Barrett K, Okali C: Partnerships for tsetse control: community participation and other options. World Anim Rev. 1998, 90: 39-46.
Google Scholar
Welburn SC, Maudlin I: Tsetse-typanosome interactions: rites of passage. Parasitol Today. 1999, 15: 399-403. 10.1016/S0169-4758(99)01512-4.
Article
CAS
PubMed
Google Scholar
Aksoy S, Gibson WC, Lehane MJ: Interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis. Adv Parasitol. 2003, 53: 1-83.
Article
PubMed
Google Scholar
Hao Z, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S: Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci U S A. 2001, 98 (22): 12648-12653. 10.1073/pnas.221363798.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nogge G: Sterility in tsetse flies Glossina morsitans Westwood caused by loss of symbionts. Experientia. 1976, 32: 995-996. 10.1007/BF01933932.
Article
CAS
PubMed
Google Scholar
Wang J, Wu Y, Yang G, Aksoy S: Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc Natl Acad Sci USA. 2009, 106 (29): 12133-12138. 10.1073/pnas.0901226106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pais R, Lohs C, Wu Y, Wang J, Aksoy S: The Obligate Mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl Environ Microbiol. 2008, 74: 5965-5974. 10.1128/AEM.00741-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lindh JM, Lehane MJ: The tsetse fly Glossina fuscipes fuscipes (Diptera: Glossina) harbours a surprising diversity of bacteria other than symbionts. Antonie Leeuwenhoek. 2011, 99: 711-720. 10.1007/s10482-010-9546-x.
Article
PubMed
Google Scholar
Alam U, Hyseni C, Symula RE, Brelsfoard C, Wu Y, Kruglov O, Wang J, Echodu R, Alioni V, Okedi LM, Caccone A, Aksoy S: Microfauna-host interactions: implications for trypanosome transmission dynamics in Glossina fuscipes fuscipes in Uganda. Appli Environ Microbiol. 2012, 78 (13): 4627-4637. 10.1128/AEM.00806-12.
Article
CAS
Google Scholar
Farikou O, Njiokou F, Mbida JAM, Njitchouang GR, Djeunga HN, Asonganyi T, Simarro PP, Cuny G, Geiger A: Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes-An epidemiological approach in two historical human African trypanosomiasis foci in Cameroon. Infect Genet Evol. 2010, 10: 115-121. 10.1016/j.meegid.2009.10.008.
Article
PubMed
Google Scholar
Geiger A, Ravel S, Mateille T, Janelle J, Patrel D, Cuny G, Frutos R: Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Mol Biol Evol. 2007, 24: 102-109.
Article
CAS
PubMed
Google Scholar
Weiss B, Aksoy S: Microbiome influences on insect host vector competence. Trends Parasitol. 2011, 27 (11): 514-522. 10.1016/j.pt.2011.05.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weiss BL, Maltz M, Aksoy S: Obligate symbionts activate immune system development in the tsetse fly. J Immunol. 2012, 188 (7): 3395-3403. 10.4049/jimmunol.1103691.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beard CB, Cordon-Rosales C, Durvasula RV: Bacterial symbionts of the Triatomine and their potential use in control of Chagas disese transmission. Annu Rev Entomol. 2002, 47: 123-141. 10.1146/annurev.ento.47.091201.145144.
Article
CAS
PubMed
Google Scholar
Hurwitz I, Hillesland H, Fieck A, Das P, Durvasula R: The paratransgenic sand fly: a platform for control of Leishmania transmission. Parasit Vectors. 2011, 19 (4): 82-
Article
Google Scholar
Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs-Lorena M: Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol. 2007, 37: 595-603. 10.1016/j.ijpara.2006.12.002.
Article
CAS
PubMed
Google Scholar
Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, Mardani N, Ghoorchian S: Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop. 2012, 121: 129-134. 10.1016/j.actatropica.2011.10.015.
Article
PubMed
Google Scholar
Rasgon JL: Using infections to fight infections: paratransgenic fungi can block malaria transmission in mosquitoes. Future Microbiol. 2011, 6: 851-853. 10.2217/fmb.11.71.
Article
PubMed Central
PubMed
Google Scholar
Laven H: Eradication of Culex pipiens fatigans through Cytoplasmic Incompatibility. Nature. 1967, 216: 383-384. 10.1038/216383a0.
