Anderson RC. Nematode parasites of vertebrates. Their development and transmission. 2nd ed. Wallingford: CABI Publishing; 2000.
Book
Google Scholar
WHO. Soil-transmitted Helminth Infections. 2018. https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections. Accessed 12 Dec 2018.
WHO. Global health estimates 2016: disease burden by cause, age, sex, by country and by region, 2000–2016. In: Global Health Estimates. Geneva: World Health Organization; 2018.
Roeber F, Jex AR, Gasser RB. Next-generation molecular-diagnostic tools for gastrointestinal nematodes of livestock, with an emphasis on small ruminants: a turning point? Adv Parasitol. 2013;83:267–333.
Article
PubMed
PubMed Central
Google Scholar
Hawkins JA. Economic benefits of parasite control in cattle. Vet Parasitol. 1993;46:159–73.
Article
CAS
PubMed
Google Scholar
Perry BD, Randolph TF. Improving the assessment of the economic impact of parasitic diseases and of their control in production animals. Vet Parasitol. 1999;84:145–68.
Article
CAS
PubMed
Google Scholar
Corwin RM. Economics of gastrointestinal parasitism of cattle. Vet Parasitol. 1997;72:451–7.
Article
CAS
PubMed
Google Scholar
Dobson RJ, LeJambre L, Gill JH. Management of anthelmintic resistance: inheritance of resistance and selection with persistent drugs. Int J Parasitol. 1996;26:993–1000.
Article
CAS
PubMed
Google Scholar
Wimmer B, Craig BH, Pilkington JG, Pemberton JM. Non-invasive assessment of parasitic nematode species diversity in wild Soay sheep using molecular markers. Int J Parasitol. 2004;34:625–31.
Article
CAS
PubMed
Google Scholar
Epe C, Kaminsky R. New advancement in anthelmintic drugs in veterinary medicine. Trends Parasitol. 2013;29:129–34.
Article
CAS
PubMed
Google Scholar
Holden-Dye L, Walker RJ. Anthelmintic drugs and nematicides: studies in Caenorhabditis elegans. In: Roy PJ, editor. The C. elegans Research Community. WormBook. 2014. https://doi.org/10.1895/wormbook.1.143.2.
Robertson AP, Buxton SK, Puttachary S, Williamson SM, Wolstenholme AJ, Neveu C, et al. Antinematodal drugs—modes of action and resistance: and worms will not come to thee (Shakespeare: Cymbeline: IV, ii). In: Caffrey CR, editor. Parasitic Helminths. 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 233–49.
Chapter
Google Scholar
Keiser J, Utzinger J. Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA. 2008;299:1937–48.
Article
CAS
PubMed
Google Scholar
Lacey E. The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int J Parasitol. 1988;18:885–936.
Article
CAS
PubMed
Google Scholar
Kaminsky R, Ducray P, Jung M, Clover R, Rufener L, Bouvier J, et al. A new class of anthelmintics effective against drug-resistant nematodes. Nature. 2008;452:176–80.
Article
CAS
PubMed
Google Scholar
Saeger B, Schmitt-Wrede HP, Dehnhardt M, Benten WP, Krucken J, Harder A, et al. Latrophilin-like receptor from the parasitic nematode Haemonchus contortus as target for the anthelmintic depsipeptide PF1022A. FASEB J. 2001;15:1332–4.
Article
CAS
PubMed
Google Scholar
Woods DJ, Maeder SJ, Robertson AP, Martin RJ, Geary TG, Thompson DP, et al. Discovery, mode of action and commercialization of Derquantel. In: Caffrey CR, editor. Parasitic Helminths. 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 297–307.
Chapter
Google Scholar
Kaplan RM, Vidyashankar AN. An inconvenient truth: global worming and anthelmintic resistance. Vet Parasitol. 2012;186:70–8.
Article
PubMed
Google Scholar
Kotze AC, Prichard RK. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Adv Parasitol. 2016;93:397–428.
Article
CAS
PubMed
Google Scholar
Whittaker JH, Carlson SA, Jones DE, Brewer MT. Molecular mechanisms for anthelmintic resistance in strongyle nematode parasites of veterinary importance. J Vet Pharmacol Ther. 2017;40:105–15.
