- Short report
- Open Access
- Published:
Molecular characterization of cryptic species of Anopheles barbirostris van der Wulp in China
Parasites & Vectors volume 7, Article number: 592 (2014)
Abstract
Background
Anopheles barbirostris sensu lato belongs to the Barbirostris subgroup of the subgenus Anopheles that is distributed in Southeast Asia. Different molecular forms have been identified based on the rDNA-ITS2 and mtDNA-COI sequences. Anopheles barbirostris occurs in China. The species status was uncertain due to the lack of molecular characterization. The present study characterized Chinese An. barbirostris using rDNA-ITS2 and mtDNA-COI gene sequences. Two cryptic species were identified.
Findings
DNA was extracted from morphologically identified An. barbirostris specimens collected in Yunnan and Hainan from China, the sequences of rDNA-ITS2 and mtDNA-COI regions of 40 individuals were amplified and analyzed. The sequence comparison revealed two cryptic species, corresponding to An. barbirostris A1/clade III and A2/clade IV, respectively. The molecular characterization updated the species composition of the An. barbirostris complex in China.
Conclusions
This study distinguished two molecular forms in the An. barbirostris s. l. in China.
Background
Anopheles barbirostris van der Wulp 1884 is a member species of the Barbirostris subgroup of Subgenus Anopheles, Genus Anopheles. Anopheles barbirostris is distributed in oriental regions, such as India, Sri Lanka, Thailand, Myanmar, Cambodia, Vietnam, Malaysia, Indonesia and Nepal [1]. Anopheles barbirostris sensu lato is a species complex, according to the cytogenetic and molecular characteristics and hybridization results [1]-[8]. Variations in habitats, resting behaviour and feeding preferences have been reported in the An. barbirostris s. l. Some of them have been implicated to be responsible for malaria and filariasis transmission in Southeast Asia [9]-[11]. Morphologically, it is difficult to distinguish member species one from another [4],[5],[7]. The sequences of ribosomal DNA second internal transcribed spacer (rDNA-ITS2) and mitochondrial cytochrome DNA oxidase subunit I (mtDNA-COI) exhibit a low level of intraspecific variation and a high level of divergence between species. It is this feature that renders the genes useful as molecular characters for taxonomic classification and phylogenetic inference [12]-[14]. In the case of An. barbirostris complex, molecular analyses of rDNA-ITS2 and mtDNA-COI gene revealed different molecular forms. For example, Saeung et al. defined A1, A2, A3, A4, and An. campestris[4]-[7], and Paredes-Esquivel et al. identified five clades I, II, III, IV and V [1],[8].
In China, An. barbirostris s. l. was recorded in provinces of Guangdong, Hainan, Yunnan, Zhejiang, Anhui, Guangxi, Sichuan and Guizhou, but it has not been implicated as a vector for human pathogens [15]. The species status was uncertain due to the lack of molecular characterization. In this study, the rDNA-ITS2 and mtDNA-COI sequences were analyzed for the specimens of An. barbirostris s. l. from Yunnan and Hainan China. Two cryptic species were identified.
Methods
Mosquito collection and species identification
Wild mosquito adults were captured and sampled from Yunnan and Hainan in China and Myanmar. Detailed information on collection sites is presented in Table 1. The adults were captured using tubes or light traps in livestock rooms. The species of An. barbirostris s. l. were identified using morphological keys [15]. The specimens were kept individually in tubes with silica gel and stored at −20°C until DNA extraction was performed.
rDNA-ITS2 and mtDNA-COI gene amplification and sequencing
The genomic DNA was extracted from individual adults using the Insect Tissue DNA Extraction Kit (Aidlab, China). The rDNA-ITS2 and mtDNA-COI fragments were amplified by PCR. Each PCR (50 μL total volume) mixture contains 1 × PCR buffer (TOYOBO, Japan), 0.2 mM of each dNTP, 1 unit of KOD FX (TOYOBO, Japan), 0.1 μM each of the forward and reverse primers and ~50 ng genomic DNA. The ITS2 region was amplified using primers [13], 5.8S (forward 5′-GAA TGT GAA CTG CAG GAC ACA TG-3′) and 28S (reverse 5′-GGG GTA GTC ACA CAT TAT TTG AGG-3′). The COI gene fragment was amplified by using primers [1], COIBAF (forward 5′-TTG ATT TTT TGG TCA TCC AGA AGT-3′) and COIBAR (reverse 5′-TAG AGC TTA AAT TCA TTG CAC TAA TC-3′). The thermal profile for PCR was 94°C for 2 min, followed by 35 cycles of 98°C for 10s, 45°C for 30s and 68°C for 1 min 30 s (ITS2) or 45 s (COI). A final extension temperature of 68°C was set for 7 min. The PCR products were purified and sequenced in both directions using aforementioned primers. In addition, internal primers BAR1 (5′-GGT GTC ACA TGG TAG ATT AC-3′) and BAR3 (5′-GCG ATC CGA AGT TGA AAG TCA-3′) were used for ITS2 sequencing. The chromatographs of sequences were inspected manually.
