- Short Report
- Open Access
Seroprevalence and genotype of Toxoplasma gondii in pigs, dogs and cats from Guizhou province, Southwest China
- Yong-Nian Li†1Email author,
- XinWen Nie†1,
- Qun-Yi Peng2,
- Xiao-Qiong Mu1,
- Ming Zhang3,
- Meng-Yuan Tian2 and
- Shao-ju Min4
https://doi.org/10.1186/s13071-015-0809-2
© Li et al.; licensee BioMed Central. 2015
- Received: 6 November 2014
- Accepted: 17 March 2015
- Published: 10 April 2015
Abstract
Background
Toxoplasma gondii is an obligate, intracellular protozoan that infects almost all warm-blooded animals, including humans, domesticated and wild animals. Recent studies of Toxoplasma gondii isolates from animals in different regions of China have shown a limited genetic diversity with the dominance of the ToxoDB PCR-RFLP genotype #9 named as “Chinese 1”. However, there is not much published information regarding its prevalence in domestic animals from Guizhou province, a subtropical region in Southwest China. The objectives of this study were to determine seroprevalence and genetic diversity of T .gondii in pigs, dogs and cats in Guizhou province, Southwest China.
Findings
The anti-T. gondii IgG were detected in 70.0%(49/70) pigs, 20.56%(22/107) dogs and 63.16(12/19) cats. The anti-T. gondii IgM were found in 0.93%(1/107) dogs, 21.53%(4/19) cats, but not in pigs. In addition, the toxoplasma circulating antigen (CAG) were detected in 16.9%18/70)pigs, 13.1% (14/107) dogs and 10.5%(2/19) cats. The T. gondii DNA were detected in 31.5%(22/70) pigs, 3.7%(4/107) dogs and 52.63%(10/19) cats. Five T. gondii isolates were obtained(3 from pigs and 2 from cats). The genotype of these five isolates belonged to the predominant genotype “Chinese 1”.
Conclusions
The high prevalence of T. gondii infection in pigs,cats and dogs indicated that the T. gondii infection is common in Guizhou province. Additionally, the T. gondii genotype “Chinese 1” was dominant in Southwest China.
Keywords
- Toxoplasma gondii
- Animal
- Seroprevalence
- Genotype
- Guizhou province
Findings
Toxoplasma gondii is an obligate, intracellular protozoan that infects almost all warm-blooded animals, including humans, domesticated and wild animals [1,2]. These animals can serve as intermediate hosts of the parasite, harbouring tissue cysts, while cats and other felidae are the definitive hosts, shedding oocysts into the environment. Humans acquire T. gondii through the consumption of undercooked meat containing tissue cysts or through the ingestion of sporulated oocysts that can lead to life threatening disease in the foetus and immunocompromised/immunosuppressed patients e.g. transplant recipients. In general, T. gondii is an opportunistic pathogen and establishes long-lasting chronic infection. However, T. gondii infection can cause high mortality in immunocompromised patients with HIV/AIDS.
The pathogenicity of T. gondii is related to parasite genotypes and susceptibility of host species [3]. Based on early molecular genotyping studies, T. gondii isolates in North America and Europe have been classified into three genetic types (I, II, III). TypeIisolates are lethal to mice, and typeIIand III are usually less virulent for mice [4]. High genetic diversity of T. gondii exists in Central and South America where a large number of genotypes were identified by RFLP typing [5]. To date, the three archetypical (type I, II and III) and several atypical types have been identified in China, of which the “Chinese 1” seems to be a predominant type [6].
Guizhou province is located in Yunnan-Guizhou plateau in Southwest China. Previous studies showed high seroprevalence of T. gondii in pigs and human in Guizhou province [7,8]. However the data on T. gondii is still limited. Especially as, there is no epidemiological or genotype information on T. gondii in animals here. Thus, the aim of the present study was to analyse the prevalence and genetic characteristics of T. gondii in domestic pigs, pet dogs and stray cats in Guizhou province, southwestern China.