Article
CAS
PubMed
Google Scholar
Van den Brom R, Moll L, Kappert C, Vellema P. Haemonchus contortus resistance to monepantel in sheep. Vet Parasitol. 2015;209:278–80.
Article
PubMed
CAS
Google Scholar
Little PR, Hodge A, Maeder SJ, Wirtherle NC, Nicholas DR, Cox GG, et al. Efficacy of a combined oral formulation of derquantel-abamectin against the adult and larval stages of nematodes in sheep, including anthelmintic-resistant strains. Vet Parasitol. 2011;181:180–93.
Article
CAS
PubMed
Google Scholar
Ghisalberti EL. Secondary metabolites with antinematodal activity. In: Atta-ur-Rahman, editor. Studies in Natural Products Chemistry, vol. 26. Amsterdam: Elsevier; 2002. p. 425–506.
Google Scholar
Lommen WJ, Elzinga S, Verstappen FW, Bouwmeester HJ. Artemisinin and sesquiterpene precursors in dead and green leaves of Artemisia annua L. crops. Planta Medica. 2007;73:1133–9.
Article
CAS
PubMed
Google Scholar
Verma RK, Chauhan A, Verma RS, Gupta AK. Influence of planting date on growth, artemisinin yield, seed and oil yield of Artemisia annua L. under temperate climatic conditions. Ind Crop Prod. 2011;34:860–4.
Article
CAS
Google Scholar
Lin H, Guo X, Zhang S, Dial SL, Guo L, Manjanatha MG, et al. Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells. Toxicol Sci. 2014;139:338–49.
Article
CAS
PubMed
Google Scholar
Moore LB, Goodwin B, Jones SA, Wisely GB, Serabjit-Singh CJ, Willson TM, et al. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci USA. 2000;97:7500–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levine M, Ruha A-M, Graeme K, Brooks DE, Canning J, Curry SC. Toxicology in the ICU: part 3: natural toxins. Chest. 2011;140:1357–70.
Article
CAS
PubMed
Google Scholar
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Kesteren C, de Vooght MMM, Lopez-Lazaro L, Mathot RAA, Schellens JHM, Jimeno JM, et al. Yondelis (R) (trabectedin, ET-743): the development of an anticancer agent of marine origin. Anti Cancer Drug. 2003;14:487–502.
Article
Google Scholar
Schofield MM, Jain S, Porat D, Dick GJ, Sherman DH. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. Environ Microbiol. 2015;17:3964–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shultz MD. Two decades under the influence of the Rule of Five and the changing properties of approved oral drugs. J Med Chem. 2019;62:1701–14.
Article
CAS
PubMed
Google Scholar
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.
Article
CAS
PubMed
Google Scholar
Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Quantifying the chemical beauty of drugs. Nat Chem. 2012;4:90–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lipinski CA. Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Del Rev. 2016;101:34–41.
Article
CAS
Google Scholar
Kearney SE, Zahoránszky-Kőhalmi G, Brimacombe KR, Henderson MJ, Lynch C, Zhao T, et al. Canvass: a crowd-sourced, natural-product screening library for exploring biological space. ACS Cent Sci. 2018;4:1727–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng SB, Kanagasundaram Y, Fan H, Arumugam P, Eisenhaber B, Eisenhaber F. The 160K natural organism library, a unique resource for natural products research. Nat Biotechnol. 2018;36:570–3.
Article
CAS
PubMed
Google Scholar
Weaver LM, Herrmann KM. Dynamics of the shikimate pathway in plants. Trends Plant Sci. 1997;2:346–51.
Article
Google Scholar
Ali HM, Abo-Shady A, Sharaf Eldeen HA, Soror HA, Shousha WG, Abdel-Barry OA, et al. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds. Chem Cent J. 2013;7:53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng Z, Ren J, Li Y, Chang W, Chen Z. Study on the multiple mechanisms underlying the reaction between hydroxyl radical and phenolic compounds by qualitative structure and activity relationship. Bioorg Med Chem. 2002;10:4067–73.
