and 
to determine the influence of these characteristics on 
dengue risk, i.e. the moderating effects, we extended the 
second-stage analysis by regressing these variables in a 

Di ∼ quasiPoisson(µti)

E
(

D(ti)

)

=βi + f
(

LIti, vardf , lagdf
)

+ s
(

Tt , timedf
)

+ log(Populationti)
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univariable multivariate meta-regression framework pro-
vided in the mvmeta package [38]. The Akaike informa-
tion criterion (AIC) was used to compare the fit of the 
models with each division-specific variable to its base 
model with no such variables introduced.

The statistical significance of the moderating effects of 
the division-specific variables was tested using the mul-
tivariate Wald test [38, 43]. All significance tests were 
done using an α value of 0.05 and 95% confidence lim-
its for all variables. The moderating effects on the pooled 
vector-dengue relationship were predicted at values rep-
resenting the 25th and 75th percentiles of the range of 
each division-specific variable. We plotted the sum of the 
pooled lag-specific associations for each division-specific 
variable analyzed at their 25th and 75th percentile values 
along with the overall cumulative associations (district 
average) without such moderating effects. We further 
assessed the direction of their moderating effects at the 
high end, i.e. at the 75th percentile. A detailed descrip-
tion is available in the Additional file 1: Text S2.

Evaluating the capacity of vector indices in predicting dengue 
outbreaks in Kalutara district
We evaluated the utility of each of the three larval indi-
ces in predicting dengue outbreaks using the generalized 
additive modeling framework. We converted the annual 
outbreak threshold of 100 cases per 100,000 population, 
which was operationally defined by the  National Dengue 

Control Unit (NDCU), into monthly outbreak thresholds 
for each MOH division as a cutoff value for outbreak pre-
diction. We used a two-staged hierarchical approach to 
evaluate the predictive performance of each vector index. 
The predictive abilities of each vector index were quanti-
fied for each MOH division for all outbreak years at the 
first stage. These MOH division-specific estimates were 
subsequently subjected to meta-analysis at the second 
stage to obtain the overall performance of each index. 
A detailed description of the model, the selection of the 
best performing lag combination and how the predictive 
performance of the models with the selected lag combi-
nation was evaluated using receiver operating charac-
teristic curve (ROC) analysis are given in the Additional 
file 1: Text S3.

Results
Monthly cumulative dengue cases from 2010 to 2019 
and the mean PI, BI and CI observed in corresponding 
months in all MOH divisions in Kalutara district are 
shown in Fig.  2. The total number of reported dengue 
cases during the study period was 27,974, and the out-
break threshold was 175 cases per 100,000 population per 
month. All three larval indices appeared to fluctuate con-
stantly, giving rise to bi-annual peaks that coincided with 
monsoonal periods (SWM and SIM). The outbreak years 
were identified as 2010, 2012, 2014, 2016, 2017 and 2019. 
It was observed that, in all outbreak years, the seasonal 

Fig. 2  Time series plot shows the monthly aggregated dengue cases and average Premise Index (PI), Breteau Index (BI) and Container Index (CI) 
from 2010 to 2019 in all MOH areas in Kalutara district, Sri Lanka. The red line indicates the number of dengue cases; the green, blue and orange 
dotted lines indicate BI, PI, and CI; the horizontal dashed line indicates the outbreak threshold of 175 cases per month
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surge in dengue cases in May and June was preceded by 
an increase in vector indices. The lowest dip in PI was 
observed in the latter part of 2017, and this reflected the 
impact of extensive vector control interventions imple-
mented in response to the most significant dengue epi-
demic experienced in the country.

The annual dengue incidence and the MOH division-
specific variables for Kalutara district were averaged 
over the study period (2010—2019) and are presented in 
Table 1.

