Valkiūnas G. Avian malaria parasites and other haemosporidia. Boca Raton: Florida; 2005.
Google Scholar
Merino S, Moreno J, José Sanz J, Arriero E. Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc Biol Sci. 2000;267:2507–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marzal A, de Lope F, Navarro C, Møller AP. Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia. 2005;142:541–5.
Article
PubMed
Google Scholar
Martínez-de la Puente J, Merino S, Tomás G, Moreno J, Morales J, Lobato E, et al. The blood parasite Haemoproteus reduces survival in a wild bird: a medication experiment. Biol Lett. 2010;6:663–5.
Article
Google Scholar
Asghar M, Hasselquist D, Hansson B, Zehtindjiev P, Westerdahl H, Bensch S. Chronic infection. Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science. 2015;347:436–8.
Article
CAS
PubMed
Google Scholar
Marzal A, Balbontín J, Reviriego M, García-Longoria L, Relinque C, Hermosell IG, et al. A longitudinal study of age-related changes in Haemoproteus infection in a passerine bird. Oikos. 2016;125:1092–9.
Article
Google Scholar
Bensch S, Hellgren O, Pérez-Tris J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour. 2009;9:1353–8.
Article
PubMed
Google Scholar
Lapointe DA, Atkinson CT, Samuel MD. Ecology and conservation biology of avian malaria. Ann N Y Acad Sci. 2012;1249:211–26.
Article
PubMed
Google Scholar
Hellgren O, Atkinson CT, Bensch S, Albayrak T, Dimitrov D, Ewen JG, et al. Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity. Ecography. 2015;38:842–50.
Article
Google Scholar
Marzal A, García-Longoria L, Cárdenas Callirgos JM, Sehgal RNM. Invasive avian malaria as an emerging parasitic disease in native birds of Peru. Biol Invasions. 2015;17:39–45.
Article
Google Scholar
Pérez-Tris J, Bensch S. Dispersal increases local transmission of avian malarial parasites. Ecol Lett. 2005;8:838–45.
Article
Google Scholar
Marzal A, Ricklefs RE, Valkiūnas G, Albayrak T, Arriero E, Bonneaud C, et al. Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS ONE. 2011;6:e21905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT. Links between worlds: unraveling migratory connectivity. Trends Ecol Evol. 2002;17:76–83.
Article
Google Scholar
Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U. Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol. 2002;11:1545–54.
Article
PubMed
Google Scholar
Mata VA, da Silva LP, Lopes RJ, Drovetski SV. The Strait of Gibraltar poses an effective barrier to host-specialised but not to host-generalised lineages of avian haemosporidia. Int J Parasitol. 2015;45:711–9.
Article
PubMed
Google Scholar
Ferraguti M, Martínez‐de la Puente J, Bensch S, Roiz D, Ruiz S, Viana DS, et al. Ecological determinants of avian malaria infections: an integrative analysis at landscape, mosquito and vertebrate community levels. J Anim Ecol. 2018;87:727–40.
Article
PubMed
Google Scholar
Svensson L. Identification guide to European passerines. Thetford: British Trust for Ornithology; 2006.
Google Scholar
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2002.
Google Scholar
Gutiérrez-López R, Puente J, Gangoso L, Soriguer R, Figuerola J. Comparison of manual and semi-automatic DNA extraction protocols for the barcoding characterization of hematophagous louse flies (Diptera: Hippoboscidae). J Vector Ecol. 2015;40:11–5.
Article
PubMed
Google Scholar
Hellgren O, Bensch S, Malmqvist B. Bird hosts, blood parasites and their vectors—associations uncovered by molecular analyses of black fly blood meals. Mol Ecol. 2008;17:1605–13.
Article
CAS
PubMed
Google Scholar
McClintock BT, Nichols JD, Bailey LL, MacKenzie DI, Kendall WL, Franklin AB. Seeking a second opinion: uncertainty in disease ecology. Ecol Lett. 2010;13:659–74.
Article
PubMed
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
PubMed
PubMed Central
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9.
Article
CAS
PubMed
Google Scholar
Page RD. Tree View: an application to display phylogenetic trees on personal computers. Bioinformatics. 1996;12:357–8.
Article
CAS
Google Scholar
Santiago-Alarcon D, Carbó-Ramírez P, Macgregor-Fors I, Chávez-Zichinelli CA, Yeh PJ. The prevalence of avian haemosporidian parasites in an invasive bird is lower in urban than in non-urban environments. Ibis. 2018. https://doi.org/10.1111/ibi.12699
Article
Google Scholar
Drovetski SV, Aghayan SA, Mata VA, Lopes RJ, Mode NA, Harvey JA, et al. Does the niche breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian haemosporidia? Mol Ecol. 2014;23:3322–9.
Article
PubMed
Google Scholar
Emmenegger T, Bauer S, Dimitrov D, Marin JO, Zehtindjiev P, Hahn S. Host migration strategy and blood parasite infections of three sparrow species sympatrically breeding in southeast Europe. Parasitol Res. 2018;117:3733–41.
Article
PubMed
Google Scholar
Hahn S, Dimitrov D, Emmenegger T, Ilieva M, Peev S, Zehtindjiev P. Migration, wing morphometry and wing moult in Spanish and house sparrows from the eastern Balkan Peninsula. J Ornithol. 2019;160:271–4.
