Platonov AE, Fedorova MV, Karan LS, Shopenskaya TA, Platonova OV, Zhuravlev VI: Epidemiology of West Nile infection in Volgograd, Russia, in relation to climate change and mosquito (Diptera: Culicidae) bionomics. Parasitology Research. 2008, 103: S45-S53. 10.1007/s00436-008-1050-0.
Article
PubMed
Google Scholar
Han LL, Popovici F, Alexander JP, Laurentia V, Tengelsen LA, Cernescu C, Gary HE, Ion-Nedelcu N, Campbell GL, Tsai TF: Risk factors for West Nile virus infection and meningoencephalitis, Romania, 1996. Journal of Infectious Diseases. 1999, 179: 230-233. 10.1086/314566.
Article
CAS
PubMed
Google Scholar
Hayes EB, Komar N, Nasci RS, Montgomery SP, O'Leary DR, Campbell GL: Epidemiology and transmission dynamics of West Nile Virus disease. Emerging Infectious Diseases. 2005, 11: 1167-1173.
Article
PubMed Central
PubMed
Google Scholar
Petersen LR, Roehrig JT: West Nile virus: A reemerging global pathogen. Emerg Infect Dis. 2001, 7: 611-614. 10.3201/eid0704.010401.
Article
PubMed Central
CAS
PubMed
Google Scholar
Turell MJ, Dohm DJ, Sardelis MR, O Guinn ML, Andreadis TG, Blow JA: An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol. 2005, 42: 57-62. 10.1603/0022-2585(2005)042[0057:AUOTPO]2.0.CO;2.
Article
PubMed
Google Scholar
Kilpatrick AM, Kramer LD, Campbell SR, Alleyne EO, Dobson AP, Daszak P: West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis. 2005, 11: 425-429.
Article
PubMed Central
PubMed
Google Scholar
Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED: Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol. 2008, 45: 125-128. 10.1603/0022-2585(2008)45[125:CPDCAB]2.0.CO;2.
Article
PubMed
Google Scholar
Kilpatrick AM, LaDeau SL, Marra PP: Ecology of west nile virus transmission and its impact on birds in the western hemisphere. Auk. 2007, 124: 1121-1136. 10.1642/0004-8038(2007)124[1121:EOWNVT]2.0.CO;2.
Article
Google Scholar
Kent R, Juliusson L, Weissmann M, Evans S, Komar N: Seasonal Blood-Feeding Behavior of Culex tarsalis (Diptera: Culicidae) in Weld County, Colorado, 2007. J Med Entomol. 2009, 46: 380-390. 10.1603/033.046.0226.
Article
PubMed
Google Scholar
Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD: Host heterogeneity dominates West Nile virus transmission. Proc R Soc Lond Ser B-Biol Sci. 2006, 273: 2327-2333. 10.1098/rspb.2006.3575.
Article
Google Scholar
Hamer GL, Kitron UD, Goldberg TL, Brawn JD, Loss SR, Ruiz MO, Hayes DB, Walker ED: Host Selection by Culex pipiens Mosquitoes and West Nile Virus Amplification. Am J Trop Med Hyg. 2009, 80: 268-278.
PubMed
Google Scholar
Loss SR, Hamer GL, Walker ED, Ruiz MO, Goldberg TL, Kitron UD, Brawn JD: Avian host community structure and prevalence of West Nile virus in Chicago, Illinois. Oecologia. 2009, 159: 415-424. 10.1007/s00442-008-1224-6.
Article
PubMed
Google Scholar
Ruiz MO, Tedesco C, McTighe TJ, Austin C, U K: Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. International Journal of Health Geographics. 2004, 3: 11-10.1186/1476-072X-3-8.
Article
Google Scholar
Brown HE, Childs JE, Diuk-Wasser MA, Fish D: Ecological factors associated with west nile virus transmission, northeastern United States. Emerg Infect Dis. 2008, 14: 1539-1545. 10.3201/eid1410.071396.
Article
PubMed Central
PubMed
Google Scholar
Brown H, Diuk-Wasser M, Andreadis T, Fish D: Remotely-sensed vegetation indices identify mosquito clusters of West Nile virus vectors in an urban landscape in the northeastern United States. Vector-Borne Zoonotic Dis. 2008, 8: 197-206. 10.1089/vbz.2007.0154.
