Wolinska J, King KC. Environment can alter selection in host–parasite interactions. Trends Parasitol. 2009;25:236–44.
Article
Google Scholar
Frainer A, McKie BG, Amundsen PA, Knudsen R, Lafferty KD. Parasitism and the biodiversity-functioning relationship. Trends Ecol Evol. 2018;33:260–8.
Article
Google Scholar
Campbell-Lendrum D, Manga L, Bagayoko M, Sommerfeld J. Climate change and vector-borne diseases: what are the implications for public health research and policy? Phil Trans R Soc B. 2015;370:20130552.
Article
Google Scholar
Wu X, Lu Y, Zhou S, Chen L, Xu B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ Int. 2016;86:14–23.
Article
Google Scholar
Cable J, Barber I, Boag B, Ellison AR, Morgan ER, Murray K, et al. Global change, parasite transmission and disease control: lessons from ecology. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160088.
Article
Google Scholar
World Health Organization. Global technical strategy for malaria 2016–2030. 2015. https://www.who.int/malaria/areas/global_technical_strategy/en/. Accessed 20 Nov 2018.
Booth M. Climate change and the neglected tropical diseases. Adv Parasitol. 2018;100:39–126.
Article
Google Scholar
Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR. Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA. 2008;105:6668–72.
Article
CAS
Google Scholar
Sternberg ED, Thomas MB. Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol. 2014;30:115–22.
Article
Google Scholar
Sgro CM, Terblanche JS, Hoffmann AA. What can plasticity contribute to insect responses to climate change? Annu Rev Entomol. 2016;61:433–51.
Article
CAS
Google Scholar
Yee DA, Ezeakacha NF, Abbott KC. The interactive effects of photoperiod and future climate change may have negative consequences for a wide-spread invasive insect. Oikos. 2017;126:40–51.
Article
Google Scholar
Jia P, Chen X, Chen J, Lu L, Liu Q, Tan X. How does the dengue vector mosquito Aedes albopictus respond to global warming? Parasit Vectors. 2017;10:140.
Article
Google Scholar
Ogden NH, Lindsay LR. Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol. 2016;32:646–56.
Article
Google Scholar
Chagas C. Nova tripanosomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi, n. gen, n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz. 1999;1:159–218.
Article
Google Scholar
Lent H, Wygodzinsky P. Revision of the triatominae (Hemiptera: Reduviidae) and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist. 1979;163:123–520.
Google Scholar
Moncayo A. Chagas disease: epidemiology and prospects for interruption of transmission in the Americas. World Health Stat Q. 1992;45:276–9.
CAS
PubMed
Google Scholar
Carcavallo RU, Curto de Casas SI, Sherlock IA, Galíndez Girón I, Jurberg J, Galvao C, Mena Segura CA, Noireau F. Geographic distribution and alti-latitudinal dispersion. In: Carcavallo RU, Girón I, Jurberg J, Lent H, editors. Atlas of chagas disease vectors in the Americas. Rio de Janeiro: Fiocruz; 1999. p. 747–92.
Google Scholar
Piccinali RV, Canale DM, Sandoval AE, Cardinal MV, Jensen O, Kitron U, Gürtler RE. Triatoma infestans bugs in southern Patagonia, Argentina. Emerg Infect Dis. 2010;16:887–9.
Article
Google Scholar
Di Iorio O, Gürtler RE. Seasonality and temperature-dependent flight dispersal of Triatoma infestans (Hemiptera: Reduviidae) and other vectors of Chagas disease in western Argentina. J Med Entomol. 2017;54:1285–92.
Article
Google Scholar
Fellet MR, Lorenzo MG, Elliot SL, Carrasco D, Guarneri AA. Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus. PLoS One. 2014;9:e105255.
Article
Google Scholar
de Fuentes-Vicente JA, Cabrera-Bravo M, Enríquez-Vara JN, Bucio-Torres MI, Gutiérrez-Cabrera AE, Vidal-López DG, et al. Relationships between altitude, triatomine (Triatoma dimidiata) immune response and virulence of Trypanosoma cruzi, the causal agent of Chagas’ disease. Med Vet Entomol. 2017;31:63–71.
Article
Google Scholar
Botto-Mahan C, Cattan PE, Medel R. Chagas disease parasite induces behavioural changes in the kissing bug Mepraia spinolai. Acta Trop. 2006;98:219–23.
Article
Google Scholar
Martínez-Ibarra JA, Salazar-Schettino PM, Solorio-Cibrián M, Cabrera-Bravo M, Novelo-López M, Vences MO, et al. Influence of temperature and humidity on the biology of Triatoma mexicana (Hemiptera: Reduviidae: Triatominae) under laboratory conditions. Mem Inst Oswaldo Cruz. 2008;103:719–23.