Sequence analysis
The ITS2 and COI sequences of all individuals were aligned by Clustal W [16], respectively. The sequences were deposited in NCBI, the GenBank accession numbers were given in Table 2. The sequences were compared with the available sequences of various species of An. barbirostris complex in GenBank. A phylogenetic tree was created using MEGA 5.1 [17]. Substitution models were tested before reconstructing ML trees. Variation between sequences were measured by p-distance, implemented by MEGA.
Findings
rDNA-ITS2
A total of 40 individuals were used in this study, which were collected in 2009–2012 from Hainan (9 specimens) and Yunnan (26 specimens). The remaining 5 specimens were collected at Lazan, a county on the Myanmar side of the China-Myanmar border. The Chinese side is Naban, Yunnan. The ITS2 sequences of these specimens were amplified by PCR and sequenced. The length was in the range of 1600 bp to 1760 bp. The sequences were compared to the existing sequences of the members of An. barbirostris complex in GenBank. The sequence comparison revealed two species, An. barbirostris A1/clade III and A2/clade IV. Among 40 specimens, 38 hit to A1 (GenBank accession No. AB331555)/clade III (EU812782) with 99% or 100% identity. The remaining two specimens hit to A2 (AB331551)/clade IV (EU812794) with 99% and 100% identity, therefore classified as A2/clade IV (Table 2). The intraspecific variation (p-distance) of rDNA-ITS2 sequences was below 0.001, and the interspecific variation between An. barbirostris A1/clade III with A2/clade IV was above 0.201.
The relationships of the specimens were further analyzed by maximum likelihood. Different models were tested for making a ML tree. Figure 1 presented a ML tree that was reconstructed by GTR model. Topology of the tree showed two clades, corresponding to An. barbirostris A1/clade III and A2/clade IV, respectively. This clearly indicates that there are at least two molecular forms in the An. barbirostris complex in China.
mtDNA-COI
A 830 bp fragment of the COI gene was used for the analysis in this study. Out of 40 specimens, 38 sequences were almost identical (99-100% identity) to that of the An. barbirostris clade III (EU797221). The remaining two sequences CM5 and CM6 were the same as the An. barbirostris clade IV (EU797257). The intraspecific variation (p-distance) of mtDNA-COI gene sequences was below 0.012, and interspecific variation between An. barbirostris clade III with IV was greater than 0.031. The ML tree using COI sequences was reconstructed by HKY + I model (Figure 2). The specimens were clustered into two clades, corresponding to the An. barbirostris clade III and clade IV, respectively. This is consistent with the findings of the ITS2 analysis.
Conclusions
Both ITS2 and COI are distinctive molecular characters in distinguishing cryptic species in the An. barbirostris complex. The sequence comparison identified two molecular forms, A1/clade III and A2/clade IV, in the An. barbirostris specimens collected in Hainan and Yunnan. This was the first record documenting the presence of cryptic species in An. barbirostris s. l. in China. The molecular characterization will be valuable for phylogenetic study of the genus Anopheles in China.
References
Paredes-Esquivel C, Donnelly MJ, Harbach RE, Townson H: A molecular phylogeny of mosquitoes in the Anopheles barbirostris Subgroup reveals cryptic species: implications for identification of disease vectors. Mol Phylogenet Evol. 2009, 50 (1): 141-151. 10.1016/j.ympev.2008.10.011.
Choochote W, Sucharit S, Abeyewickreme W: Experiments in crossing two strains of Anopheles barbirostris van der Wulp 1884 (Diptera: Culicidae) in Thailand. Southeast Asian J Trop Med Public Health. 1983, 14 (2): 204-209.
Baimi V, Rattanarithikul R, Kijchalao U: Metaphase karyotypes of Anopheles of Thailand and Southeast Asia: IV. The Barbirostris and Umbrosus species Groups, subgenus Anopheles (Diptera: Culicidae). J Am Mosq Control Assoc. 1995, 11 (3): 323-328.
Saeung A, Baimai V, Otsuka Y, Rattanarithikul R, Somboon P, Junkum A, Tuetun B, Takaoka H, Choochote W: Molecular and cytogenetic evidence of three sibling species of the Anopheles barbirostris Form A (Diptera:Culicidae) in Thailand. Parasitol Res. 2008, 102 (3): 499-507. 10.1007/s00436-007-0788-0.