The exposure-lag-response associations between PI, BI 
and CI and dengue risk in each MOH division pooled and 
predicted at different lags are shown in Figs. 3, 4 and 5, 
respectively. The relative risk (RR) for dengue started to 
increase with a lag of 1 month for all three vector indices 
and then appeared to be decreasing after 3 months. The 
RR increased with increasing values of each index reach-
ing a maximum at a lag of 2 months. The threshold value 
for PI for a statistically significant increase in the RR was 

15. The BI seemed to have a lower threshold value of 2. 
The highest RR (2.64; 95% confidence interval [(CI] 1.75–
3.99) was observed at a PI of 30 at a lag of 2 months. For 
a BI of 30, the RR was 1.92 (95% CI 1.28–2.88). The RR 
for CI also appeared to increase linearly with increasing 
lag period, but the association was statistically significant 
only at a lag of 2 months when CI > 45 (Fig. 5). The maxi-
mum RR observed for CI was 1.30 (95% CI 1.05–1.61).

The Cochran Q-test of heterogeneity was not signifi-
cant for the PI (25.16, df = 18, P-value = 0.121), indicat-
ing a homogeneous PI to dengue relationship across all 
10 MOH divisions (Additional file 1: Table S2). In con-
trast, the test statistics revealed that the heterogene-
ity of the vector indices and dengue association across 
MOH divisions were statistically significant for BI 
(31.01, df = 18, P-value = 0.029) and CI (34.09, df = 18, 
P-value = 0.012). As indicated by the I2 statistics, 
41.95% of the variability of BI to dengue and 47.19% 
of the variability of CI to dengue associations could 

Fig. 3  The pooled relative risk (RR) of dengue by PI at lag 0–3 months in ten MOH divisions in Kalutara district, Sri Lanka, 2010–2019. The Y-axis 
represents the RR for dengue incidence, with a RR of 1.0 at a PI of 0. The shaded areas in gray represent the 95% confidence intervals (CI)
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be attributed to true differences in the MOH division-
specific variables. Among the variables analyzed, Wald 
test statistics derived through univariable multivari-
ate meta-regression suggests that huts and shanties, 
number of schools and size of school-going population 
contributed significantly to the heterogeneity among 
divisions, thus modifying the BI-dengue relation-
ship (Additional file  1: Table  S3). For CI, temperature, 
household land use and number of households were 
the significant contributors (Additional file 1: Table S4). 
None of the variables contributed to the PI-dengue 
relationship, as indicated by the non-significant results 
for the Q-test and Wald test (Additional file 1: Table S2; 
Figure S4). We observed that huts and shanties at the 
75th percentile of the range (n = 83) increased the 
pooled (district average) RR of dengue estimated by BI 
(Additional file 1: Table S3; Figure S5). Huts and shan-
ties also seemed to explain a substantial amount of 

heterogeneity in the BI and dengue association among 
MOH divisions (I2 = 31.37%) compared to the base 
model with no predictors (I2 = 41.95%). Furthermore, 
the Q-test for the residual amount of heterogeneity was 
no longer significant (P-value = 0.106). Similarly, higher 
number of schools (n = 55) and larger school-going 
population (n = 26,376) appeared to increase the RR of 
dengue. High temperature (31.8 °C) seemed to increase 
the RR predicted by CI throughout the range of CI val-
ues. Here the effect of temperature was substantial, 
explaining a considerable amount of heterogeneity 
(I2 = 29.86%) compared to the base model (I2 = 47.19%). 
Household land use at its 75th percentile (1.1 ha per 
house) seemed to increase the RR of dengue while 
number of households (n = 37,956) seemed to decrease 
it (Additional file 1: Table S4; Figure S6).

Even though the moderating effect was not statis-
tically significant (except for the variables described 

Fig. 4  The pooled RR of dengue by BI at lag 0–3 months in Kalutara district, Sri Lanka, 2010–2019. The Y-axis represents the RR for dengue 
incidence, with a RR of 1.0 at a BI of 0. The shaded area in gray represents the 95% CI
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above), the following division-specific variables 
appeared to change the overall cumulative RR predicted 
by the base model. Higher rainfall (356.4  mm/month) 
and higher temperature (31.8  °C) appeared to increase 
the risk of dengue at increasing values of each of the 
three vector indices (Additional file  1: Figures  S4–
S6).  Variation in population density did not seem to 
change the risk predictions by any of the vector indi-
ces. Furthermore, we observed a paradoxical decrease 
in the risk prediction using CI for the 75th percentile 
values of number of schools, school-going population, 
luxury houses, huts and shanties and manufacturing 
industries compared to increased risk predicted using 
BI. Large land areas and large household and per-capita 
land use appeared to increase the risk predicted using 

CI. Increasing area of rubber cultivation lands shifted 
the exposure–response curve above the district average 
once predicted by BI.