Article
Google Scholar
García-Longoria L, Hellgren O, Bensch S, De Lope F, Marzal A. Detecting transmission areas of malaria parasites in a migratory bird species. Parasitology. 2015;142:1215–20.
Article
PubMed
CAS
Google Scholar
Kimura M, Darbro JM, Harrington LC. Avian malaria parasites share congeneric mosquito vectors. J Parasitol. 2010;96:144–51.
Article
CAS
PubMed
Google Scholar
Ferraguti M, Martínez-de la Puente J, Muñoz J, Roiz D, Ruiz S, Soriguer R, et al. Avian Plasmodium in Culex and Ochlerotatus mosquitoes from southern Spain: effects of season and host-feeding source on parasite dynamics. PLoS ONE. 2013;8:e66237.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutiérrez-López R, Martínez-de la Puente J, Gangoso L, Yan J, Soriguer R, Figuerola J. Experimental reduction of host Plasmodium infection load affects mosquito survival. Sci Rep. 2019;9:8782.
Article
PubMed
PubMed Central
CAS
Google Scholar
Muñoz J, Ruiz S, Soriguer R, Alcaide M, Viana DS, Roiz D, et al. Feeding patterns of potential West Nile virus vectors in south-west Spain. PLoS ONE. 2012;7:e39549.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martínez-de la Puente J, Ferraguti M, Ruiz S, Roiz D, Soriguer R, Figuerola J. Culex pipiens forms and urbanization: effects on blood feeding sources and transmission of avian Plasmodium. Malar J. 2016;15:589.
Article
PubMed
PubMed Central
Google Scholar
Santiago-Alarcon D, Palinauskas V, Schaefer HM. Diptera vectors of avian haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev Camb Philos Soc. 2012;87:928–64.
Article
PubMed
Google Scholar
Valkiūnas G. Haemosporidian vector research: marriage of molecular and microscopical approaches is essential. Mol Ecol. 2011;20:3084–6.
Article
PubMed
Google Scholar
Elbers AR, Koenraadt CJ, Meiswinkel R. Mosquitoes and Culicoides biting midges: vector range and the influence of climate change. Rev Sci Tech. 2015;34:123–37.
Article
CAS
PubMed
Google Scholar
Jacquet S, Huber K, Pagès N, Talavera S, Burgin LE, Carpenter S, et al. Range expansion of the bluetongue vector, Culicoides imicola, in continental France likely due to rare wind-transport events. Sci Rep. 2016;6:27247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beadell JS, Ishtiaq F, Covas R, Melo M, Warren BH, Atkinson CT, et al. Global phylogeographic limits of Hawaii’s avian malaria. Proc Biol Sci. 2006;273:2935–44.
Article
PubMed
PubMed Central
Google Scholar
Hahn S, Bauer S, Liechti F. The natural link between Europe and Africa–2.1 billion birds on migration. Oikos. 2009;118:624–6.
Article
Google Scholar
Finlayson JC, Cortés JE. The birds of the Strait of Gibraltar: its waters and northern shore. Gibraltar: The Gibraltar Ornithological & Natural History Society; 1987.
Google Scholar
Tellería JL. La migración de las aves en el estrecho de Gibraltar. Aves no planeadoras. Madrid: Universidad Complutense; 1981.
Google Scholar
Summers-Smith JD. The sparrows: a study of the genus Passer. Calton: T & AD Poyser; 1988.
Google Scholar
Altwegg R, Ringsby TH, Sæther BE. Phenotypic correlates and consequences of dispersal in a metapopulation of house sparrows Passer domesticus. J Anim Ecol. 2000;69:762–70.
Article
PubMed
Google Scholar
Skjelseth S, Ringsby TH, Tufto J, Jensen H, Sæther BE. Dispersal of introduced house sparrows Passer domesticus: an experiment. Proc Biol Sci. 2007;274:1763–71.
Article
PubMed
PubMed Central
Google Scholar
Moulton PM, Cropper PW, Avery LM, Moulton LE. The earliest house sparrow introductions to North America. Biol Invasions. 2010;12:2955–8.
Article
Google Scholar
Zimmerman DA, Turner DA, Pearson DJ. Birds of Kenya and northern Tanzania. Princeton Field Guides: Princeton; 1999.
Google Scholar
Gutiérrez R, De Juana E, Lorenzo JA. Lista de las aves de España. Madrid: SEO/BirdLife; 2012.
Google Scholar
Norris DE. Mosquito-borne diseases as a consequence of land use change. EcoHealth. 2004;1:19–24.
Article
Google Scholar
Gonzalez-Quevedo C, Davies RG, Richardson DS. Predictors of malaria infection in a wild bird population: landscape-level analyses reveal climatic and anthropogenic factors. J Anim Ecol. 2014;83:1091–102.
Article
PubMed
Google Scholar
Jones MR, Cheviron ZA, Carling MD. Spatial patterns of avian malaria prevalence in Zonotrichia capensis on the western slope of the Peruvian Andes. J Parasitol. 2013;99:903–6.
Article
CAS
PubMed
Google Scholar
Garamszegi LZ. Climate change increases the risk of malaria in birds. Glob Chang Biol. 2011;17:1751–9.
Article
Google Scholar
Loiseau C, Harrigan RJ, Cornel AJ, Guers SL, Dodge M, Marzec T, et al. First evidence and predictions of Plasmodium transmission in Alaskan bird populations. PLoS ONE. 2012;7:e44729.
Article
CAS
PubMed
PubMed Central
Google Scholar