In the present study, animal samples (blood, heart and brain tissues) were obtained from 70 pigs, 107 dogs and 19 cats from November, 2011 to December, 2012. The blood and heart tissues of pigs were collected from Guiyang Jiawang slaughterhouse. The dog blood samples were obtained from Guiyang Dear pet clinic. The cat’s blood and brain tissues were collected from stray cats, which were captured from some neighbourhoods in Guizhou province and the cats were euthanized. The anti-T. gondii IgG and IgM antibodies and the toxoplasma circulating antigens (CAG) were assayed by Toxoplasma ELISA Test Kits (Zhuhai Haitai Life Technology Company, China). DNA was extracted from heart or brain tissue (5 g), or blood (1 ml) sample for PCR detection of the 529 bp repetitive DNA element of T. gondi. DNA extraction was performed using DNA extraction reagent kits (Beijing Ding changsheng biotechnology company, China). The tissue sample homogenates (5 g/10 ml) from seropositive animals were bioassayed in mice for isolation of the T. gondii strain, following the previously described protocol [6,9]. Mouse peritoneal exudates were collected and examined for viable T. gondii. Tissue cysts were microscopically examined as a squash preparation as described previously [10]. T. gondii tachyzoites collected from intraperitoneal fluid were cryopreserved in liquid nitrogen for long term storage. Genotyping of T. gondii isolates was performed using multilocus PCR-RFLP with 10 genetic markers as previously described [4]: SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico. Reference strains of T. gondii were also used in genotyping, including type I (GT1), type II (PTG), type III (CTG) and other strains (MAS, TgCgCa1, TgCatBr5, TgWtdsc40, TgToucan(TgrRsCr1), and TgCatBr64) were kindly provided by Dr. Chunlei Su at the University of Tennessee, Knoxville USA. In addition, UPRT-1 intron sequence of T. gondii was amplified through nested-PCR. The DNA sequencing was generated by SinoGenoMax company (Beijing, China). The PCR products were digested with `appropriate restriction endonucleases. The restriction fragments were run by electrophoresis. And the typing data were analyzed using ToxoDB (www.toxodb.org) database and compared with the reference strain profiles.
Serological test and 529 bp detection of T. gondii in pigs, cats and dogs
Animals | Quantities | IgG positive | IgM positive | CAG positive | 529bpPCR positive | ||||
---|---|---|---|---|---|---|---|---|---|
Samples | % | Samples | % | Samples | % | Samples | % | ||
Pigs | 70 | 49 | 70 | 0 | 0 | 18 | 16.88 | 22 | 31.51 |
Straying cats | 19 | 12 | 63.16 | 4 | 21.05 | 2 | 10.53 | 10 | 52.63 |
Pet dogs | 97 | 19 | 19.59 | 1 | 1.03 | 14 | 14.43 | 4 | 4.12 |
Total | 186 | 80 | 43.01 | 5 | 2.69 | 34 | 18.28 | 36 | 17.2 |
Multiplex multilocus nested PCR-RFLP (Mn-PCR-RFLP) analysis of Toxoplasma gondii isolates and reference strains. (reference strains are GT1, PTG, CTG, MAS, TgWtdSc40, TgCgCa1, TgToucan, TgCatBr5, TgCatBr64. isolates are TgGZ1- TgGZ5).
Genotype of T. gondii reference strains and isolates in Guizhou province
Reference strains and isolates | Markers | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SAG1 | (5’ + 3’)SAG2 | Alt.SAG2 | SAG3 | BTUB | GRA6 | C22-8 | C29-2 | L358 | PK1 | Apico | Comments | |
GT1,RH88(typeI) | I | I | I | I | I | I | I | I | I | I | I | Reference |
PTG(type II) | IIorIII | II | II | II | II | II | II | II | II | II | II | Reference |
CTG(type III) | IIorIII | III | III | III | III | III | III | III | III | III | III | Reference |
MAS | μ-1 | I | II | III | III | III | μ-1 | I | I | III | I | Reference |
TgWtdSc40 | μ-1 | II | II | II | II | II | II | II | I | II | I | Reference |
TgCgCa1 | I | II | II | III | II | II | II | μ-1 | I | μ-2 | I | Reference |
TgRsCr1 | μ-1 | I | II | III | I | III | μ-2 | I | I | III | I | Reference |
TgCatBr5 | I | III | III | III | III | III | I | I | I | μ-1 | I | Reference |
TgCatBr64 | I | I | μ-1 | III | III | III | μ-1 | I | III | III | I | Reference |
TGGZ1(pig) | μ-1 | II | II | III | III | II | II | III | II | II | I | This study |
TGGZ2(pig) | μ-1 | II | II | III | III | II | II | III | II | II | I | This study |
TGGZ3(pig) | μ-1 | II | II | III | III | II | II | III | II | II | I | This study |
TGGZ4(cat) | μ-1 | II | II | III | III | II | II | III | II | II | I | This study |
TGGZ5(cat) | μ-1 | II | II | III | III | II | II | III | II | II | I | This study |
The present results showed high prevalence of T. gondii (70.0%) in pigs. It is in agreement with previous reported prevalence of 65.8% in pigs in Guizhou province [8], and 60.4% in Chongqing [11]. This high prevalence level can be explained by poor-managed facilities in this area. It was shown that if rodents and cats were controlled, as carried out on well-managed intensive farms, T. gondii prevalence would drop drastically, in a similar way to that observed in the USA and other developed countries [12,13]. The high prevalence of T. gondii in pigs from different farms, that were often infested with rats and cats, seems to correlate well with the high prevalence of T. gondii in stray cats. Here, we show that 12/19 (63.2%) of stray cats were infected with T. gondii. The prevalence of T. gondii infection in stray cats was 63.2% in Guiyang, 57.8% in Beijing [14], 45.3% in Lanzhou [15] and 11.7% in Shanghai [16]. Whereas it was reported that 19.5% of pet dogs in Guiyang, 13.2% in Beijing [17], 11.1% in Lanzhou [18] and 2.6% in Shanghai were infected [19]. In general, higher prevalence in cats was accompanied by higher prevalence in humans, dogs, pigs and other susceptible animals, therefore increasing the chances of environmental contamination by millions of oocysts shed by infected cats, and higher risk of ingestion of meats containing tissue cysts from infected animals [20]. Therefore, controlling the T. gondii infection and contamination emission of cats is important.