Article
Google Scholar
Villegas-García JC, Santillán-Alarcón S. The influence of two different temperatures on Meccus pallidipennis Stål, 1872 (Hemiptera: Reduviidae: Triatominae) in laboratory. Entomol Vect. 2004;11:445–56.
Google Scholar
Catalá S, Gorla D, Basombrio M. Vectorial transmission of Trypanosoma cruzi in an experimental system with susceptible and immunized host. Am J Trop Med Hyg. 1992;47:20–6.
Article
Google Scholar
Lazzari CR. Temperature preference in Triatoma infestans (Hemiptera: Reduviidae). Bull Em Res. 1991;81:273–6.
Article
Google Scholar
Asin S, Catalá S. Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J Parasitol. 1995;81:1–7.
Article
CAS
Google Scholar
Garza M, Feria Arroyo TP, Casillas EA, Sanchéz-Cordero V, Rivaldi CL, Sarkar S. Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios. PLoS Negl Trop Dis. 2014;8:e2818.
Article
Google Scholar
Klotz SA, Dorn PL, Klotz JH, Pinnas JL, Weirauch C, Kurtz JR, Schmidt J. Feeding behavior of triatomines from the southwestern United States: an update on potential risk for transmission of Chagas disease. Acta Trop. 2009;111:114–8.
Article
Google Scholar
Gürtler RE, Ceballos LA, Ordóñez-Krasnowski P, Lanati LA, Stariolo R, Kitron U. Strong host-feeding preferences of the vector Triatoma infestans modified by vector density: Implications for the epidemiology of Chagas disease. PLoS Negl Trop Dis. 2009;3:e447.
Article
Google Scholar
Elliot SL, Rodrigues JO, Lorenzo MG, Martins-Filho OA, Guarneri AA. Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner. PLoS Negl Trop Dis. 2015;9:e0003646.
Article
Google Scholar
Gage KL, Burkot TR, Eisen RJ, Hayes EB. Climate and vector borne diseases. Am J Prev Med. 2008;35:436–50.
Article
Google Scholar
Ibarra-Cerdeña CN, Zaldívar-Riverón A, Peterson AT, Sánchez-Cordero V, Ramsey JM. Phylogeny and niche conservatism in North and Central American triatomine bugs (Hemiptera: Reduviidae: Triatominae), vectors of Chagasʼ disease. PLoS Negl Trop Dis. 2014;8:e3266.
Article
Google Scholar
Hinestroza G, Ortiz MI, Molina J. Behavioural fever response in Rhodnius prolixus (Reduviidae: Triatominae) to intracoelomic inoculation of Trypanosoma cruzi. Rev Soc Bras Med Trop. 2016;49:425–32.
Article
Google Scholar
Barreto-Santana D, Santos-Schuenker L, da Fonseca AR, Gurgel-Gonçalves R, Cuba-Cuba CA. Susceptibility of different Rhodnius species (Hemiptera, Reduviidae, Triatominae) to a Brazilian strain of Trypanosoma rangeli (SC58/KP1-). Biomedica. 2015;35:81–9.
PubMed
Google Scholar
Guarneri AA, Lorenzo MG. Triatomine physiology in the context of trypanosome infection. J Insect Physiol. 2017;97:66–76.
Article
CAS
Google Scholar
Kollien AH, Schaub GA. The development of Trypanosoma cruzi in Triatominae. Parasitol Today. 2000;16:381–7.
Article
CAS
Google Scholar
Tyler KM, Engman DM. The life cycle of Trypanosoma cruzi revised. Int J Parasitol. 2001;31:472–81.
Article
CAS
Google Scholar
Garcia ES, Genta FA, Azambuja P, Schaub GA. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol. 2010;26:499–505.
Article
CAS
Google Scholar
Azambuja P, Garcia ES, Waniek PJ, Vieira SC, Figueiredo MB, Gonzalez MS, et al. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. J Insect Physiol. 2017;97:45–65.
Article
CAS
Google Scholar
Schaub GA, Meiser CK, Balczun C. Interactions of Trypanosoma cruzi and triatomines. In: Mehlhorn H, editor. Progress in parasitology. Berlin: Springer; 2011. p. 155–78.
Chapter
Google Scholar
Ferreira RC, Kessler RL, Lorenzo MG, Paim RM, Ferreira Lde L, Probst CM, et al. Colonization of Rhodnius prolixus gut by Trypanosoma cruzi involves an extensive parasite killing. Parasitology. 2016;143:434–43.
Article
Google Scholar
Daquinag AC, Nakamura S, Takao T, Shimonishi Y. Primary structure of a potent endogenous dopa-containing inhibitor of phenol oxidase from Musca domestica. Proc Natl Acad Sci USA. 1995;92:2964–8.