Article
CAS
PubMed
Google Scholar
Zabalou S, Riegler M, Theodorakopoulou M, Savakis C, Bourtzis K: Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA. 2004, 101: 15042-15045. 10.1073/pnas.0403853101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alam U, Medlock J, Brelsfoard C, Pais R, Lohs C, Balmand S, Carnogursky J, Heddi A, Takac P, Galvani A, Aksoy S: Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLoS Pathog. 2011, 7 (12): e1002415-10.1371/journal.ppat.1002415.
Article
PubMed Central
CAS
PubMed
Google Scholar
Min KT, Benzer S: Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and death. Proc Natl Acad Sci USA. 1997, 94: 10792-10796. 10.1073/pnas.94.20.10792.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cook PE, McMeniman CJ, O’Neill SL: Modifying insect population age structure to control vector-borne disease. Adv Exp Med Biol. 2008, 627: 126-140. 10.1007/978-0-387-78225-6_11.
Article
CAS
PubMed
Google Scholar
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Bruno R, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van de Hurk AF, Ryan P, O’Neill SL: A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya and Plasmodium. Cell. 2009, 139 (7): 1268-1278. 10.1016/j.cell.2009.11.042.
Article
PubMed
Google Scholar
van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, Higgs S, O’Neill SL: Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis. 2012, 6: e1892-10.1371/journal.pntd.0001892.
Article
PubMed Central
PubMed
Google Scholar
Iturbe-Ormaetxe I, Walker T, Neill SLO: Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011, 12 (6): 508-518. 10.1038/embor.2011.84.
Article
PubMed Central
CAS
PubMed
Google Scholar
Turelli M, Hoffmann AA: Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropods populations. Insect Biochem Mol Biol. 1999, 8: 243-255. 10.1046/j.1365-2583.1999.820243.x.
Article
CAS
Google Scholar
Cheng Q, Ruel TD, Zhou W, Moloo SK, Majiwa P, O’Neill SL, Aksoy S: Tissue distribution and prevalence of Wolbachia infections in tsetse flies, Glossina spp. Med Vet Entomol. 2000, 14: 44-50. 10.1046/j.1365-2915.2000.00202.x.
Article
CAS
PubMed
Google Scholar
Challier A, Laveissiere C: Un nouveau piege pour la capture des glossines (Glossina: Diptera, Muscidae): description et essays sur le terrain. Cahiers ORSTOM, series Entomologie Medical Parasitologie. 1973, 11: 251-262.
Google Scholar
Brightwell R, Dransfield RD, Kyorku C, Golder TK, Tarimo SA, Mungai D: A new trap for Glossina pallidipes. Trop Pest Manag. 1987, 33: 151-189. 10.1080/09670878709371136.
Article
Google Scholar
Vreysen MJB, Saleh KM, Zhu Z-R, Suleiman FW: Responses of Glossina austeni to sticky panels and odours. Med Vet Entomol. 2000, 14: 283-289. 10.1046/j.1365-2915.2000.00241.x.
Article
PubMed
Google Scholar
Torr SJ, Holloway MTP, Vale GA: Improved persistence of insecticide deposits on targets for controlling Glossina pallidipes (Diptera: Glossinidae). Bull Entomol Res. 1992, 82: 525-533. 10.1017/S0007485300042620.
Article
CAS
Google Scholar
Sunnucks P, Hales DF: Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol. 1996, 13: 510-524. 10.1093/oxfordjournals.molbev.a025612.
Article
CAS
PubMed
Google Scholar
Braig HR, Zhou W, Dobson S, O’Neill S: Cloning and characterisation of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol. 1998, 180: 2373-2378.
PubMed Central
CAS
PubMed
Google Scholar
Zhou WG, Rousset F, O’Neill S: Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B Biol Sci. 1998, 265: 509-515. 10.1098/rspb.1998.0324.
Article
CAS
Google Scholar
Doudoumis V, Tsiamis G, Wamwiri F, Brelsfoard C, Alam U, Aksoy E, Dalaperas S, Abd-Alla AMM, Ouma J, Takac P, Aksoy S, Bourtzis K: Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Microbiol. 2012, 12: S3-10.1186/1471-2180-12-S1-S3.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dale C, Maudlin I: Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol. 1999, 49: 267-275. 10.1099/00207713-49-1-267.
