Kleinschmidt I, Bradley J, Knox TB, Mnzava AP, Kafy HT, Mbogo C, et al. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study. Lancet Infect Dis. 2018;18:640–9.
Article
PubMed
PubMed Central
Google Scholar
World Health Organization. World Malaria Report 2019. Geneva: World Health Organization; 2019. http://www.who.int/malaria/publications/world-malaria-report-2018/en/. Accessed 20 Jan 2020.
Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.
Article
CAS
PubMed
Google Scholar
Nkumama IN, O’Meara WP, Osier FHA. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 2017;33:128–40.
Article
PubMed
Google Scholar
Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA. 2015;112:6736–43.
Article
CAS
Google Scholar
Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34:78–83.
Article
CAS
PubMed
Google Scholar
Mancini MV, Spaccapelo R, Damiani C, Accoti A, Tallarita M, Petraglia E, et al. Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasit Vectors. 2016;9:140.
Article
PubMed
PubMed Central
CAS
Google Scholar
Favia G, Ricci I, Marzorati M, Negri I, Alma A, Sacchi L, et al. Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. Adv Expl Med Biol. 2008;627:49–59.
Article
CAS
Google Scholar
Walker T, Moreira LA. Can Wolbachia be used to control malaria? Mem Inst Oswaldo Cruz. 2011;106:212–7.
Article
PubMed
Google Scholar
Hiscox A, Maire N, Kiche I, Silkey M, Homan T, Oria P, et al. The SolarMal Project: innovative mosquito trapping technology for malaria control. Malar J. 2012;11(Suppl. 1):O45.
Article
PubMed Central
Google Scholar
Hiscox A, Homan T, Mweresa CK, Maire N, Di Pasquale A, Masiga D, et al. Mass mosquito trapping for malaria control in western Kenya: Study protocol for a stepped wedge cluster-randomised trial. Trials. 2016;17:356.
Article
PubMed
PubMed Central
Google Scholar
Weetman D, Wilding CS, Steen K, Pinto J, Donnelly MJ. Gene flow-dependent genomic divergence between Anopheles gambiae M and S forms. Mol Biol Evol. 2012;29:279–91.
Article
CAS
PubMed
Google Scholar
Huestis DL, Dao A, Diallo M, Sanogo ZL, Samake D, Yaro AS, et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature. 2019;574:404–8.
Article
CAS
PubMed
Google Scholar
Gillies MT. Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa, by means of marking and release experiments. Bull Entomol Res. 1961;52:99–127.
Article
Google Scholar
Costantini C, Li SG, Della Torre A, Sagnon N, Coluzzi M, Taylor CE. Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a west African Sudan savanna village. Med Vet Entomol. 1996;10:203–19.
Article
CAS
PubMed
Google Scholar
Dao A, Yaro AS, Diallo M, Timbine S, Huestis DL, Kassogue Y, et al. Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature. 2014;516:387–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaufmann C, Briegel H. Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus. J Vector Ecol. 2014;29:140–53.
Google Scholar
Verdonschot PF, Besse-Lototskaya AA. Flight distance of mosquitoes (Culicidae): a metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnol Ecol Manag Inl Waters. 2014;45:69–79.
Article
Google Scholar
Toure YT, Dolo G, Petrarca V, Traore SF, Bouare M, Dao A, et al. Mark-release-recapture experiments with Anopheles gambiae s.l. in Banambani village, Mali, to determine population size and structure. Med Vet Entomol. 1998;12:74–83.
Article
CAS
PubMed
Google Scholar
Niang A, Epopa PS, Sawadogo SP, Maïga H, Konate L, Faye O, et al. Does extreme asymmetric dominance promote hybridization between Anopheles coluzzii and Anopheles gambiae s.s. in seasonal malaria mosquito communities of West Africa? Parasit Vectors. 2015;8:586.
Article
PubMed
PubMed Central
CAS
Google Scholar
Epopa PS, Millogo AA, Collins CM, North A, Tripet F, Benedict MQ, et al. The use of sequential mark-release-recapture experiments to estimate population size, survival and dispersal of male mosquitoes of the Anopheles gambiae complex in Bana, a west African humid savannah village. Parasit Vectors. 2017;10:376.
Article
PubMed
PubMed Central
Google Scholar
Epopa PS, Collins CM, North A, Millogo AA, Benedict MQ, Tripet F, et al. Seasonal malaria vector and transmission dynamics in western Burkina Faso. Malar J. 2019;18:113.
Article
PubMed
PubMed Central
Google Scholar
Holstein M. Guide pratique de l’anophélisme en AOF. Bobo-Dioulasso: IRD Horizon; 1949.
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016. https://www.R-project.org/.
Gillies M, Meillon D. The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region). Sahara Ethiop Zoogeographical. 1968;54:1–343.
Google Scholar
Fontenille D, Cohuet A, Awono-Ambene P, Antonio-Nkondjio C, Wondji C, Kengne P, et al. Systématique et biologie des Anopheles vecteurs de Plasmodium en Afrique: données récentes. Med Trop. 2003;63:247–53.
CAS
Google Scholar
Bellows TS. The descriptive properties of some models for density dependence. J Anim Ecol. 1981;50:139.
Article
Google Scholar
Juliano SA. Species interactions among larval mosquitoes: context dependence across habitat gradients. Annu Rev Entomol. 2009;54:37–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilles JRL, Lees RS, Soliban SM, Benedict MQ. Density-dependent effects in experimental larval populations of Anopheles arabiensis (Diptera: Culicidae) can be negative, neutral, or overcompensatory depending on density and diet levels. J Med Entomol. 2011;48(Suppl. 2):296–304.