There is scarce information concerning the isolation and genotyping of T. gondii in Guizhou province. In the present investigation, we obtained five viable T. gondii isolates (3 from pigs and 2 from cats) by bioassay in mouse. These isolates showed low virulence in mice(the data will reported in another paper). Furthermore, these isolates have identical genotype and belongs to “Chinese 1”. Previous reports of genetic typing of T. gondii isolates from cats in China revealed that 15 (total 28, 88.23%) isolates are “Chinese 1” [13]. This genotype has also been found in Guangdong province, and Hunan, and Hubei province in China. Especially in Guangdong province, 26 (total 28, 92.86%) isolates were “Chinese 1” indicating it was the dominant genotype in that region [21]. The recent literature on genotypes revealed that 15/23(65.2%) of T. gondii isolates from Anhui, and Hubei, and Guizhou province were the “Chinese 1”. At the same time, typesI,II,III and other atypical types were also found in these areas [6,22]. Our results confirm that the “Chinese 1” is a dominant isolate that is wide spread in China.
Ethics statement
All experimental animals were treated in strict accordance to the guidelines for the Laboratory Animal Use and Care from Chinese CDC and the Rules for Medical laboratory Animals (1998) from Ministry of Health, China. The protocols were approved by the Institutional Review Board (IRB) of the Institute of Biomedicine at Guiyang Medical College. All efforts were made to minimize animal suffering during the course of these studies.
Notes
Declarations
Acknowledgments
This work was supported by The National Natural Science Foundation of China (NSFC) (No.81060137). We thank the staff of Dear Animal Hospital and JiaWang Slaughterhouse who assisted in sample acquisition. We are grateful to Hong-nining and Qian-dexing and Wanglin for their advices on the experiments. We thank Dr. Chunlei Su in The Department of Microbiology, the University of Tennessee, Knoxville for technical support and constructive comments to this manuscript.
Authors’ Affiliations
References
- Dubey JP, Rajendran C, Ferreira LR, Martins J, Kwok OCH, Hill DE, et al. High prevalence and genotypes of Toxoplasma gondii isolated from goats, from a retail meat store, destined for human consumption in the USA. Int J Parasitol. 2011;41:827–33.View ArticlePubMedGoogle Scholar
- Hill DE, Dubey JP. Toxoplasma gondii prevalence in farm animals in the United States. Int J Parasitol. 2013;43:107–13.View ArticlePubMedGoogle Scholar
- Dubeym JP. Toxoplasmosis of Animals and Humans (Second Edition). USA: CRC Press; 2009. p. 145–59. 6.View ArticleGoogle Scholar
- Su C, Zhang X, Dubey JP. Genotyping of Toxoplasma gondii by multilocus PCR-RFLP markers:A high resolution and simple method for identification of parasites. Int J Parasitol. 2006;36:1–8.View ArticleGoogle Scholar
- Rajendran C, Su C, Dubey JP. Molecular genotyping of Toxoplasma gondii from Central and South America revealed high diversity within and between populations. Infect Genet Evol. 2012;12(2):359–68.View ArticlePubMedGoogle Scholar
- Wang L, Cheng HW, Huang KQ, Xu YH, Li YN, Du J, et al. Toxoplasma gondii prevalence in food animals and rodents in different regions of China: isolation, genotyping and mouse pathogenicity. Parasit Vectors. 2013;6:273–8.View ArticlePubMed CentralPubMedGoogle Scholar