Article
PubMed
Google Scholar
DeGroote JP, Sugumaran R, Brend SM, Tucker BJ, Bartholomay LC: Landscape, demographic, entomological, and climatic associations with human disease incidence of West Nile virus in the state of Iowa, USA. International Journal of Health Geographics. 2008, 7: 19-
Article
PubMed Central
PubMed
Google Scholar
Diuk-Wasser MA, Brown HE, Andreadis TG, Fish D: Modeling the spatial distribution of mosquito vectors for West Nile virus in Connecticut, USA. Vector-Borne Zoonotic Dis. 2006, 6: 283-295. 10.1089/vbz.2006.6.283.
Article
PubMed
Google Scholar
Gu WD, Lampman R, Krasavin N, Berry R, Novak R: Spatio-temporal analyses of West Nile virus transmission in Culex mosquitoes in Northern Illinois, USA, 2004. Vector-Borne Zoonotic Dis. 2006, 6: 91-98. 10.1089/vbz.2006.6.91.
Article
PubMed
Google Scholar
Ozdenerol E, Bialkowska-Jelinska E, Taff GN: Locating suitable habitats for West Nile Virus-infected mosquitoes through association of environmental characteristics with infected mosquito locations: a case study in Shelby County, Tennessee. International Journal of Health Geographics. 2008, 7: 12-10.1186/1476-072X-7-12.
Article
PubMed Central
PubMed
Google Scholar
Brownstein JS, Rosen H, Purdy D, Miller JR, Merlino M, Mostashari F, Fish D: Spatial analysis of West Nile Virus: Rapid risk assessment of an introduced Vector-Borne Zoonosis (vol 2, pg 157, 2002). Vector-Borne Zoonotic Dis. 2003, 3: 155-155. 10.1089/153036603768395861.
Article
Google Scholar
Cooke WH, Grala K, Wallis RC: Avian GIS models signial human risk for West Nile virus in Mississippi. International Journal of Health Geographics. 2006, 5: 36-10.1186/1476-072X-5-36.
Article
PubMed Central
PubMed
Google Scholar
Pradier S, Leblond A, Durand B: Land cover, landscape structure, and West Nile virus circulation in southern France. Vector-Borne Zoonotic Dis. 2008, 8: 253-263. 10.1089/vbz.2007.0178.
Article
CAS
PubMed
Google Scholar
Bradley CA, Gibbs SEJ, Altizer S: Urban land use predicts West Nile Virus exposure in songbirds. Ecol Appl. 2008, 18: 1083-1092. 10.1890/07-0822.1.
Article
PubMed
Google Scholar
Gibbs SEJ, Allison AB, Yabsley MJ, Mead DG, Wilcox BR, Stallknecht DE: West Nile virus antibodies in avian species of Georgia, USA: 2000-2004. Vector-Borne Zoonotic Dis. 2006, 6: 57-72. 10.1089/vbz.2006.6.57.
Article
PubMed
Google Scholar
Allan BF, Langerhans RB, Ryberg WA, Landesman WJ, Griffin NW, Katz RS, Oberle BJ, Schutzenhofer MR, Smyth KN, St. Maurice Ad, Clark L, Crooks KR, Hernandez DE, McLean RG, Ostfeld RS, Chase JM: Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia. 2009, 158: 699-708. 10.1007/s00442-008-1169-9.
Article
PubMed
Google Scholar
Gomez A, Kilpatrick AM, Kramer LD, Dupuis AP, Maffei JG, Goetz SJ, Marra PP, Daszak P, Aguirre AA: Land use and West Nile Virus seroprevalence in wild mammals. Emerg Infect Dis. 2008, 14: 962-965. 10.3201/eid1406.070352.
Article
PubMed Central
PubMed
Google Scholar
Ruiz MO, Walker ED, Foster ES, Haramis LD, Kitron UD: Association of West Nile virus illness and urban landscapes in Chicago and Detroit. International Journal of Health Geographics. 2007, 6: 10-10.1186/1476-072X-6-10.