Article
CAS
PubMed
Google Scholar
Mouchet J, Carnevale P, Coosemans M, Julvez J, Manuin S, Richard-Lenoble D. Biodiversité du paludisme dans le monde. Medecine Mal Infect. 2005;35:107.
Article
Google Scholar
Carnevale P, Robert V, Corbel V, Fontenille D, Garros C, Rogier C, et al. Les Anopheles biologie, transmission du Plasmodium et lutte antivectorielle. Marseilles: IRD Editions, Collections didactiques; 2009.
Book
Google Scholar
Lines JD, Curtis CF, Wilkes TJ, Njunwa KJ. Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light-traps hung beside mosquito nets. Bull Entomol Res. 1991;81(Suppl. 1):77–84.
Article
Google Scholar
Costantini C, Sagnon NF, Sanogo E, Merzagora L, Coluzzi M. Relationship to human biting collections and influence of light and bednet in CDC light-trap catches of West African malaria vectors. Bull Entomol Res. 1998;88:503–11.
Article
Google Scholar
Sawadogo PS, Namountougou M, Toe KH, Rouamba J, Maïga H, Ouedraogo KR, et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Trop. 2014;130:24–34.
Article
Google Scholar
Diabate A, Tripet F. Targeting male mosquito mating behaviour for malaria control. Parasit Vectors. 2015;8:347.
Article
PubMed
PubMed Central
Google Scholar
Diabate A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol. 2011;11:184–95.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Su X, Zhou G, Zhang H, Puthiyakunnon S, Shuai S, et al. Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and mosquito-oviposition trap for the surveillance of vector mosquitoes. Parasit Vectors. 2016;9:446.
Article
PubMed
PubMed Central
Google Scholar
Henderson JP, Westwood R, Galloway T. An assessment of the effectiveness of the mosquito magnet Pro Model for suppression of nuisance mosquitoes. J Am Mosq Control Assoc. 2006;22:401–7.
Article
PubMed
Google Scholar
Chaves LSM, Laporta GZ, Sallum MAM. Effectiveness of Mosquito Magnet in preserved area on the coastal atlantic rainforest: Implication for entomological surveillance. J Med Entomol. 2014;51:915–24.
Article
CAS
PubMed
Google Scholar
Costa-Neta BM, da Silva AA, Brito JM, Moraes JLP, Rebelo JMM, Silva FS. Light-emitting diode (LED) traps improve the light-trapping of anopheline mosquitoes. J Med Entomol. 2017;54:1699–703.
Article
CAS
PubMed
Google Scholar
Mburu MM, Zembere K, Hiscox A, Banda J, Phiri KS, van den Berg H, et al. Assessment of the Suna trap for sampling mosquitoes indoors and outdoors. Malar J. 2019;18:51.
Article
PubMed
PubMed Central
Google Scholar
Chaiphongpachara T, Bunyuen P, Khlaeo CK. Development of a more effective mosquito trapping box for vector control. Sci World J. 2018;2018:1–8.
Google Scholar
Govella NJ, Maliti DF, Mlwale AT, Masallu JP, Mirzai N, Johnson PCD, et al. An improved mosquito electrocuting trap that safely reproduces epidemiologically relevant metrics of mosquito human-feeding behaviours as determined by human landing catch. Malar J. 2016;15:465.
Article
PubMed
PubMed Central
Google Scholar
Tangena JAA, Thammavong P, Hiscox A, Lindsay SW, Brey PT. The human-baited double net trap: an alternative to human landing catches for collecting outdoor biting mosquitoes in Lao PDR. PLoS ONE. 2015;10(Suppl. 9):1–13.
Google Scholar
Degefa T, Yewhalaw D, Zhou G, Atieli H, Githeko AK, Yan G. Evaluation of human-baited double net trap and human-odour-baited CDC light trap for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia. Malar J. 2020;19:174.
Article
PubMed
PubMed Central
Google Scholar
Abong’o B, Yu X, Donnelly MJ, Geier M, Gibson G, Gimnig J, et al. Host decoy trap (HDT) with cattle odour is highly effective for collection of exophagic malaria vectors. Parasit Vectors. 2018;11:533.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi W, Zhou X, Zhang Y, Zhou X, Hu L, Wang X, et al. An investigation on malaria vectors in western part of China-Myanmar border. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2011;29:134–7.
PubMed
Google Scholar
Pemola Devi N, Jauhari RK, Mondal R. Ovitrap surveillance of Aedes mosquitoes (Diptera: Culicidae) in selected areas of Dehradun district, Uttarakhand, India. Glob J Med Res. 2013;13:2249–4618.
Google Scholar
Ruiz-Arrondo I, McMahon BJ, Hernández-Triana LM, Santibañez P, Portillo A, Oteo JA. Surveillance of mosquitoes (Diptera, Culicidae) in a Northern Central region of Spain: Implications for the medical community. Front Vet Sci. 2019;6:86.
Article
PubMed
PubMed Central
Google Scholar
Sawadogo SP, Costantini C, Pennetier C, Diabate A, Gibson G, Dabire RK. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit Vectors. 2013;6:275.
Article
PubMed
PubMed Central
Google Scholar
Kaindoa EW, Ngowo HS, Limwagu A, Mkandawile G, Kihonda J, Masalu JP, et al. New evidence of mating swarms of the malaria vector, Anopheles arabiensis in Tanzania. Wellcome Open Res. 2017;2:88.
Article
PubMed
PubMed Central
Google Scholar
Miles A, Harding NJ, Bottà G, Clarkson CS, Antão T, Kozak K, et al. Genetic diversity of the African malaria vector Anopheles gambiae. Nature. 2017;552:96–100.
Article
CAS
Google Scholar