Overall, for all MOH divisions, a lag value of 1–2 
months for each of the three vector indices showed low to 
moderate accuracy (area under the curve [AUC]: 0–70%) 
in predicting dengue epidemics (Table 2). A pooled anal-
ysis of which of the three indices best predicted dengue 
outbreaks showed that BI had superior overall predic-
tive performance (62.8%; 95% CI 53.6–72.0%). For PI and 
BI, the predictive capacity appeared to be higher in rural 
MOH areas (Agalawatta, Bulathsinhala, Ingiriya, Pal-
indanuwara and Madurawala) compared to urban areas 
(Panadura, Bandaragama and Horana). Although CI 
appeared to have the lowest overall predictive accuracy, 

Fig. 5  The pooled RR of dengue by CI at lag 0–3 months in Kalutara district, Sri Lanka, 2010–2019. The Y-axis represents the combined RR for 
dengue incidence, with a RR of 1.0 at a CI of 5. The shaded areas in gray represent the 95% CI
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in Horana, Bandaragama and Walallavita MOHs, this 
index demonstrated a higher predictive capacity com-
pared to BI and PI.

Discussion
The lagged relations between the three vector indices 
and dengue were constant, and the strongest association 
was observed at a lag of 2 months. When vector indices 
exceeded their respective thresholds (as calculated here: 
BI = 2, PI = 15 and CI = 45), the relative risk of dengue 
increased following a lag period of 1  month, reaching 
its maximum in 2  months, and then subsiding. This 1- 
to 2-month lag would cover approximately 7–9  days of 
the larval development period [44], 3  days of searching 
for the first blood meal after emergence as an adult [45], 
7–12  days of the incubation period of the virus inside 
the mosquito (the extrinsic incubation period) [46], 
3–10  days of the incubation period within the human 
body before manifestation of the disease (intrinsic incu-
bation period) [47] and the time taken to seek health care 
and be notified as a dengue case. It has also been reported 
that a 1-month lag period observed between increasing 
larval index values and dengue cases may also be possible 
in high transmission settings with suitable environmen-
tal conditions and short generation times [48]. Similar 
lagged associations between dengue and vector indices 
have been identified in different locations in Sri Lanka 
and other dengue-affected countries [16, 23, 25].

It is important to identify a pragmatic vector index 
threshold and the best index to capture that threshold 
in the process of setting up vector control implementa-
tion targets [14]. When pooling the associations of all the 
MOH divisions in Kalutara district, we found that BI had 

the lowest threshold among the three indices. A statisti-
cally significant risk of dengue was observed when BI ≥ 2, 
and the risk increased linearly with increasing index val-
ues. A BI threshold of 5 has been the general guideline 
for indicating an increased dengue outbreak risk at many 
study locations [12, 49] despite these values having been 
calculated for yellow fever decades ago [8, 10, 12]. A sta-
tistically significant threshold for CI was observed only 
at a lag of 2  months (CI = 45), which was at the higher 
end of the range identified in our study. Furthermore, a 
recent survey conducted in Colombo and Kandy districts 
in Sri Lanka found similar BI threshold values (BI = 2.4 
for Colombo and BI = 3 for Kandy) and lower values for 
CI (CI = 5.5 for Colombo and CI = 6.9 for Kandy) when 
calculated for Ae. aegypti [22, 23]. In Thailand, vector 
density thresholds for dengue outbreak risk have been set 
at PI > 10, BI > 50 and CI > 1 [17]. In Singapore, an even 
lower threshold for dengue outbreaks was observed when 
the national overall PI was < 1% [27]. A lower critical 
threshold observed for BI compared to PI for the same 
range of values (0 to 30) may indicate a higher sensitivity 
of BI as an index. The relationship between CI and den-
gue was observed to be weak in the present study and in 
other studies conducted in Sri Lanka and other settings 
[16, 22, 23]. The threshold values of each vector index we 
found in Kalutara district support the growing body of 
evidence for their spatial variability associated with den-
gue risk in different regions of the world [25, 50–52].