Article
PubMed Central
PubMed
Google Scholar
Wimberly MC, Hildreth MB, Boyte SP, Lindquist E, Kightlinger L: Ecological Niche of the 2003 West Nile Virus Epidemic in the Northern Great Plains of the United States. PLoS One. 2008, 3: Article No.: e3744-10.1371/journal.pone.0003744.
Article
PubMed
Google Scholar
Soverow JE, Wellenius GA, Fisman DN, Mittleman MA: Infectious Disease in a Warming World: How Weather Influenced West Nile Virus in the United States (2001-2005). Environmental Health Perspectives. 2009, 117: 1049-1052.
Article
PubMed Central
PubMed
Google Scholar
DeGroote J, Mercer DR, Fisher J, Sugumaran R: Spatiotemporal investigation of adult mosquito (Diptera: culicidae) Populations in an eastern Iowa county, USA. J Med Entomol. 2007, 44: 1139-1150. 10.1603/0022-2585(2007)44[1139:SIOAMD]2.0.CO;2.
Article
PubMed
Google Scholar
Trawinski PR, Mackay DS: Meteorologically conditioned time-series predictions of West Nile virus vector mosquitoes. Vector-Borne Zoonotic Dis. 2008, 8: 505-521. 10.1089/vbz.2007.0202.
Article
CAS
PubMed
Google Scholar
Walsh AS, Glass GE, Lesser CR, Curriero FC: Predicting seasonal abundance of mosquitoes based on off-season meteorological conditions. Environmental and Ecological Statistics. 2008, 15: 279-291. 10.1007/s10651-007-0056-6.
Article
Google Scholar
Reisen WK, Cayan D, Tyree M, Barker CA, Eldridge B, Dettinger M: Impact of climate variation on mosquito abundance in California. J Vector Ecol. 2008, 33: 89-98. 10.3376/1081-1710(2008)33[89:IOCVOM]2.0.CO;2.
Article
PubMed
Google Scholar
Rochlin I, Harding K, Ginsberg HS, Campbell SR: Comparative analysis of distribution and abundance of West Nile and eastern equine encephalomyelitis virus vectors in Suffolk County, New York, using human population density and land use/cover data. J Med Entomol. 2008, 45: 563-571. 10.1603/0022-2585(2008)45[563:CAODAA]2.0.CO;2.
Article
CAS
PubMed
Google Scholar
Paz S, Albersheim I: Influence of warming tendency on Culex pipiens population abundance and on the probability of West Nile Fever outbreaks (Israeli case study: 2001-2005). EcoHealth. 2008, 5: 40-48. 10.1007/s10393-007-0150-0.
Article
PubMed
Google Scholar
Liu H, Weng QH, Gaines D: Spatio-temporal analysis of the relationship between WNV dissemination and environmental variables in Indianapolis, USA. International Journal of Health Geographics. 2008, 7: 66-10.1186/1476-072X-7-66.
Article
PubMed Central
PubMed
Google Scholar
Winters AM, Bolling BG, Beaty BJ, Blair CD, Eisen RJ, Meyer AM, Pape WJ, Moore CG, Eisen L: Combining mosquito vector and human disease data for improved assessment of spatial west nile virus disease risk. Am J Trop Med Hyg. 2008, 78: 654-665.
PubMed
Google Scholar
Eisen L, Eisen RJ: Need for improved methods to collect and present spatial epidemiologic data for vectorborne diseases. Emerg Infect Dis. 2007, 13: 1816-1820.
Article
PubMed Central
PubMed
Google Scholar
Ostfeld RS, Glass GE, Keesing F: Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol. 2005, 20: 328-336. 10.1016/j.tree.2005.03.009.
Article
PubMed
Google Scholar
de la C Sierra B, Kouri G, Guzman MG: Race: a risk factor for dengue hemorrhagic fever. Archives of Virology. 2007, 152: 533-542. 10.1007/s00705-006-0869-x.
Article
PubMed
Google Scholar
Gujral IB, Zielinski-Gutierrez EC, LeBailly A, Nasci R: Behavioral risks for West Nile Virus disease, northern Colorado, 2003. Emerg Infect Dis. 2007, 13: 419-425. 10.3201/eid1303.060941.