Article
CAS
PubMed
Google Scholar
Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005;53:4290–302.
Article
CAS
PubMed
Google Scholar
Bisson J, McAlpine JB, Friesen JB, Chen S-N, Graham J, Pauli GF. Can invalid bioactives undermine natural product-based drug discovery? J Med Chem. 2016;59:1671–90.
Article
CAS
PubMed
Google Scholar
Lei J, Leser M, Enan E. Nematicidal activity of two monoterpenoids and SER-2 tyramine receptor of Caenorhabditis elegans. Biochem Pharmacol. 2010;79:1062–71.
Article
CAS
PubMed
Google Scholar
Ferreira LE, Benincasa BI, Fachin AL, França SC, Contini SSHT, Chagas ACS, et al. Thymus vulgaris L. essential oil and its main component thymol: anthelmintic effects against Haemonchus contortus from sheep. Vet Parasitol. 2016;228:70–6.
Article
CAS
PubMed
Google Scholar
André WP, Ribeiro WL, Cavalcante GS, dos Santos JM, Macedo IT, de Paula HC, et al. Comparative efficacy and toxic effects of carvacryl acetate and carvacrol on sheep gastrointestinal nematodes and mice. Vet Parasitol. 2016;218:52–8.
Article
PubMed
CAS
Google Scholar
André WPP, Cavalcante GS, Ribeiro WLC, Santos J, Macedo ITF, Paula HCB, et al. Anthelmintic effect of thymol and thymol acetate on sheep gastrointestinal nematodes and their toxicity in mice. Braz J Vet Parasitol. 2017;26:323–30.
Article
Google Scholar
Castillo-Mitre GF, Olmedo-Juarez A, Rojo-Rubio R, Gonzalez-Cortazar M, Mendoza-de Gives P, Hernandez-Beteta EE, et al. Caffeoyl and coumaroyl derivatives from Acacia cochliacantha exhibit ovicidal activity against Haemonchus contortus. J Ethnopharmacol. 2017;204:125–31.
Article
CAS
PubMed
Google Scholar
Adamczyk B, Simon J, Kitunen V, Adamczyk S, Smolander A. Tannins and their complex interaction with different organic nitrogen compounds and enzymes: old paradigms versus recent advances. ChemistryOpen. 2017;6:610–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Bourvellec C, Renard CMGC. Interactions between polyphenols and macromolecules: quantification methods and mechanisms. Crit Rev Food Sci Nutr. 2012;52:213–48.
Article
PubMed
CAS
Google Scholar
Klongsiriwet C, Quijada J, Williams AR, Mueller-Harvey I, Williamson EM, Hoste H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int J Parasitol Drugs Drug Resist. 2015;5:127–34.
Article
PubMed
PubMed Central
Google Scholar
Wangchuk P, Pearson MS, Giacomin PR, Becker L, Sotillo J, Pickering D, et al. Compounds derived from the Bhutanese daisy, Ajania nubigena, demonstrate dual anthelmintic activity against Schistosoma mansoni and Trichuris muris. PLoS Negl Trop Dis. 2016;10:e0004908.
Article
PubMed
PubMed Central
CAS
Google Scholar
Engstrom MT, Karonen M, Ahern JR, Baert N, Payre B, Hoste H, et al. Chemical structures of plant hydrolyzable tannins reveal their in vitro activity against egg hatching and motility of Haemonchus contortus nematodes. J Agric Food Chem. 2016;64:840–51.
Article
CAS
PubMed
Google Scholar
Ndjonka D, Abladam ED, Djafsia B, Ajonina-Ekoti I, Achukwi MD, Liebau E. Anthelmintic activity of phenolic acids from the axlewood tree Anogeissus leiocarpus on the filarial nematode Onchocerca ochengi and drug-resistant strains of the free-living nematode Caenorhabditis elegans. J Helminthol. 2014;88:481–8.
Article
CAS
PubMed
Google Scholar
Dikti Vildina J, Kalmobe J, Djafsia B, Schmidt T, Liebau E, Ndjonka D. Anti-Onchocerca and anti-Caenorhabditis activity of a hydro-alcoholic extract from the fruits of Acacia nilotica and some proanthocyanidin derivatives. Molecules. 2017;22:748.