PI had the most homogeneous vector-dengue associa-
tion of the three larval indices and was not sensitive to 
any of the division-specific variables analyzed. BI was 
sensitive to number of schools, size of school-going pop-
ulation and presence of huts and shanties. The divisions 

Table 2  Performances of the area under the receiver operating characteristic curves of each vector index for outbreak years analyzed 
by Medical Officer of Health division and overall, for all the divisions in the Kalutara district

Data are presented as the percentage of area under the receiver operating characteristic curve for  the Premise, Breteau, and Container indices for each MOH division 
pooled across all outbreak years, with the95% confidence interval (CI) in parentheses
a Overall performances for all MOH divisions

MOH Division Premise Index (95% CI) Breteau Index (95% CI) Container Index (95% CI)

Agalawatta 55.7% (25.9–85.6) 66.7% (37.5–95.8) 38.0% (6.69–69.3)

Bandaragama 54.0% (24.9–83.6) 50.7% (25.9–85.6) 58.5% (26.3–75.0)

Bulathsinhala 52.5% (20.1–84.9) 69.4% (43.7–94.9) 61.0% (22.3–99.7)

Horana 49.5% (22.5–76.4) 62.7% (32.8–92.6) 66.1% (39.9–92.2)

Ingiriya 71.0% (39.9–100) 73.1% (42.3–100) 60.7% (23.1–98.2)

Madurewala 56.1% (25.6–86.6) 58.0% (30.3–85.7) 46.4% (17.9–74.8)

Matugama 50.0% (24.9–75.1) 66.6% (36.5–96.6) 43.2% (16.5–69.9)

Palindanuwara 55.8% (23.6–87.9) 71.2% (38.5–100) 49.1% (19.6–78.6)

Panadura 54.5% (20.1–88.8) 60.2% (30.9–89.4) 57.1% (19.2–95.0)

Wallavita 53.4% (13.7–93.1) 51.7% (12.5–90.9) 71.5% (45.5–97.5)

Overall for all divisionsa 54.8% (45.2–64.5) 62.8% (53.6–72.0) 55.4% (46.0–64.7)
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with a larger school-going population and slums or 
huts (Panadura, Mathugama and Horana MOH divi-
sions) appeared to be at a higher risk of dengue once BI 
exceeded 20. These divisions represented relatively urban 
settings in the district. In comparison, the CI-dengue 
association showed a higher heterogeneity and was sen-
sitive to temperature and households with large land 
areas. High temperature and prevalence of premises with 
extensive land appeared to increase the risk of dengue 
at any CI value. Rural MOH divisions, such as Bulthsin-
hala, Palindanuwara and Walalavita, with low popula-
tion densities and high per capita land use were likely 
to experience a higher risk with increasing temperature. 
We observed that municipality services were not widely 
available in these divisions. Therefore, a lack of waste 
management programs might have led to a higher preva-
lence of infested containers. This observation could lead 
to the paradoxical positive influence of increasing CI on 
the RR of dengue in areas with lower population densities 
and higher per capita land use. However, these findings 
may not be directly related to the division-specific factors 
analyzed. The moderating variables described above may 
represent various combinations of factors that may influ-
ence dengue risk, including human mobility, which we 
did not include in our models. We found that the mobil-
ity restrictions imposed to prevent the spread of COVID-
19 reduced the risk of dengue among the school-going 
population in Sri Lanka, indicating the important role of 
human mobility when defining the dengue risk [53].

We observed that BI, which had the lowest threshold 
value, also demonstrated a superior overall predictive 
capacity compared to the other two indices. PI and CI 
were similar but had lower predictive capacity. Similar 
findings were observed for BI calculated for Ae. aegypti in 
a study conducted in two different dengue endemic dis-
tricts in Sri Lanka [23]. A potential reason for BI being 
superior to other two indices in predicting dengue may be 
that, by definition, the index relates vector breeding sites 
more closely with human dwellings [10, 12]. However, 
when considering individual divisions, a wide variation 
in predictive capacity was observed. The highest predic-
tive capacity for all three vector indices was observed for 
rural and low endemic divisions. The predictive capacity 
was lower for all indices in the highly endemic and highly 
urban Panadura, Horana, and Bandaragama MOH divi-
sions. In the rural and less endemic divisions, the vector 
indices and their associations with dengue may be more 
stable due to fewer source reduction interventions and 
more localized outbreaks. In highly endemic settings, 
however, more complex transmission patterns may be 
observed due to more frequent and intense implemen-
tation of integrated vector management interventions, 
altered human-vector contact patterns and the complex 