Article
CAS
Google Scholar
Flores-Villegas AL, Salazar Schettino PM, Córdoba-Aguilar A, Gutiérrez-Cabrera AE, Rojas-Wastavino GE, Bucio-Torres MI, Cabrera-Bravo M. Immune defence mechanisms of triatomines against bacteria, viruses, fungi and parasites. Bull Entomol Res. 2015;105:523–32.
Article
CAS
Google Scholar
Favila-Ruiz G, Jiménez-Cortés JG, Córdoba-Aguilar A, Salazar-Schettino PM, Gutiérrez-Cabrera AE, Pérez-Torres A, et al. Effects of Trypanosoma cruzi on the phenoloxidase and prophenoloxidase activity in the vector Meccus pallidipennis (Hemiptera: Reduviidae). Parasit Vectors. 2018;11:434.
Article
Google Scholar
Genta FA, Souza RS, Garcia ES, Azambuja P. Phenol oxidases from Rhodnius prolixus: Temporal and tissue expression pattern and regulation by ecdysone. J Insect Physiol. 2010;56:1253–9.
Article
CAS
Google Scholar
Martínez-Ibarra JA, Alejandre-Aguilar R, Torres-Morales A, Trujillo-García JC, Nogueda-Torres B, Trujillo-Contreras F. Biology of three species of the Meccus phyllosomus complex (Hemiptera: Reduviidae Triatominae) fed on blood of hens and rabbits. Mem Inst Oswaldo Cruz. 2006;101:787–94.
Article
Google Scholar
Vidal-Acosta V, Ibáñez-Bernal S, Martínez-Campo C. Infección natural de chinches Triatominae con Trypanosoma cruzi asociadas a la vivienda humana en México. Salud Publica Mex. 2000;24:496–503.
Article
Google Scholar
Benítez-Alva JI, Herón-Huerta, Téllez-Rendón JL. Distribución de triatominos (Heteroptera: Reduviidae) asociados a la vivienda humana y posibles zonas de riesgo en seis estados de la República Mexicana. BIOCYT. 2012;17:327–40.
Google Scholar
IPCC. 4th Assessment Report “Climate Change 2007: Synthesis Report”. 2007. http://www.ipcc.ch/ipccreports/ar4-syr.htm. Accessed 24 Nov 2018.
Lee KP, Simpson SJ, Wilson K. Dietary protein-quality influences melanization and immune function in an insect. Funct Ecol. 2008;22:1052–61.
Article
Google Scholar
Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, Thomas MB. Complex effects of temperature on mosquito immune function. Proc Natl Acad Sci USA. 2012;279:3357–66.
CAS
Google Scholar
Castro DP, Moraes CS, González MS, Ratcliffe NA, Azambuja P, García ES. Trypanosoma cruzi immune response modulation decrease microbiota in Rhodnius prolixus gut and is crucial for parasites survival and development. PLoS ONE. 2012;7:e36591.
Article
CAS
Google Scholar
Laughton AM, Siva-Jothy MT. A standardised protocol for measuring phenoloxidase and prophenoloxidase in the honey bee, Apis mellifera. Apidologie. 2011;42:140–9.
Article
CAS
Google Scholar
Jiménez-Cortés JG, Córdoba-Aguilar A. Condition dependence and trade-offs of sexual versus non-sexual traits in an insect. J Ethology. 2013;31:275–84.
Article
Google Scholar
Vieira CS, Mattos DP, Waniek PJ, Santangelo JM, Figueiredo MB, Gumiel M, et al. Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population. Parasit Vectors. 2015;8:135.
Article
Google Scholar
Dang VT, Speck P, Benkendorff K. Influence of elevated temperatures on the immune response of abalone, Haliotis rubra. Fish Shellfish Immunol. 2012;32:732–40.
Article
CAS
Google Scholar
Wojda I. Temperature stress and insect immunity. J Thermal Biol. 2017;68:96–103.
Article
CAS
Google Scholar
Goic B, Stapleford KA, Frangeul L, Doucet AJ, Gausson V, Blanc H, et al. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat Commun. 2016;7:12410.
Article
CAS
Google Scholar
Matetovici I, Caljon G, Van Den Abbeele J. Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland. BMC Genomics. 2016;17:971.
Article
Google Scholar
Botto-Mahan C. Trypanosoma cruzi induces life-history trait changes in the wild kissing bug Mepraia spinolai: implications for parasite transmission. Vector-Borne Zoo Dis. 2009;9:505–10.
Article
CAS
Google Scholar
Carmona-Castro O, Moo-Llanes DA, Ramsey JM. Impact of climate change on vector transmission of Trypanosoma cruzi (Chagas, 1909) in North America. Med Vet Entomol. 2018;32:84–101.
Article
CAS
Google Scholar