Article
PubMed Central
CAS
Google Scholar
Socolsky C, Dominguez L, Asakawa Y, Bardon A. Unusual terpenylated acylphloroglucinols from Dryopteris wallichiana. Phytochemistry. 2012;80:115–22.
Article
CAS
PubMed
Google Scholar
Dilrukshi Herath HMP, Preston S, Hofmann A, Davis RA, Koehler AV, Chang BCH, et al. Screening of a small, well-curated natural product-based library identifies two rotenoids with potent nematocidal activity against Haemonchus contortus. Vet Parasitol. 2017;244:172–5.
Article
CAS
PubMed
Google Scholar
Menichini F, Delle Monache F, Marini Bettolo GB. Flavonoids and rotenoids from Tephrosieae and related tribes of leguminosae. Planta Medica. 1982;45:243–4.
Article
CAS
PubMed
Google Scholar
Paulus P, Ockelmann P, Tacke S, Karnowski N, Ellinghaus P, Scheller B, et al. Deguelin attenuates reperfusion injury and improves outcome after orthotopic lung transplantation in the rat. PLoS ONE. 2012;7:e39265.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HY. Molecular mechanisms of deguelin-induced apoptosis in transformed human bronchial epithelial cells. Biochem Pharmacol. 2004;68:1119–24.
Article
CAS
PubMed
Google Scholar
Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Ann Rev Entomol. 2006;51:45–66.
Article
CAS
Google Scholar
Lupescu A, Jilani K, Zbidah M, Lang F. Induction of apoptotic erythrocyte death by rotenone. Toxicology. 2012;300:132–7.
Article
CAS
PubMed
Google Scholar
Siddiqui MA, Ahmad J, Farshori NN, Saquib Q, Jahan S, Kashyap MP, et al. Rotenone-induced oxidative stress and apoptosis in human liver HepG2 cells. Mol Cell Biochem. 2013;384:59–69.
Article
CAS
PubMed
Google Scholar
Boyd J, Han A. Deguelin and its role in chronic diseases. Advs Exp Med Biol. 2016;929:363–75.
Article
CAS
Google Scholar
Bortul R, Tazzari PL, Billi AM, Tabellini G, Mantovani I, Cappellini A, et al. Deguelin, a PI3K/AKT inhibitor, enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway. Br J Haematol. 2005;129:677–86.
Article
CAS
PubMed
Google Scholar
Caboni P, Sherer TB, Zhang N, Taylor G, Na HM, Greenamyre JT, et al. Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem Res Toxicol. 2004;17:1540–8.
Article
CAS
PubMed
Google Scholar
Wang G, Tang W, Bidigare RR. Terpenoids as therapeutic drugs and pharmaceutical agents. In: Zhang L, Demain AL, editors. Natural products: drug discovery and therapeutic medicine. Totowa: Humana Press, Inc.; 2005. p. 197–227.
Chapter
Google Scholar
Hammer KA, Carson CF, Rileya TV. Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob Agents Chemother. 2012;56:909–15.
Article
PubMed
PubMed Central
Google Scholar
Grando TH, de Sa MF, Baldissera MD, Oliveira CB, de Souza ME, Raffin RP, et al. In vitro activity of essential oils of free and nanostructured Melaleuca alternifolia and of terpinen-4-ol on eggs and larvae of Haemonchus contortus. J Helminthol. 2016;90:377–82.
Article
CAS
PubMed
Google Scholar
Qi H, Wang WX, Dai JL, Zhu L. In vitro anthelmintic activity of Zanthoxylum simulans essential oil against Haemonchus contortus. Vet Parasitol. 2015;211:223–7.
Article
CAS
PubMed
Google Scholar
Liu M, Kipanga P, Mai AH, Dhondt I, Braeckman BP, De Borggraeve W, et al. Bioassay-guided isolation of three anthelmintic compounds from Warburgia ugandensis Sprague subspecies ugandensis, and the mechanism of action of polygodial. Int J Parasitol. 2018;48:833–44.