nature of human mobility, all of which may obscure the 
association between vector indices and dengue inci-
dence. Therefore, the predictive capacity of vector indices 
is time-bound, varies place to place and may be influ-
enced by the effectiveness of vector control interven-
tions, human mobility and population immunity due to 
previous infections. The predictive capacity of the larval 
indices was questioned in the settings where effective 
vector control interventions were in place and which sub-
sequently had very low values of vector indices [16, 27].

An extensive source reduction program conducted with 
community and military participation (Civil-Military 
Corporation [CIMIC]) implemented in Panadura MOH 
division from 2014 to 2016 is an example of effective and 
cost-effective public health intervention. This interven-
tion suppressed BI towards the threshold of 2, thereby 
averting about an estimated 50% of the dengue cases 
[54]. The study showed that vector control interventions, 
when implemented rigorously and well-coordinated, can 
be both effective and cost-effective in suppressing both 
BI and dengue incidence [54]. The authors also suggested 
that vector control interventions should be initiated with 
a lead time of at least 2 months [54], supporting our pre-
sent observation of a 2-month lag between vector indices 
and dengue incidence. As such, a BI < 2 would be a tangi-
ble target, and importantly, it should always be sustained 
across all MOH divisions in Kalutara district.

We used combined vector indices in our study due to 
the low prevalence of Ae. aegypti in all MOH divisions. 
Because of this, a comparison of vector indices calcu-
lated for each of the two species and an analysis of their 
association with dengue incidence could not be achieved. 
However, using a combined index as a proxy for vector 
breeding where the dominant species is Ae. albopictus 
potentially captures the overall prevalence of Aedes lar-
val stages as both species share similar breeding places. 
Furthermore, combined vector indices are more repre-
sentative than each index used separately for all MOH 
divisions in the district, providing a rational basis for 
vector control decision-making by the epidemiologists 
and administrators of Kalutara district. The estimated 
thresholds in this empirical study depended on the val-
ues of vector indices and dengue incidence observed over 
the defined study period in each MOH division and are 
subject to change. The evaluation of their utility in pre-
dicting dengue risk was limited to the outbreak years. 
The 1- or 2-month lag identified in the present study 
appears to be similar to lags estimated by local weather 
variables and dengue [18]. Therefore,  it may be valid to 
question whether vector index-based lead times would 
provide additional value. We believe that vector surveil-
lance and Aedes larval indices are integral components 
of area-specific risk assessments, which facilitate the 
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identification of vulnerable areas for prioritization of 
resources. In addition to providing quantifiable measures 
to assess implementation of interventions, vector surveil-
lance has the additional value of providing information 
on the distribution of different breeding places and the 
productivity of these breeding places in time and space. 
Therefore, climate-based early warnings, coupled with 
environmental and vector surveillance information, have 
the potential to assist policy-makers in setting long-term, 
intermediate and short-term interventions along with 
more specific behavior change interventions in the com-
munity [55]. The value of Aedes larval indices as a proxy 
measure of adult vector densities has been questioned 
in many settings, and the utility of adult vector surveil-
lance over simple larval surveys has been emphasized 
[13, 56]. The lack of scientific evidence showing statisti-
cally significant associations between larval indices and 
dengue is mainly because of the nature of the data and 
the methods used to date [10, 16]. The focus of our study 
was to generate scientific evidence on the association 
between larval indices and dengue incidence using data 
collected longitudinally and systematically in many loca-
tions and employing advanced and appropriate statistical 
methods. In addition, when considering programmatic 
perspectives, larval surveys enable rapid risk assessment 
as they are easy to perform and less time-consuming and 
resource-demanding [15]. Although adult vector sur-
veillance is time-consuming and labor-intensive when 
conducted for selected areas, it could provide additional 
information on adult vector densities (adult PI, adult 
density and resting ratio) and behaviors (resting, disper-
sal and feeding). Such information would further inform 
targeting of rapid outbreak control interventions, such 
as fumigation and indoor residual spraying, that aim to 
reduce adult mosquito populations and thereby reduce 
the probability of human-vector contact [57]. Extraction 
of RNA and detection of DENV in adult mosquitoes have 
been shown to improve risk prediction and have been 
found to be a valuable addition to the existing Aedes vec-
tor surveillance tools [17, 58].