Article
PubMed Central
PubMed
Google Scholar
Andreadis TG, Anderson JF, Vossbrinck CR, Main AJ: Epidemiology of West Nile virus in Connecticut: A five-year analysis of mosquito data 1999-2003. Vector-Borne Zoonotic Dis. 2004, 4: 360-378. 10.1089/vbz.2004.4.360.
Article
PubMed
Google Scholar
Hamer GL, Walker ED, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Schotthoefer AM, Brown WM, Wheeler E, Kitron UD: Rapid amplification of West Nile virus: the role of hatch-year birds. Vector-Borne Zoonotic Dis. 2008, 8: 57-67. 10.1089/vbz.2007.0123.
Article
PubMed
Google Scholar
Koenraadt CJM, Harrington LC: Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae). J Med Entomol. 2008, 45: 28-35. 10.1603/0022-2585(2008)45[28:FEOROC]2.0.CO;2.
Article
CAS
PubMed
Google Scholar
Geery PR, Holub RE: Seasonal abundance and control of Culex spp. in catch basins in Illinois. J Am Mosq Control Assoc. 1989, 5: 537-540.
CAS
PubMed
Google Scholar
Chase JM, Knight TM: Drought-induced mosquito outbreaks in wetlands. Ecol Lett. 2003, 6: 1017-1024. 10.1046/j.1461-0248.2003.00533.x.
Article
Google Scholar
Shaman J, Day JF, Stieglitz M: Drought-induced amplification of Saint Louis encephalitis virus, Florida. Emerg Infect Dis. 2002, 8: 575-580. 10.3201/eid0801.010049.
Article
PubMed Central
PubMed
Google Scholar
Shaman J, Day JF, Stieglitz M: Drought-induced amplification and epidemic transmission of West Nile Virus in southern Florida. J Med Entomol. 2005, 42: 134-141. 10.1603/0022-2585(2005)042[0134:DAAETO]2.0.CO;2.
Article
PubMed
Google Scholar
Day JF, Shaman J: Using hydrologic conditions to forecast the risk of focal and epidemic arboviral transmission in peninsular Florida. J Med Entomol. 2008, 45: 458-465. 10.1603/0022-2585(2008)45[458:UHCTFT]2.0.CO;2.
Article
PubMed
Google Scholar
Dohm DJ, O'Guinn ML, Turell MJ: Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol. 2002, 39: 221-225. 10.1603/0022-2585-39.1.221.
Article
PubMed
Google Scholar
Meyer RP, Hardy JL, Reisen WK: Diel Changes in Adult Mosquito Microhabitat Temperatures and Their Relationship to the Extrinsic Incubation of Arboviruses in Mosquitos in Kern County, California. J Med Entomol. 1990, 27: 607-614.
Article
CAS
PubMed
Google Scholar
Reisen WK, Fang Y, Martinez VM: Effects of temperature onthe transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol. 2006, 43: 309-317. 10.1603/0022-2585(2006)043[0309:EOTOTT]2.0.CO;2.
Article
PubMed
Google Scholar
Kilpatrick AM, Meola MA, Moudy RM, Kramer LD: Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. Plos Pathogens. 2008, 4 (6): e1000092-10.1371/journal.ppat.1000092.
Article
PubMed Central
PubMed
Google Scholar
Monath TP, Tsai TF: St Louis encephalitis: lessons from the last decade. Am J Trop Med Hyg. 1987, 37: 405-595.
Google Scholar
Kunkel KE, Novak RJ, Lampman RL, Gu WD: Modeling the impact of variable climatic factors on the crossover of Culex restauns and Culex pipiens (Diptera: Culicidae), vectors of West Nile virus in Illinois. Am J Trop Med Hyg. 2006, 74: 168-173.
PubMed
Google Scholar
Landesman WJ, Allan BF, Langerhans RB, Knight TM, Chase JM: Inter-annual associations between precipitation and human incidence of West Nile virus in the United States. Vector-Borne Zoonotic Dis. 2007, 7: 337-343. 10.1089/vbz.2006.0590.