Article
CAS
PubMed
Google Scholar
Castelli MV, Lodeyro AF, Malheiros A, Zacchino SAS, Roveri OA. Inhibition of the mitochondrial ATP synthesis by polygodial, a naturally occurring dialdehyde unsaturated sesquiterpene. Biochem Pharmacol. 2005;70:82–9.
Article
CAS
PubMed
Google Scholar
Pereira I, Severino P, Santos AC, Silva AM, Souto EB. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf B Biointerfaces. 2018;171:566–78.
Article
CAS
PubMed
Google Scholar
Azeez S, Babu RO, Aykkal R, Narayanan R. Virtual screening and in vitro assay of potential drug like inhibitors from spices against glutathione-S-transferase of filarial nematodes. J Mol Model. 2012;18:151–63.
Article
CAS
PubMed
Google Scholar
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite—a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017;215:2–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Navarro-Moll MC, Romero MC, Montilla MP, Valero A. In vitro and in vivo activity of three sesquiterpenes against L(3) larvae of Anisakis type I. Exp Parasitol. 2011;127:405–8.
Article
CAS
PubMed
Google Scholar
Romero MC, Valero A, Martin-Sanchez J, Navarro-Moll MC. Activity of Matricaria chamomilla essential oil against anisakiasis. Phytomedicine. 2012;19:520–3.
Article
CAS
Google Scholar
Chan WK, Tan LT, Chan KG, Lee LH, Goh BH. Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules. 2016;21:529.
Article
PubMed Central
CAS
Google Scholar
Dichtl K, Ebel F, Dirr F, Routier FH, Heesemann J, Wagener J. Farnesol misplaces tip-localized Rho proteins and inhibits cell wall integrity signalling in Aspergillus fumigatus. Mol Microbiol. 2010;76:1191–204.
Article
CAS
PubMed
Google Scholar
Abdel-Rahman FH, Alaniz NM, Saleh MA. Nematicidal activity of terpenoids. J Environ Sci Health B. 2013;48:16–22.
Article
CAS
PubMed
Google Scholar
Kloog Y, Cox AD. Prenyl-binding domains: potential targets for Ras inhibitors and anti-cancer drugs. Semin Cancer Biol. 2004;14:253–61.
Article
CAS
PubMed
Google Scholar
Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Ann Rev Biochem. 1996;65:241–69.
Article
CAS
PubMed
Google Scholar
Davey KG. Molting in a parasitic nematode, Phocanema decipiens. VI The mode of action of insect juvenile hormone and farnesyl methyl ether. Int J Parasitol. 1971;1:61–6.
Article
CAS
PubMed
Google Scholar
Böttcher S, Drusch S. Saponins - self-assembly and behavior at aqueous interfaces. Adv Colloid Interface Sci. 2017;243:105–13.
Article
PubMed
CAS
Google Scholar
Cao M, Onyango EO, Williams CR, Royce DB, Gribble GW, Sporn MB, et al. Novel synthetic pyridyl analogues of CDDO-imidazolide are useful new tools in cancer prevention. Pharmacol Res. 2015;100:135–47.
Article
CAS
PubMed
Google Scholar
Gaware R, Khunt R, Czollner L, Stanetty C, Da Cunha T, Kratschmar DV, et al. Synthesis of new glycyrrhetinic acid derived ring A azepanone, 29-urea and 29-hydroxamic acid derivatives as selective 11beta-hydroxysteroid dehydrogenase 2 inhibitors. Bioorg Med Chem. 2011;19:1866–80.
Article
CAS
PubMed
Google Scholar
Honda T, Rounds BV, Gribble GW, Suh N, Wang Y, Sporn MB. Design and synthesis of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, a novel and highly active inhibitor of nitric oxide production in mouse macrophages. Bioorg Med Chem Lett. 1998;8:2711–4.
Article
CAS
PubMed
Google Scholar
Liang Z, Zhang L, Li L, Liu J, Li H, Zhang L, et al. Identification of pentacyclic triterpenes derivatives as potent inhibitors against glycogen phosphorylase based on 3D-QSAR studies. Eur J Med Chem. 2011;46:2011–21.
