Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000;78(9):1136–47.
CAS
PubMed
PubMed Central
Google Scholar
Reiter P. Climate change and mosquito-borne disease. Environ Health Perspect. 2001;109 Suppl 1:141.
Article
PubMed
PubMed Central
Google Scholar
Knudsen A. Global distribution and continuing spread of Aedes albopictus. Parassitologia. 1995;37(2–3):91–7.
CAS
PubMed
Google Scholar
Laird M, Calder L, Thornton RC, Syme R, Holder P, Mogi M. Japanese Aedes albopictus among four mosquito species reaching New Zealand in used tires. J Am Mosq Control Assoc. 1994;10(1):14–23.
CAS
PubMed
Google Scholar
Reiter P, Sprenger D. The used tire trade: a mechanism for the worldwide dispersal of container breeding mosquitoes. J Am Mosq Control Assoc. 1987;3(3):494–501.
CAS
PubMed
Google Scholar
Hales S, De Wet N, Maindonald J, Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet. 2002;360(9336):830–4.
Article
PubMed
Google Scholar
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. Plos Negl Trop Dis. 2012;6(8):897–8.
Article
Google Scholar
Gratz NG. Critical review of the vector status of Aedes albopictus. Med Vet Entomol. 2004;18(3):215–27.
Article
CAS
PubMed
Google Scholar
World Health Organization. Dengue and severe dengue. 2016. http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 22 Feb 2017.
Novak R. The Asian tiger mosquito, Aedes albopictus. Wing Beats. 1992;3(5):1.
Google Scholar
Enserink M. A mosquito goes global. Science. 2008;320(5878):864–6.
Article
CAS
PubMed
Google Scholar
Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12(6):435–47.
Article
PubMed
PubMed Central
Google Scholar
Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface. 2012;9:2708–17.
Article
PubMed
PubMed Central
Google Scholar
Scholte E-J, Schaffner F. Waiting for the tiger: establishment and spread of the Aedes albopictus mosquito in Europe. In: Takken W, Knols B, editors. Emerging pests and vector-borne diseases in Europe. Wageningen: Wageningen Academic Publishers; 2007. p. 241–60.
Google Scholar
Fischer D, Thomas SM, Niemitz F, Reineking B, Beierkuhnlein C. Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Glob Planet Chang. 2011;78(1):54–64.
Article
Google Scholar
Hawley WA. The biology of Aedes albopictus. J Am Mosq Control Assoc Suppl. 1988;1:1–39.
CAS
PubMed
Google Scholar
Alto BW, Juliano SA. Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J Med Entomol. 2001;38(4):548–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alto BW, Juliano SA. Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. J Med Entomol. 2001;38(5):646–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roiz D, Rosa R, Arnoldi D, Rizzoli A. Effects of temperature and rainfall on the activity and dynamics of host-seeking Aedes albopictus females in northern Italy. Vector Borne Zoonotic Dis. 2010;10(8):811–6.
Article
PubMed
Google Scholar
Loetti V, Schweigmann N, Burroni N. Temperature effects on the immature development time of Culex eduardoi Casal & García (Diptera: Culicidae). Neotrop Entomol. 2011;40(1):138–42.
Article
CAS
PubMed
Google Scholar
Madder DJ, Surgeoner GA, Helson BV. Number of generations, egg production, and developmental time of Culex pipiens and Culex restauns (Diptera: Culicidae) in southern Ontario. J Med Entomol. 1983;20(3):275–87.
Article
CAS
PubMed
Google Scholar
Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, et al. Observational evidence of recent change in the northern high-latitude environment. Clim Change. 2000;46(1–2):159–207.
Article
Google Scholar
O’Brien KL, Leichenko RM. Double exposure: assessing the impacts of climate change within the context of economic globalization. Global Environ Chang. 2000;10(3):221–32.