- Zhou P, Chen ZG, Li HL, Zheng HH, He SY, Lin RQ, et al. Toxoplasma gondii infection in humans in China. Parasit Vectors. 2011;4:165–74.View ArticlePubMed CentralPubMedGoogle Scholar
- Hong N, Qian D, Zhang D, Hua Y, Li T, Ran L, et al. Serological investigation of pig’s Toxoplasmosis in Guizhou province. Chin J Vet Parasitol. 2010;18(4):68–70.Google Scholar
- Dubey JP. Refinement of pepsin digestion method for isolation of Toxoplasma gondii from infected tissues. Vet Parasitol. 1998;74:75–7.View ArticlePubMedGoogle Scholar
- El Behairy AM, Choudhary S, Ferreira LR, Kwok OC, Hilali M, Su C, et al. Genetic characterization of viable Toxoplasma gondii isolates from stray dogs fromGiza. Egypt Vet Parasitol. 2013;193:25–9.View ArticleGoogle Scholar
- Tan Q, Li Y, Nie K, Zeng Z, Yang Z. Seroprevalent Study of Toxoplasmosis among pigs in Chongqing Area. Progress Vet Med. 2008;29(7):109–10. 115.Google Scholar
- Dubey JP, Hill DE, Rozeboom DW, Rajendrana C, Choudharya S, Ferreira LR, et al. High prevalence and genotypes of Toxoplasma gondii isolated from organic pigs in northern USA. Vet Parasitol. 2012;188:14–8.View ArticlePubMedGoogle Scholar
- Dubey JP, Zhu XQ, Sundar N, Zhang H, Kwok OC, Su C. Genetic and biologic characterization of Toxoplasma gondii isolates of cats from China. Vet Parasitol. 2007;145(3–4):352–6.View ArticlePubMedGoogle Scholar
- Qian W, Wang H, Su C, Shan D, Cui X, Yang N, et al. Isolation and characterization of Toxoplasma gondii strains from stray cats revealed a single genotype in Beijing, China. Vet Parasitol. 2012;6;187(3–4):408–13.View ArticleGoogle Scholar
- Wu SM, Zhu XQ, Zhou DH, Fu BQ, Chen J, Yang JF, et al. Seroprevalence of Toxoplasma gondii infection in household and stray cats in Lanzhou, northwest China. Parasit Vectors. 2011;4:214.View ArticlePubMed CentralPubMedGoogle Scholar
- Quan W, Wei J, YongJun C, ChunYing L, Jinlei S, Xintong L. Prevalence of Toxoplasma gondii antibodies,circulating antigens and DNA in stray cats in Shanghai, China. Parasit Vectors. 2012;5:190.View ArticleGoogle Scholar
- Yonglan Y, Lijuan F, Ming W. Serological investigation for Toxoplasmosis among Dogs and Cats in Beijing Area. Chin J Vet Med. 2006;42(5):7–9.Google Scholar
- Song-Ming W, Si-Yang H, Bao-Quan F, Guang-Yuan L, Jia-Xu C, Mu-Xin C, et al. Seroprevalence of Toxoplasma gondii infection in pet dogs in Lanzhou, Northwest China. Parasites & Vectors. 2011;4:64.View ArticleGoogle Scholar
- Haosheng Q, Liu M, Xiangqian Y, Ni H, Ye C. Toxoplasmosis prevalence among dogs in Pudong District of Shanghai. Chin J Vet Parasitol. 2007;15(6):34–7.Google Scholar
- Dubey JP, Hill DE, Jones JL, Hightower AW, Kirkland E, Roberts JM, et al. Prevalence of viable Toxoplasma gondii in beef, chicken, and pork from retail meat stores in the United States: risk assessment to consumers. J Parasitol. 2005;91(5):1082–93.View ArticlePubMedGoogle Scholar
- Yan C, Yue CL, Qiu SB, Li HL, Zhang H, Song HQ, et al. Seroprevalence of Toxoplasma gondii infection in domestic pigeons (Columba livia) in Guangdong Province of southern China. Vet Parasitol. 2011;177(3–4):371–3.View ArticlePubMedGoogle Scholar
- Zhou P, Zhang H, Lin R-Q, Zhang D-L, Song H-Q, Chunlei S, et al. Genetic characterization of Toxoplasma gondii isolates from China. Parasitol Int. 2009;58:193–5.View ArticlePubMedGoogle Scholar
Copyright
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate. Please note that comments may be removed without notice if they are flagged by another user or do not comply with our community guidelines.