Article
CAS
PubMed
Google Scholar
Wei Y, Ma CM, Hattori M. Synthesis and evaluation of A-seco type triterpenoids for anti-HIV-1protease activity. Eur J Med Chem. 2009;44:4112–20.
Article
CAS
PubMed
Google Scholar
Wu H, Zhong Q, Zhong R, Huang H, Xia Z, Ke Z, et al. Preparation and antitumor evaluation of self-assembling oleanolic acid-loaded pluronic P105/d-alpha-tocopheryl polyethylene glycol succinate mixed micelles for non-small-cell lung cancer treatment. Int J Nanomed. 2016;11:6337–52.
Article
CAS
Google Scholar
Cavalcante GS, de Morais SM, Andre WP, Ribeiro WL, Rodrigues AL, De Lira FC, et al. Chemical composition and in vitro activity of Calotropis procera (Ait.) latex on Haemonchus contortus. Vet Parasitol. 2016;226:22–5.
Article
CAS
PubMed
Google Scholar
Gomes DC, de Lima HG, Vaz AV, Santos NS, Santos FO, Dias ER, et al. In vitro anthelmintic activity of the Zizyphus joazeiro bark against gastrointestinal nematodes of goats and its cytotoxicity on Vero cells. Vet Parasitol. 2016;226:10–6.
Article
PubMed
Google Scholar
Schuhly W, Heilmann J, Calis I, Sticher O. Novel triterpene saponins from Zizyphus joazeiro. Helv Chim Acta. 2000;83:1509–16.
Article
CAS
Google Scholar
Senathilake KS, Karunanayake EH, Samarakoon SR, Tennekoon KH, de Silva ED, Adhikari A. Oleanolic acid from antifilarial triterpene saponins of Dipterocarpus zeylanicus induces oxidative stress and apoptosis in filarial parasite Setaria digitata in vitro. Exp Parasitol. 2017;177:13–21.
Article
CAS
PubMed
Google Scholar
Ayeleso TB, Matumba MG, Mukwevho E. Oleanolic acid and its derivatives: biological activities and therapeutic potential in chronic diseases. Molecules. 2017;22:1915.
Article
PubMed Central
CAS
Google Scholar
Chama MA, Dziwornu GA, Waibel R, Osei-Safo D, Addae-Mensah I, Otchere J, et al. Isolation, characterization, and anthelminthic activities of a novel dichapetalin and other constituents of Dichapetalum filicaule. Pharm Biol. 2016;54:1179–88.
CAS
PubMed
Google Scholar
Doligalska M, Jozwicka K, Donskow-Lysoniewska K, Kalinowska M. The antiparasitic activity of avenacosides against intestinal nematodes. Vet Parasitol. 2017;241:5–13.
Article
CAS
PubMed
Google Scholar
Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, et al. β-Glucosidases as detonators of plant chemical defense. Phytochemistry. 2008;69:1795–813.
Article
CAS
PubMed
Google Scholar
Pineda-Alegria JA, Sanchez-Vazquez JE, Gonzalez-Cortazar M, Zamilpa A, Lopez-Arellano ME, Cuevas-Padilla EJ, et al. The edible mushroom Pleurotus djamor produces metabolites with lethal activity against the parasitic nematode Haemonchus contortus. J Med Food. 2017;20:1184–92.
Article
CAS
PubMed
Google Scholar
Sommer RJ, Ogawa A. Hormone signaling and phenotypic plasticity in nematode development and evolution. Curr Biol. 2011;21:R758–66.
Article
CAS
PubMed
Google Scholar
Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, et al. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother. 1979;15:361–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shoop WL, Mrozik H, Fisher MH. Structure and activity of avermectins and milbemycins in animal health. Vet Parasitol. 1995;59:139–56.
Article
CAS
PubMed
Google Scholar
Arena JP, Liu KK, Paress PS, Frazier EG, Cully DF, Mrozik H, et al. The mechanism of action of avermectins in Caenorhabditis elegans: correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity. J Parasitol. 1995;81:286–94.