Article
CAS
PubMed
Google Scholar
Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P: Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am. 1994, 87: 651-704.
Article
CAS
Google Scholar
Lloyd L, Johnson WB: The trypanosome infections of tsetse flies in Northern Nigeria and a new method of estimation. Bull Entomol Res. 1924, 14: 265-288.
Google Scholar
Njiru ZK, Constantine CC, Guya S, Crowther J, Kiragu JM, Thompson RC, Dávila AM: The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol Res. 2005, 95 (3): 186-192. 10.1007/s00436-004-1267-5.
Article
CAS
PubMed
Google Scholar
Jackson CHN: An artificially isolated generation of tsetse flies (Diptera). Bull Entomol Res. 1946, 37: 291-299. 10.1017/S0007485300022203.
Article
CAS
PubMed
Google Scholar
Saunders DS: Age determination for female tsetse flies and the age compositions of samples of Glossina pallidipes Austen, G. palpalis fuscipes Newst. and G.brevipalpis Newst. Bull Entomol Res. 1962, 53: 579-595. 10.1017/S0007485300048331.
Article
Google Scholar
Takken W: Studies on the biconical trap as a sampling device for tsetse (Diptera: Glossinidae) in Mozambique. Int J Trop Insect Sci. 1984, 5: 357-361. 10.1017/S1742758400008663.
Article
Google Scholar
Brelsfoard CL, Dobson SL: An update on the utility of Wolbachia for controlling insect vectors and disease transmission. AsPac J Mol Biol Biotechnol. 2011, 19 (3): 85-92.
Google Scholar
Clancy DJ, Hoffmann AA: Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol Exp Appl. 1998, 86: 13-24. 10.1046/j.1570-7458.1998.00261.x.
Article
Google Scholar
Mouton L, Henri H, Charif D, Boulétreau M, Vavre F: Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. Biol Lett. 2007, 3 (2): 210-213. 10.1098/rsbl.2006.0590.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arthofer W, Riegler M, Schneider D, Krammer M, Miller WJ: Hiden Wolbachia diversity in field populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). Mol Ecol. 2009, 18: 3816-3830. 10.1111/j.1365-294X.2009.04321.x.
Article
PubMed
Google Scholar
Miller WJ, Schneider D: Deciphering Wolbachia diversity in Glossina spp. Improving SIT for tsetse flies through research on their symbionts and pathogens: 2010. 2010, Nairobi, Kenya: IAEA
Google Scholar
Ikeda T, Ishikawa H, Sasaki T: Infection density of Wolbachia and level of cytoplasmic incompatibility in the Mediterranean flour moth, Ephestia kuehniella. J Invertebr Pathol. 2003, 84: 1-5. 10.1016/S0022-2011(03)00106-X.
Article
PubMed
Google Scholar
O’Neill S, Pettigrew M, Sinkins S, Braig HR, Andreadis T, Tesh R: In vitro cultivation of Wolbacha pipientis in an Aedes albopictus cell line. Insect Mol Biol. 1997, 6: 33-39. 10.1046/j.1365-2583.1997.00157.x.
Article
PubMed
Google Scholar
McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, O’Neill SL: Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009, 323: 141-144. 10.1126/science.1165326.
Article
CAS
PubMed
Google Scholar
Abd-Alla AMM, Parker AG, Vreysen MJB, Bergoin M: Tsetse salivary gland hypertrophy virus: hope or hindrance for tsetse control?. PLoS Negl Trop Dis. 2011, 5 (8): e1220-10.1371/journal.pntd.0001220.
Article
PubMed Central
PubMed
Google Scholar
Russel JA, Moran NA: Costs and Benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc Lond. 2006, 273: 603-610. 10.1098/rspb.2005.3348.
Article
Google Scholar
Rio RV, Wu YN, Filardo G, Aksoy S: Dynamics of multiple symbiont density regulation during host development: tsetse fly and its microbial flora. Proc R Soc Lond B Biol Sci. 2006, 273: 805-814. 10.1098/rspb.2005.3399.
