Takken W, Knols BG. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999;44:131–57.
Article
CAS
Google Scholar
Lehane MJ. The biology of blood-sucking in insects. Cambridge: Cambridge University Press; 2005.
Book
Google Scholar
Raji JI, DeGennaro M. Genetic analysis of mosquito detection of humans. Curr Opin Insect Sci. 2017;20:34–8.
Article
Google Scholar
Molaei G, Andreadis TG, Armstrong PM, Diuk-Wasser M. Host-feeding patterns of potential mosquito vectors in Connecticut, USA: molecular analysis of bloodmeals from 23 species of Aedes, Anopheles, Culex, Coquillettidia, Psorophora, and Uranotaenia. J Med Entomol. 2007;45:1143–51.
Article
Google Scholar
Burkett-Cadena ND, Graham SP, Hassan HK, Guyer C, Eubanks MD, Katholi CR, et al. Blood feeding patterns of potential arbovirus vectors of the genus Culex targeting ectothermic hosts. Am J Trop Med Hyg. 2008;79:809–15.
Article
Google Scholar
Muñoz J, Ruiz S, Soriguer R, Alcaide M, Viana DS, Roiz D, et al. Feeding patterns of potential West Nile virus vectors in south-west Spain. PLoS One. 2012;7:e39549.
Article
Google Scholar
Takken W, Verhulst NO. Host preferences of blood-feeding mosquitoes. Annu Rev Entomol. 2013;58:433–53.
Article
CAS
Google Scholar
Martínez de la Puente J, Muñoz J, Capelli G, Montarsi F, Soriguer R, Arnoldi D, et al. Avian malaria parasites in the last supper: identifying encounters between parasites and the invasive Asian mosquito tiger and native mosquito species in Italy. Malar J. 2015;14:32.
Article
Google Scholar
Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 2006;4:e82.
Article
Google Scholar
Hamer GL, Kitron UD, Goldberg TL, Brawn JD, Loss SR, Ruiz MO, et al. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg. 2009;80:268–78.
Article
Google Scholar
Lura T, Cummings R, Velten R, De Collibus K, Morgan T, Nguyen K, Gerry A. Host (avian) biting preference of southern California Culex mosquitoes (Diptera: Culicidae). J Med Entomol. 2012;49:687–96.
Article
Google Scholar
Rizzoli A, Bolzoni L, Chadwick EA, Capelli G, Montarsi F, Grisenti M, et al. Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasit Vectors. 2015;8:213.
Article
Google Scholar
Liebman KA, Stoddard ST, Reiner RC Jr, Perkins TA, Astete H, Sihuincha M, et al. Determinants of heterogeneous blood feeding patterns by Aedes aegypti in Iquitos, Peru. PLoS Neglect Trop Dis. 2014;8:e2702.
Article
Google Scholar
VanderWaal KL, Ezenwa VO. Heterogeneity in pathogen transmission: mechanisms and methodology. Funct Ecol. 2016;30:1606–22.
Article
Google Scholar
Dye C. The analysis of parasite transmission by bloodsucking insects. Annu Rev Entomol. 1992;37:1–19.
Article
CAS
Google Scholar
Gillies MT, Wilkes TJ. The range of attraction of animal baits and carbon dioxide for mosquitoes. Studies in a freshwater area of West Africa. B Entomol Res. 1972;61:389–404.
Article
Google Scholar
Torr SJ, Mangwiro TNC, Hall DR. The effects of host physiology on the attraction of tsetse (Diptera: Glossinidae) and Stomoxys (Diptera: Muscidae) to cattle. Bull Entomol Res. 2006;96:71–84.
Article
CAS
Google Scholar
Martínez de la Puente J, Merino S, Lobato E, Rivero-de Aguilar J, del Cerro S, Ruiz-de-Castañeda R, et al. Nest-climatic factors affect the abundance of biting flies and their effects on nestling condition. Acta Oecol. 2010;36:543–7.
Article
Google Scholar
Schönenberger AC, Wagner S, Tuten HC, Schaffner F, Torgerson P, Furrer S, et al. Host preferences in host-seeking and blood-fed mosquitoes in Switzerland. Med Vet Entomol. 2016;30:39–52.
Article
Google Scholar
Simpson JE, Folsom-O’Keefe CM, Childs JE, Simons LE, Andreadis TG, Diuk-Wasser MA. Avian host-selection by Culex pipiens in experimental trials. PLoS One. 2009;4:e7861.
Article
Google Scholar
Zuk M, Thornhill R, Ligon JD, Johnson K. Parasites and mate choice in red jungle fowl. Am Zool. 1990;30:235–44.
Article
Google Scholar
Skorping A, Jensen KH. Disease dynamics: all caused by males? Trends Ecol Evol. 2004;19:219–20.
Article
Google Scholar
Zuk M, Stoehr AM. Sex differences in susceptibility to infection: an evolutionary perspective. In: Klein SL, Roberts CW, editors. Sex hormones and immunity to infection. Berlin: Springer; 2010. p. 1–17.