Article
Google Scholar
Jia P, Lu L, Chen X, Chen J, Guo L, Yu X, Liu Q. A climate-driven mechanistic population model of Aedes albopictus with diapause. Parasit Vectors. 2016;9(1):1–15.
Article
Google Scholar
Shen J, Luo L, Li L, Jing Q, Ou C, Yang Z, et al. The impacts of mosquito density and meteorological factors on dengue fever epidemics in Guangzhou, China, 2006–2014: a time-series analysis. Biomed Environ Sci. 2015;28(5):321–9.
PubMed
Google Scholar
Lei L, Li X, Xiao X, Xu Y, Huang M, Yang Z. Identification of Aedes albopictus larval index thresholds in the transmission of dengue in Guangzhou, China. J Vector Ecol. 2015;40(2):240–6.
Article
Google Scholar
China Meteorological Data Sharing Service System. China. 2016. http://data.cma.cn/data/detail/dataCode/A.0029.0001.html. Accessed 23 Nov 2016.
National Oceanic And Atmospheric Administration: Solar Calculation Details. http://www.srrb.noaa.gov/highlights/sunrise/calcdetails.html (2017). Accessed 22 Feb 2017.
Cailly P, Tran A, Balenghien T, L’Ambert G, Toty C, Ezanno P. A climate-driven abundance model to assess mosquito control strategies. Ecol Model. 2012;227:7–17.
Article
Google Scholar
Erickson RA, Presley SM, Allen LJ, Long KR, Cox SB. A stage-structured, Aedes albopictus population model. Ecol Model. 2010;221(9):1273–82.
Article
Google Scholar
Tran A, L’Ambert G, Lacour G, Benoit R, Demarchi M, Cros M, et al. A rainfall- and temperature-driven abundance model for Aedes albopictus populations. Int J Environ Res Public Health. 2013;10(5):1698–719.
Article
PubMed
PubMed Central
Google Scholar
Clements A. The biology of mosquitoes: sensory, reception and behaviour. Oxon: CABI Publishing; 1999.
Google Scholar
Chapman RF. The insects: structure and function. Cambridge: Cambridge University Press; 1998.
Book
Google Scholar
Tauber MJ, Tauber CA, Masaki S. Seasonal adaptations of insects. Oxon: Oxford University Press; 1986.
Google Scholar
Luciano T, Severini IF, Di Luca IM, Bella IA, ryP Roberto R. Seasonal patterns of oviposition and egg hatching rate of Aedes albopictus in Rome. J Am Mosq Control Assoc. 2003;19(1):100.
Google Scholar
Jia P. Python code for the MPAD model. 2017. https://github.com/J-Phx13/Albopictus-Model/blob/master/Albopictus_Simulation.py. Accessed 22 Feb 2017.
Medlock JM, Avenell D, Barrass I, Leach S. Analysis of the potential for survival and seasonal activity of Aedes albopictus (Diptera: Culicidae) in the United Kingdom. J Vector Ecol. 2006;31(2):292–304.
Article
PubMed
Google Scholar
Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA. 2008;105(18):6668–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, et al. Global climate projections. In: Solomon SD, Qin M, Manning Z, Chen M, Marquis KB, Averyt M, et al., editors. Climate change 2007: the physical science basis. Cambridge and New York: Cambridge University Press; 2007.
Rezza G. Aedes albopictus and the reemergence of dengue. BMC Public Health. 2012;12(1):1–3.
Article
Google Scholar
Bradshaw WE, Zani PA, Holzapfel CM. Adaptation in temperate climate. Evolution. 2004;58(8):1748–62.
Article
PubMed
Google Scholar
Chinese Center For Disease Control And Prevention: Surveillance and control of Aedes aegypti and Aedes albopictus in the United States. http://www.cdc.gov/chikungunya/resources/vector-control.html (2016). Accessed 22 Feb 2017.
Polwiang S. The seasonal reproduction number of dengue fever: impacts of climate on transmission. PeerJ. 2015;3(7):286–95.