Saeung A, Otsuka Y, Baimai V, Somboon P, Pitasawat B, Tuetun B, Junkum A, Takaoka H, Choochote W: Cytogenetic and molecular evidence for two species in the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand. Parasitol Res. 2007, 101 (5): 1337-1344. 10.1007/s00436-007-0645-1.
Otsuka Y: Variation in number and formation of repeat sequences in the rDNA ITS2 region of five sibling species in the Anopheles barbirostris complex in Thailand. J Insect Sci. 2011, 11: 137-10.1673/031.011.13701.
Suwannamit S, Baimai V, Otsuka Y, Saeung A, Thongsahuan S, Tuetun B, Apiwathnasorn C, Jariyapan N, Somboon P, Takaoka H, Choochote W: Cytogenetic and molecular evidence for an additional new species within the taxon Anopheles barbirostris (Diptera: Culicidae) in Thailand. Parasitol Res. 2009, 104 (4): 905-918. 10.1007/s00436-008-1272-1.
Gajapathy K, Jude PJ, Goodacre SL, Peiris LB, Ramasamy R, Surendran SN: Molecular characterization of the malaria vector Anopheles barbirostris van der Wulp in Sri Lanka. Parasit Vectors. 2014, 7: 348-10.1186/1756-3305-7-348.
Thongsahuan S, Baimai V, Junkum A, Saeung A, Min GS, Joshi D, Park MH, Somboon P, Suwonkerd W, Tippawangkosol P, Jariyapan N, Choochote W: Susceptibility of Anopheles campestris-like and Anopheles barbirostris species complexes to Plasmodium falciparum and Plasmodium vivax in Thailand. Mem Inst Oswaldo Cruz. 2011, 106 (1): 105-112. 10.1590/S0074-02762011000100017.
Apiwathnasor C, Prommongkol S, Samung Y, Limrat D, Rojruthai B: Potential for Anopheles campestris (Diptera: Culicidae) to transmit malaria parasites in Pa Rai subdistrict (Aranyaprathet, Sa Kaeo Province), Thailand. J Med Entomol. 2002, 39 (4): 583-586. 10.1603/0022-2585-39.4.583.
Limrat D, Rojruthai B, Apiwathnasorn C, Samung Y, Prommongkol S:Anopheles barbirostris/campestris as a probable vector of malaria in Aranyaprathet, Sa Kaeo Province. Southeast Asian J Trop Med Public Health. 2001, 32 (4): 739-744.
Ma Y, Ma Y, Lin L, Wang Y: Phylogenetic relationship among some species of genus Anopheles subgenus Anopheles (Diptera: Culicidae) in China: based on rDNA-ITS2 sequences. Chin J Vector Biol Control. 2013, 24: 382-388.
Ma Y, Wu J, Ma Y: Phylogenetic relationships among the species of Anopheles subgenus Cellia (Diptera: Culicidae) in China: inferred by ITS2 sequences of ribosomal DNA. Entomotaxonomia. 2011, 33: 245-256.
Wu J, Ma Y, Ma Y: Phylogenetic relationship among the species of Anopheles subgenus Cellia (Diptera: Culicidae) in China: inferred by mitochondrial and ribosomal DNA sequences. Acta Entomol Sinica. 2010, 53: 1030-1038.
Lu B: Fauna Sinica, Insecta Vol. 9: Diptera, Culicidae II. 1997, Science Press, Beijing
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23 (21): 2947-2948. 10.1093/bioinformatics/btm404.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28 (10): 2731-2739. 10.1093/molbev/msr121.
Acknowledgements
The authors thank Jinyong Jiang, Hongning Zhou for providing Yunnan and Myanmar specimens, Linhai Zeng, Wei Zhao for providing Hainan specimens, and Zhenzhou Yang, Xiangyu Li, Hua Shi for mosquito collections. This work was supported by the foundation from the Infective Diseases Prevention and Cure Project of China (No. 2012ZX10004219-010) and National Natural Science Foundation of China-Yunnan Joint Fund (No. U0932604). JX was supported by the grant 1SC1GM109367 from the National Institutes of Health, and the grant DMS-1222592 from National Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
YM designed the study and identified the specimens. YW carried out PCR and sequence comparison. YM, JX and YW performed data analysis and wrote the manuscript. All authors read and approved the final version of the manuscript.
Authors’ original submitted files for images
Below are the links to the authors’ original submitted files for images.
Rights and permissions
Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
About this article
Cite this article
Wang, Y., Xu, J. & Ma, Y. Molecular characterization of cryptic species of Anopheles barbirostris van der Wulp in China. Parasites Vectors 7, 592 (2014). https://doi.org/10.1186/s13071-014-0592-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13071-014-0592-5
Keywords
- Anopheles barbirostris
- Species complex
- China