Google Scholar
Calero-Riestra M, García JT. Sex-dependent differences in avian malaria prevalence and consequences of infections on nestling growth and adult condition in the Tawny pipit, Anthus campestris. Malar J. 2016;15:178.
Article
Google Scholar
Burkett-Cadena ND, Bingham AM, Unnasch TR. Sex-biased avian host use by arbovirus vectors. R Soc Open Sci. 2014;1:140262.
Article
Google Scholar
Cornet S, Nicot A, Rivero A, Gandon S. Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol Lett. 2013;16:323–9.
Article
Google Scholar
Cornet S, Nicot A, Rivero A, Gandon S. Both infected and uninfected mosquitoes are attracted toward malaria infected birds. Malar J. 2013;12:179.
Article
Google Scholar
Batista EPA, Costa EFM, Silva AA. Anopheles darlingi (Diptera: Culicidae) displays increased attractiveness to infected individuals with Plasmodium vivax gametocytes. Parasit Vectors. 2014;7:251.
Article
Google Scholar
Lalubin F, Bize P, van Rooyen J, Christe P, Glaizot O. Potential evidence of parasite avoidance in an avian malarial vector. Anim Behav. 2012;84:539–45.
Article
Google Scholar
Yan J, Martínez de la Puente J, Gangoso L, Gutiérrez-López R, Soriguer R, Figuerola J. Avian malaria infection intensity influences mosquito feeding patterns. Int J Parasitol. 2018;48:257–64.
Article
Google Scholar
Santiago-Alarcon D, Palinauskas V, Schaefer HM. Diptera vectors of avian haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev. 2012;87:928–64.
Article
Google Scholar
Ferraguti M, Martínez de la Puente J, Muñoz J, Roiz D, Ruiz S, Soriguer R, et al. Avian Plasmodium in Culex and Ochlerotatus mosquitoes from southern Spain: effects of season and host-feeding source on parasite dynamics. PLoS One. 2013;8:e66237.
Article
CAS
Google Scholar
Hellgren O, Pérez-Tris J, Bensch S. A jack of all trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology. 2009;90:2840–9.
Article
Google Scholar
Drovetski SV, Aghayan SA, Mata VA, Lopes RJ, Mode NA, Harvey JA, et al. Does the niche breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian haemosporidia? Mol Ecol. 2014;23:3322–9.
Article
Google Scholar
Schaffner E, Angel G, Geoffroy B, Hervy JP, Rhaiem A, Brunhes J. The mosquitoes of Europe: an identification and training programme. Montpellier: IRD Editions; 2001.
Google Scholar
Franks SJ, Pratt PD, Tsutsui ND. The genetic consequences of a demographic bottleneck in an introduced biological control insect. Conserv Genet. 2011;12:201–11.
Article
Google Scholar
Lagisz M, Port G, Wolff K. Living in a jar: genetic variation and differentiation among laboratory strains of the red flour beetle. J Appl Entomol. 2011;135:682–92.
Article
CAS
Google Scholar
Svensson L, Mullarney K, Zetterström D. Collins bird guide. British birds. 2nd ed. London: HarperCollins; 2010.
Google Scholar
Burkett-Cadena ND, Ligon RA, Liu M, Hassan HK, Hill GE, Eubanks MD, Unnasch TR. Vector-host interactions in avian nests: do mosquitoes prefer nestlings over adults? Am J Trop Med Hyg. 2010;83:395–9.
Article
Google Scholar
Gutiérrez-López R, Martínez de la Puente J, Gangoso L, Yan J, Soriguer R, Figuerola J. Do mosquitoes transmit the avian malaria-like parasite Haemoproteus? An experimental test of vector competence using mosquito saliva. Parasit Vectors. 2016;9:609.
Article
Google Scholar
Gutiérrez-López R, Martínez de la Puente J, Gangoso L, Soriguer R, Figuerola J. Comparison of manual and semi-automatic DNA extraction protocols for the barcoding characterization of hematophagous louse flies (Diptera: Hippoboscidae). J Vector Ecol. 2015;40:11–5.
Article
Google Scholar
Griffiths R, Double MC, Orr K, Dawson RJ. A DNA test to sex most birds. Mol Ecol. 1998;7:1071–5.
Article
CAS
Google Scholar
Hellgren O, Waldenström J, Bensch S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol. 2004;90:797–802.
Article
CAS
Google Scholar
Di Luca M, Toma L, Boccolini D, Severini F, La Rosa G, Minelli G, et al. Ecological distribution and CQ11 genetic structure of Culex pipiens complex (Diptera: Culicidae) in Italy. PLoS One. 2016;11:e0146476.
Article
Google Scholar
Martínez de la Puente J, Ferraguti M, Ruiz S, Roiz D, Soriguer RC, Figuerola J. Culex pipiens forms and urbanization: effects on blood feeding sources and transmission of avian Plasmodium. Malar J. 2016;15:589.
Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2017. https://www.R-project.org/. Accessed 15 Sept 2018.
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Article
Google Scholar
Harrison XA. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ. 2014;2:e616.
Article
Google Scholar
Balenghien T, Fouque F, Sabatier P, Bicout DJ. Horse-, bird-, and human-seeking behavior and seasonal abundance of mosquitoes in a West Nile virus focus of southern France. J Med Entomol. 2006;43:936–46.