Article
CAS
PubMed
Google Scholar
Xiang WS, Wang JD, Wang M, Wang XJ. New nemadectin congener from Streptomyces microflavus neau3: fermentation, isolation, structure elucidation and biological activities. J Antibiot. 2010;63:171–5.
Article
CAS
Google Scholar
Page AP. The sensory amphidial structures of Caenorhabditis elegans are involved in macrocyclic lactone uptake and anthelmintic resistance. Int J Parasitol. 2018;48:1035–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayes B, Schnitzler B, Wiseman S, Snyder DE. Field evaluation of the efficacy and safety of a combination of spinosad and milbemycin oxime in the treatment and prevention of naturally acquired flea infestations and treatment of intestinal nematode infections in dogs in Europe. Vet Parasitol. 2015;207:99–106.
Article
CAS
PubMed
Google Scholar
FDA. Drug trials snapshots: moxidectin. 2018. https://www.fda.gov/Drugs/InformationOnDrugs/ucm612705.htm. Accessed 7 Dec 2018.
Deng LP, Dong J, Cai H, Wang W. Cantharidin as an antitumor agent: a retrospective review. Curr Med Chem. 2013;20:159–66.
Article
CAS
PubMed
Google Scholar
Li YM, Casida JE. Cantharidin-binding protein: identification as protein phosphatase 2A. Proc Natl Acad Sci USA. 1992;89:11867–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boag PR, Ren P, Newton SE, Gasser RB. Molecular characterisation of a male-specific serine/threonine phosphatase from Oesophagostomum dentatum (Nematoda: Strongylida), and functional analysis of homologues in Caenorhabditis elegans. Int J Parasitol. 2003;33:313–25.
Article
CAS
PubMed
Google Scholar
Campbell BE, Nagaraj SH, Hu M, Zhong W, Sternberg PW, Ong EK, et al. Gender-enriched transcripts in Haemonchus contortus—predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans. Int J Parasitol. 2008;38:65–83.
Article
CAS
PubMed
Google Scholar
Nisbet AJ, Gasser RB. Profiling of gender-specific gene expression for Trichostrongylus vitrinus (Nematoda: Strongylida) by microarray analysis of expressed sequence tag libraries constructed by suppressive-subtractive hybridisation. Int J Parasitol. 2004;34:633–43.
Article
CAS
PubMed
Google Scholar
Campbell BE, Tarleton M, Gordon CP, Sakoff JA, Gilbert J, McCluskey A, et al. Norcantharidin analogues with nematocidal activity in Haemonchus contortus. Bioorg Med Chem Lett. 2011;21:3277–81.
Article
CAS
PubMed
Google Scholar
Chavarria D, Silva T, Magalhaes e Silva D, Remiao F, Borges F. Lessons from black pepper: piperine and derivatives thereof. Expert Opin Ther Pat. 2016;26:245–64.
Article
CAS
PubMed
Google Scholar
Derosa G, Maffioli P, Sahebkar A. Piperine and its role in chronic diseases. Adv Exp Med Biol. 2016;928:173–84.
Article
CAS
PubMed
Google Scholar
Nguyen BC, Tawata S. The chemistry and biological activities of mimosine: a review. Phytother Res. 2016;30:1230–42.
Article
CAS
PubMed
Google Scholar
Nguyen BC, Chompoo J, Tawata S. Insecticidal and nematicidal activities of novel mimosine derivatives. Molecules. 2015;20:16741–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sugawara A, Kubo M, Hirose T, Yahagi K, Tsunoda N, Noguchi Y, et al. Jietacins, azoxy antibiotics with potent nematocidal activity: design, synthesis, and biological evaluation against parasitic nematodes. Eur J Med Chem. 2018;145:524–38.
Article
CAS
PubMed
Google Scholar
Omura S, Otoguro K, Imamura N, Kuga H, Takahashi Y, Masuma R, et al. Jietacins A and B, new nematocidal antibiotics from a Streptomyces sp Taxonomy, isolation, and physico-chemical and biological properties. J Antibiot. 1987;40:623–9.
Article
CAS
Google Scholar
The Lens. Queensland University of Technology, Brisbane. 2014. https://www.lens.org/. Accessed 12 Nov 2018.