Google Scholar
Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature. 1997;386(6626):698.
Article
CAS
Google Scholar
Robinet C, Roques A. Direct impacts of recent climate warming on insect populations. Integr Zool. 2010;5(2):132–42.
Article
PubMed
Google Scholar
Vasseur DA, Delong JP, Gilbert B, Greig HS, Harley CD, McCann KS, et al. Increased temperature variation poses a greater risk to species than climate warming. Proc Biol Sci. 2014;281(1779):85–94.
Article
Google Scholar
Bozinovic F, Bastías DA, Boher F, Clavijobaquet S, Estay SA, Jr AM. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol Biochem Zool. 2011;84(6):543–52.
Article
PubMed
Google Scholar
Clusella-Trullas S, Chown SL. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat. 2011;177(6):738–51.
Article
PubMed
Google Scholar
Martin T, Huey R. Why “Suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat. 2008;171(3):53–80.
Article
Google Scholar
Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S, Murdock CC, et al. Temperature variation makes ectotherms more sensitive to climate change. Glob Chang Biol. 2013;19(8):2373–80.
Article
PubMed
PubMed Central
Google Scholar
Ruel JJ, Ayres MP. Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol. 1999;14(9):361–6.
Article
CAS
PubMed
Google Scholar
Terblanche JS, Nyamukondiwa C, Kleynhans E. Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomol Exp Appl. 2010;137(3):304–15.
Article
Google Scholar
Cao L, Zhao P, Yan Z, Jones P, Zhu Y, Yu Y, et al. Instrumental temperature series in eastern and central China back to the nineteenth century. J Geophys Res Atmos. 2013;118(15):8197–207.
Article
Google Scholar
Yang HM, Macoris ML, Galvani KC, Andrighetti MT, Wanderley DM. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect. 2009;137(8):1188–202.
Article
CAS
PubMed
Google Scholar
Almeida APG, Baptista SS, Sousa CA, Novo MTL, Ramos HC, Panella NA, et al. Bioecology and vectorial capacity of Aedes albopictus (Diptera: Culicidae) in Macao, China, in relation to dengue virus transmission. J Med Entomol. 2005;42(3):419–28.
Article
PubMed
Google Scholar
Ho BC, Chan KL, Chan YC. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City: 3. Population fluctuations. Bull World Health Organ. 1971;44(5):635–41.
CAS
PubMed
PubMed Central
Google Scholar
Hanson SM. Field overwinter survivorship of Aedes albopictus eggs in Japan. J Am Mosq Control Assoc. 1995;11(3):354–7.
CAS
PubMed
Google Scholar
Toma L, Severini F, Di LM, Bella A, Romi R. Seasonal patterns of oviposition and egg hatching rate of Aedes albopictus in Rome. J Am Mosq Control Assoc. 2003;19(1):19–22.
PubMed
Google Scholar
Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, et al. The representative concentration pathways: an overview. Clim Change. 2011;109:5–31.
Article
Google Scholar
Rogelj J, Meinshausen M, Knutti R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Chang. 2012;2(4):248–53.
Article
Google Scholar
Wilks DS, Wilby RL. The weather generation game: a review of stochastic weather models. Prog Phys Geogr. 1999;23(3):329–57.
Article
Google Scholar
Hoffmann AA, Sgro CM. Climate change and evolutionary adaptation. Nature. 2011;470(7335):479–85.
Article
CAS
PubMed
Google Scholar
Kearney M, Porter WP, Williams C, Ritchie S, Hoffmann AA. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol. 2009;23(3):528–38.
Article
Google Scholar
Sternberg ED, Thomas MB. Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol. 2014;30(3):115–22.
Article
PubMed
Google Scholar
Hopp MJ, Foley JA. Worldwide fluctuations in dengue fever cases related to climate variability. Clim Res. 2003;25(1):85–94.
Article
Google Scholar