Article
PubMed
Google Scholar
Bertolotti L, Kitron UD, Walker ED, Ruiz MO, Brawn JD, Loss SR, Hamer GL, Goldberg TL: Fine-scale genetic variation and evolution of West Nile Virus in a transmission "hot spot" in suburban Chicago, USA. Virology. 2008, 374: 381-389. 10.1016/j.virol.2007.12.040.
Article
CAS
PubMed
Google Scholar
Reisen WK: Effect of temperature on Culex tarsalis (Diptera, Culicidae) from Coachella and San-Joaquin valleys of California. J Med Entomol. 1995, 32: 636-645.
Article
CAS
PubMed
Google Scholar
Kitron U: Landscape ecology and epidemiology of vector-borne diseases: Tools for spatial analysis. J Med Entomol. 1998, 35: 435-445.
Article
CAS
PubMed
Google Scholar
Openshaw S: 'The modifiable areal unit problem'. Concepts and Techniques in Modern Geography. 1984, 38: 41-
Google Scholar
Biggerstaff BJ: PooledInfRate, Version 3.0: a Microsoft Excel Add-In to compute prevalence estimates from pooled samples. 2006, Ft. Collins, CO: Centers for Disease Control and Prevention
Google Scholar
Baker DG, Sharratt BS, Chiang HC, Zandlo JA, Ruschy DL: Base temperature selection for the prediction of European corn = borer instars by the growing degree-day method. Agricultural and Forest Meteorology. 1984, 32: 55-60. 10.1016/0168-1923(84)90028-5.
Article
Google Scholar
Lam NSN: Spatial interpolation methods - a reivew. American Cartographer. 1983, 10: 129-149. 10.1559/152304083783914958.
Article
Google Scholar
Wong DW, Yuan L, Perlin SA: Comparison of spatial interpolation methods for the estimation of air quality data. Journal of Exposure Analysis and Environmental Epidemiology. 2004, 14: 404-415. 10.1038/sj.jea.7500338.
Article
CAS
PubMed
Google Scholar
Messina J, Brown WM, Ruiz MO: West Nile virus in the greater Chicago area, 2002-2006: changing patterns of human illness and social and environmental determinants of risk. Proceedings of the URISA GIS in Public Health Conference; New Orleans, LA. 2007, [http://www.urisa.org]
Google Scholar
Housing USCoPa: Summary Population and Housing Characteristics: Indiana. Book Summary Population and Housing Characteristics: Indiana (Editor ed.^eds.). 2001, City: Washington: Government Printing Office
Google Scholar
R Development Core Team: R: A language and environment for statistical computing. 2008, R Foundation for Statistical Computing, Vienna, Austria, [http://www.R-project.org]
Google Scholar
Gu WD, Lampman R, Novak RJ: Problems in estimating mosquito infection rates using minimum infection rate. Journal of Medical Entomology. 2003, 40: 595-596. 10.1603/0022-2585-40.5.595.
Article
PubMed
Google Scholar
Olden JD, Lawler JJ, Poff NL: Machine learning methods without tears: A primer for ecologists. Quarterly Review of Biology. 2008, 83: 171-193. 10.1086/587826.
Article
PubMed
Google Scholar
Hu WB, Tong SL, Mengersen K, Oldenburg B, Dale P: Mosquito species (Diptera: Culicidae) and the transmission of ross river virus in Brisbane, Australia. J Med Entomol. 2006, 43: 375-381. 10.1603/0022-2585(2006)043[0375:MSDCAT]2.0.CO;2.
Article
PubMed
Google Scholar
Breiman L: Random forests. Machine Learning. 2001, 45: 5-32. 10.1023/A:1010933404324.
Article
Google Scholar
Strickman D: Rate of oviposition by Culex quinguefasciatus in San Antonio, Texas, during three years. J Am Mosq Control Assoc. 1988, 4: 339-344.
CAS
PubMed
Google Scholar
Chaves LF, Pascual M: Comparing Models for Early Warning Systems of Neglected Tropical Diseases. Plos Neglected Tropical Diseases. 2007, 1: 10.1371/journal.pntd.0000033.
Google Scholar