Jeong PY, Jung M, Yim YH, Kim H, Park M, Hong E, et al. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature. 2005;433:541–5.
Article
CAS
PubMed
Google Scholar
Choe A, von Reuss SH, Kogan D, Gasser RB, Platzer EG, Schroeder FC, et al. Ascaroside signaling is widely conserved among nematodes. Curr Biol. 2012;22:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srinivasan J, Kaplan F, Ajredini R, Zachariah C, Alborn HT, Teal PEA, et al. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature. 2008;454:1115–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyle GM, D’Souza MMA, Pierce CJ, Adams RA, Cantor AS, Johns JP, et al. Intra-lesional injection of the novel PKC activator EBC-46 rapidly ablates tumors in mouse models. PLoS ONE. 2014;9:e108887.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hansen N, Nicholas N, Pack G, Mackie JT, Shipstone M, Munday JS, et al. Progressive cutaneous viral pigmented plaques in three Hungarian Vizslas and the response of lesions to topical tigilanol tiglate gel. Vet Med Sci. 2018;4:53–62.
Article
CAS
PubMed
Google Scholar
Kirira PG, Rukunga GM, Wanyonyi AW, Muthaura CN, Mungai GM, Machocho AK, et al. Tigliane diterpenoids from the stem bark of Neoboutonia macrocalyx. J Nat Prod. 2007;70:842–5.
Article
CAS
PubMed
Google Scholar
Wang H-B, Wang X-Y, Liu L-P, Qin G-W, Kang T-G. Tigliane diterpenoids from the Euphorbiaceae and Thymelaeaceae families. Chem Rev. 2015;115:2975–3011.
Article
CAS
PubMed
Google Scholar
Ndjonka D, Rapado LN, Silber AM, Liebau E, Wrenger C. Natural products as a source for treating neglected parasitic diseases. Intl J Mol Sci. 2013;14:3395–439.
Article
CAS
Google Scholar
Ntalli NG, Caboni P. Botanical nematicides: a review. J Agric Food Chem. 2012;60:9929–40.
Article
CAS
PubMed
Google Scholar
Zhou L, Wang J, Wang K, Xu J, Zhao J, Shan T, et al. Secondary metabolites with antinematodal activity from higher plants. In: Atta-ur-Rahman, editor. Studies in Natural Products Chemistry, vol. 37. Amsterdam: Elsevier; 2012. p. 67–114.
Google Scholar
Ndjonka D, Djafsia B, Liebau E. Review on medicinal plants and natural compounds as anti-Onchocerca agents. Parasitol Res. 2018;117:2697–713.
Article
PubMed
Google Scholar
Spiegler V, Liebau E, Hensel A. Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Nat Prod Rep. 2017;34:627–43.
Article
CAS
PubMed
Google Scholar
Baell JB. Feeling Nature’s PAINS: natural products, natural product drugs, and Pan Assay Interference Compounds (PAINS). J Nat Prod. 2016;79:616–28.
Article
CAS
PubMed
Google Scholar
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, et al. The ecstasy and agony of assay interference compounds. Biochemistry. 2017;56:1363–6.
Article
CAS
PubMed
Google Scholar
Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.
Article
CAS
PubMed
Google Scholar
Cooper MA. A community-based approach to new antibiotic discovery. Nat Rev Drug Dis. 2015;14:587–8.
Article
CAS
Google Scholar
WHO. Neglected Tropical Diseases. 2017. http://www.who.int/neglected_diseases/diseases/en/. Accessed 22 Nov 2018.
Lee BH, Clothier MF, Dutton FE, Nelson SJ, Johnson SS, Thompson DP, et al. Marcfortine and paraherquamide class of
anthelmintics: discovery of PNU-141962. Curr Topics Med Chem. 2002;2:779–93.
Article
CAS
Google Scholar
Sasaki T, Takagi M, Yaguchi T, Miyadoh S, Okada T, Koyama M. A new anthelmintic cyclodepsipeptide, PF1022A. J Antibiot. 1992;45:692–7.
Article
CAS
Google Scholar