Article
Google Scholar
Maudlin I, Welburn SC, Mehlitz D: The relationship between rickettsia-like organisms and trypanosome infections in natural populations of tsetse in Liberia. Trop Med Parasitol. 1990, 41: 265-267.
CAS
PubMed
Google Scholar
Toju H, Fukatsu T: Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol. 2011, 20 (4): 853-868. 10.1111/j.1365-294X.2010.04980.x.
Article
PubMed
Google Scholar
GoK: The 2010 Short Rains Season Assessment Report. 2011, Nairobi: Government of Kenya, 40-
Google Scholar
Aksoy S: Tsetse: a haven for microorganisms. Parasitol Today. 2000, 16: 114-118. 10.1016/S0169-4758(99)01606-3.
Article
CAS
PubMed
Google Scholar
Tarimo SA, Snow WF, Butler L: Trypanosome infections in wild tsetse, Glossina pallidipes Austen on the Kenya coast. Int J Trop Insect Sci. 1984, 5 (05): 415-418. 10.1017/S1742758400008754.
Article
Google Scholar
Ohaga SO, Kokwaro ED, Ndiege IO, Hassanali A, Saini RK: Livestock farmers’ perception and epidemiology of bovine trypanosomiasis in Kwale District, Kenya. Prev Vet Med. 2007, 80: 24-33. 10.1016/j.prevetmed.2007.01.007.
Article
CAS
PubMed
Google Scholar
Motloang M, Masumu J, Mans B, Van den Bossche P, Latif A: Vector competence of Glossina austeni and Glossina brevipalpis for Trypanosoma congolense in KwaZulu-Natal, South Africa. Onderstepoort J Vet Res. 2012, 79 (1): e1-e6.
Article
PubMed
Google Scholar
Malele II, Magwisha HB, Nyingilili HS, Mamiro KA, Rukambile EJ: Multiple Trypanosoma infections are common amongst Glossina species in the new farming areas of Rufiji district, Tanzania. Parasit Vectors. 2011, 4: 217-10.1186/1756-3305-4-217.
Article
PubMed Central
PubMed
Google Scholar
Simo G, Silatsa B, Njiokou F, Lutumba P, Mansinsa P, Madinga J, Manzambi E, De Deken R, Asonganyi T: Identification of different trypanosome species in the mid-guts of tsetse flies of the Malanga (Kimpese) sleeping sickness focus of the Democratic Republic of Congo. Parasit Vectors. 2012, 5: 201-10.1186/1756-3305-5-201.
Article
PubMed Central
PubMed
Google Scholar
Njiru ZK, Makumi JN, Okoth S, Ndungu JM, Gibson WC: Identification of trypanosomes in Glossina pallidipes and G. longipennis in Kenya. Infect Genet Evol. 2003, 4: 29-35.
Article
Google Scholar
Cheng Q, Aksoy S: Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol. 1999, 8: 125-132. 10.1046/j.1365-2583.1999.810125.x.
Article
CAS
PubMed
Google Scholar
Ibrahim EAR, Ingram GA, Molyneux DH: Haemagglutinins and parasite agglutinins in heamolymph and gut of Glossina. Trop Med Parasitol. 1984, 35: 151-156.
CAS
Google Scholar
Geiger A, Ravel S, Frutos R, Cuny G: Sodalis glossinidius (Enterobacteriaceae) and vectorial competence of Glossina palpalis gambiense and Glossina morsitans morsitans for Trypanosoma congolense savannah type. Curr Microbiol. 2005, 51 (1): 35-40. 10.1007/s00284-005-4525-6.
Article
CAS
PubMed
Google Scholar
Weiss BL, Mouchotte R, Rio RV, Wu YN, Wu Z, Heddi A, Aksoy S: Interspecific transfer of bacterial endosymbionts between tsetse fly species: infection establishment and effect on host fitness. Appl Environ Microbiol. 2006, 72: 7013-7021. 10.1128/AEM.01507-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Welburn SC, Arnold K, Maudlin I, Gooday GW: Rickettsia-like organisms and chitinase production in relation to transmission of trypanosomes by tsetse flies. Parasitol. 1993, 107: 141-145. 10.1017/S003118200006724X.
Article
Google Scholar