Based on the findings of this study, we propose a BI < 2 
as the target for public health source reduction inter-
ventions in Kalutara district as this index was the most 
sensitive and predictive of an outbreak so far. BI in com-
bination with meteorological data will further improve 
predictive performances and is increasingly being used 
in dengue forecast models with successful results [59]. 
Threshold-based location-specific forecasts with a lead 
time of 2 months, along with information on productive 
breeding places, would facilitate the implementation of 
rapid source reduction interventions. Heavy reliance on 
fixed vector index thresholds for long-term use is not 
recommended, and the thresholds need to be frequently 

evaluated using recent entomological and epidemio-
logical data. The statistical model we developed can and 
should be updated with new data to generate the most 
reliable thresholds for the context in which they are being 
used. How frequently such updates should be done will 
depend on epidemiological and environmental factors 
and, most importantly, on the intensity of vector control 
interventions. As we observed, these thresholds vary con-
siderably across study locations [16]. The results of our 
study may not be generalizable to all settings because the 
ecological and epidemiological variation is a fundamen-
tal feature of Aedes population and DENV transmission 
dynamics [60]. Therefore, it is important to understand 
location-specific relationships between Aedes vectors 
and dengue to be able to plan and implement effective 
vector control interventions. If long-term vector and dis-
ease surveillance information is available, the statistical 
framework we propose can be replicated in any setting to 
obtain robust and location-specific threshold estimates 
for vector indices to predict dengue transmission risk. 
The recently adopted Global Vector Control Response 
by the WHO highlighted the importance of enhancing 
vector surveillance for effective, locally adapted and sus-
tainable interventions across sectors and vector borne 
diseases [61].

Even though the exposure–response association we 
found was not prominent, the value of CI in terms of 
monitoring and evaluation of source reduction pro-
grams cannot be underestimated. Information on types 
of containers or breeding sites should trigger a cascade 
of inter-sectoral and behavioral interventions to achieve 
a sustainable removal process. The positive moderating 
effect of high temperatures on CI and its association with 
dengue further highlight the increasing challenges for 
vector control in a warming world. Early warning systems 
combined with recommendations for effective vector 
surveillance and control interventions will be increas-
ingly important to combat the additional disease burden 
associated with climate change [62]. Furthermore, when 
considering the severe dengue outbreaks in 2017 and 
2019, we note that the vector indices can predict the risk 
but not the magnitude of the epidemic.

The moderating effect of the division-specific variables 
has the potential to inform a composite risk index for 
each division. Divisions with a high number of schools, 
huts and shanties and a large school-going popula-
tion should be given priority. Selected premises such as 
schools should be attended frequently as they are impor-
tant for having abundant mosquito breeding sites and 
for protecting students who are vulnerable with lower 
acquired immunity [53, 63, 64]. However, the utility of 
such division-specific variables should be further evalu-
ated using appropriate study designs to provide more 
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robust evidence. Vector control interventions with clearly 
defined monitoring and evaluating targets synergistically 
specified by Aedes vector indices are needed to reduce 
the dengue incidence by 25% as proposed by the WHO in 
the Global Strategy for Dengue Prevention and Control, 
2021–2030 [65].

Conclusions
Aedes larval indices, along with past and present dis-
ease trends, human mobility, climate factors and other 
division-specific factors, can readily be assimilated into 
the existing framework of public health vector control 
policy in Sri Lanka. Vector surveillance should be further 
strengthened, and systematic collection and reporting 
of surveillance data should be encouraged. Implementa-
tion targets should be set dynamically to guide effective 
and cost-effective source reduction programs to maintain 
vector indices below their threshold values. The methods 
we described here can be used to identify comparable 
lagged threshold values between Aedes larval indices and 
dengue incidence in any district of Sri Lanka and beyond, 
enabling policy-makers in affected countries to design 
evidence-based, holistic, and sustainable dengue vector 
control interventions.
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