Article
CAS
Google Scholar
Fritz ML, Walker ED, Miller JR, Severson DW, Dworkin I. Divergent host preferences of above- and below-ground Culex pipiens mosquitoes and their hybrid offspring. Med Vet Entomol. 2015;29:115–23.
Article
CAS
Google Scholar
Gutsevich AV, Monchadskii AS, Shtakelberg AA. Fauna of the USSR, Diptera, mosquitoes family Culicidae. Moscow: Academy of Sciences of the USSR; 1974. p. 1974.
Google Scholar
Ezanno P, Aubry-Kientz M, Arnoux S, Cailly P, L’Ambert G, Toty C, et al. A generic weather-driven model to predict mosquito population dynamics applied to species of Anopheles, Culex and Aedes genera of southern France. Prev Vet Med. 2015;120:39–50.
Article
CAS
Google Scholar
Roiz D, Ruiz S, Soriguer R, Figuerola J. Climatic effects on mosquito abundance in Mediterranean wetlands. Parasit Vectors. 2014;7:333.
Article
Google Scholar
Edman JD. Host-feeding patterns of Florida mosquitoes: III. Culex (Culex) and Culex (Neoculex). J Med Entomol. 1974;11:95–104.
Article
CAS
Google Scholar
Estep LK, McClure CJ, Burkett-Cadena ND, Hassan HK, Unnasch TR, Hill GE. Developing models for the forage ratios of Culiseta melanura and Culex erraticus using species characteristics for avian hosts. J Med Entomol. 2012;49:378–87.
Article
Google Scholar
Mooring MS, Benjamin JE, Harte CR, Herzog NB. Testing the interspecific body size principle in ungulates: the smaller they come, the harder they groom. Anim Behav. 2000;60:35–45.
Article
CAS
Google Scholar
Figuerola J, Jiménez-Clavero MA, López G, Rubio C, Soriguer R, Gómez-Tejedor C, Tenorio A. Size matters: West Nile virus neutralizing antibodies in resident and migratory birds in Spain. Vet Microbiol. 2008;132:39–46.
Article
CAS
Google Scholar
Yan J, Gangoso L, Martínez de la Puente J, Soriguer R, Figuerola J. Avian phenotypic traits related to feeding preferences in two Culex mosquitoes. Sci Nat. 2017;104:76.
Article
Google Scholar
Russell CB, Hunter FF. Attraction of Culex pipiens/restuans (Diptera: Culicidae) mosquitoes to bird uropygial gland odors at two elevations in the Niagara region of Ontario. J Med Entomol. 2005;42:301–5.
Article
Google Scholar
Martínez de la Puente J, Rivero-de Aguilar J, del Cerro S, Argüello A, Merino S. Do secretions from the uropygial gland of birds attract biting midges and black flies? Parasitol Res. 2011;109:1715–8.
Article
Google Scholar
Jacob J, Balthazart J, Schoffeniels E. Sex differences in the chemical composition of uropygial gland waxes in domestic ducks. Biochem Syst Ecol. 1979;7:149–53.
Article
CAS
Google Scholar
Amo L, Avilés JM, Parejo D, Peña A, Rodriguez J, Tomás G. Sex recognition by odour and variation in the uropygial gland secretion in starlings. J Anim Ecol. 2012;81:605–13.
Article
Google Scholar
Allan SA, Bernier UR, Kline DL. Laboratory evaluation of avian odors for mosquito (Diptera: Culicidae) attraction. J Med Entomol. 2006;43:225–31.
Article
CAS
Google Scholar
Hurd H. Manipulation of medically important insect vectors by their parasites. Annu Rev Entomol. 2003;48:141–61.
Article
CAS
Google Scholar
Lefèvre T, Lebarbenchon C, Gauthier-Clerc M, Misse D, Poulin R, Thomas F. The ecological significance of manipulative parasites. Trends Ecol Evol. 2009;24:41–8.
Article
Google Scholar
Tomás G, Merino S, Martínez de la Puente J, Moreno J, Morales J, Lobato E. Determinants of abundance and effects of blood-sucking flying insects in the nest of a hole-nesting bird. Oecologia. 2008;156:305–12.
Article
Google Scholar
Martínez de la Puente J, Merino S, Tomás G, Moreno J, Morales J, et al. Factors affecting Culicoides species composition and abundance in avian nests. Parasitology. 2009;136:1033–41.
Article
Google Scholar
Day JF, Ebert KM, Edman JD. Feeding patterns of mosquitoes (Diptera: Culicidae) simultaneously exposed to malarious and healthy mice, including a method for separating blood meals from conspecific hosts. J Med Entomol. 1983;20:120–7.
Article
CAS
Google Scholar
Shirasu M, Touhara K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem. 2011;150:257–66.
Article
CAS
Google Scholar
Kelly M, Su CY, Schaber C, Crowley JR, Hsu FF, Carlson JR, et al. Malaria parasites produce volatile mosquito attractants. MBio. 2015;6:e00235–315.
Article
Google Scholar