WHO. World Malaria Report 2018. Geneva: World Health Organization; 2018. http://www.who.int/malaria. Accessed 19 Dec 2019.
Yé Y, Eisele TP, Eckert E, Korenromp E, Shah JA, Hershey CL, et al. Framework for evaluating the health impact of the scale-up of malaria control interventions on all-cause child mortality in Sub-Saharan Africa. Am J Trop Med Hyg. 2017;97:9–19.
Article
PubMed
PubMed Central
Google Scholar
Guyant P, Corbel V, Guérin PJ, Lautissier A, Nosten F, Boyer S, et al. Past and new challenges for malaria control and elimination: the role of operational research for innovation in designing interventions. Malar J. 2015;14:279.
Article
PubMed
PubMed Central
Google Scholar
Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control? Trends Parasitol. 2011;27:91–8.
Article
CAS
PubMed
Google Scholar
Karaağaç SU. Insecticide resistance. In: Perveen F, editor. Insecticides - Advances in Integrated Pest Management. Rijeka, Croatia: InTech; 2012. p. 469–78.
Google Scholar
Hemingway J. The role of vector control in stopping the transmission of malaria: threats and opportunities. Philos Trans R Soc B Biol Sci. 2014;369:20130431.
Article
Google Scholar
Killeen GF, Govella NJ, Lwetoijera DW, Okumu FO. Most outdoor malaria transmission by behaviourally-resistant Anopheles arabiensis is mediated by mosquitoes that have previously been inside houses. Malar J. 2016;15:225.
Article
PubMed
PubMed Central
Google Scholar
Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014;13:330.
Article
PubMed
PubMed Central
Google Scholar
Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. In: Manguin S, editor. Anopheles mosquitoes. New insights into malaria vectors. Rijeka, Croatia: InTech; 2013.
Moiroux N, Gomez MB, Pennetier C, Elanga E, Djenontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in benin. J Infect Dis. 2012;206:1622–9.
Article
CAS
PubMed
Google Scholar
Mwangangi JM, Kahindi SC, Kibe LW, Nzovu JG, Luethy P, Githure JI, et al. Wide-scale application of Bti/Bs biolarvicide in different aquatic habitat types in urban and peri-urban Malindi. Kenya. Parasitol Res. 2011;108:1355–63.
Article
PubMed
Google Scholar
Aïssaoui L, Boudjelida H. Larvicidal activity and influence of Bacillus thuringiensis (Vectobac G), on longevity and fecundity of mosquito species. Pelagia Res Libr Eur J Exp Biol. 2014;4:104–9.
Google Scholar
Kandyata A, Mbata KJ, Shinondo CJ, Katongo C, Kamuliwo RM, Nyirenda F, et al. Impacts of Bacillus thuringiensis var. israelensis and Bacillus sphaericus insect larvicides on mosquito larval densities in Lusaka, Zambia. Med J Zambia. 2012;39:33–8.
Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Rie JVAN, Lereclus D, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998;62:807–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aronson AI, Shai Y. Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol Lett. 2001;195:1–8.
Article
CAS
PubMed
Google Scholar
Bravo A, Gill SS, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007;49:423–35.
Article
CAS
PubMed
Google Scholar
De Maagd RA, Bravo A, Crickmore N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 2001;17:193–9.
Article
PubMed
Google Scholar
Tetreau G, Alessi M, Veyrenc S, Périgon S, David JP, Reynaud S, Després L. Fate of Bacillus thuringiensis subsp. israelensis in the field: evidence for spore recycling and differential persistence of toxins in leaf litter. Appl Environ Microbiol. 2012;78:8362–7.
Fayolle S, Bertrand C, Logez M, Franquet É. Does mosquito control by Bti spraying affect the phytoplankton community ? A 5-year study in Camargue temporary wetlands (France). Ann Limnol. 2015;51:189–98.
Article
Google Scholar
Sneha A, Preet S. Impact of sublethal conventional and biorational larvicidal stress on fitness status in nutritionally challenged Aedes aegypti larvae. Int J Mosq Res. 2016;3:39–46.
Google Scholar
Muturi EJ, Kim CH, Alto BW, Berenbaum MR, Schuler MA. Larval environmental stress alters Aedes aegypti competence for Sindbis virus. Trop Med Int Heal. 2011;16:955–64.
Article
CAS
Google Scholar
Barreaux AMG, Barreaux P, Thievent K, Koella JC. Larval environment influences vector competence of the malaria mosquito Anopheles gambiae. Malaria World J. 2016;7:8.
Google Scholar
Shapiro LLM, Murdock CC, Jacobs GR, Thomas RJ, Thomas MB. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proc R Soc B Biol Sci. 2016;283:20160298.
Article
Google Scholar
Vantaux A, Ouattarra I, Lefèvre T, Dabiré KR. Effects of larvicidal and larval nutritional stresses on Anopheles gambiae development, survival and competence for Plasmodium falciparum. Parasit Vectors. 2016;9:226.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alto BW, Lord CC. Transstadial effects of Bti on traits of Aedes aegypti and infection with dengue virus. PLoS Negl Trop Dis. 2016;10:e0004370.
Article
PubMed
PubMed Central
CAS
Google Scholar
Flores AE, Garcia GP, Badii MH, Tovar LRM, Salas IF. Effects of sublethal concentrations of VectoBac® on biological parameters of Aedes aegypti. J Am Mosq Control Assoc. 2004;20:412–7.
PubMed
Google Scholar
Wang LY, Jaal Z. Sublethal effects of Bacillus thuringiensis H-14 on the survival rate, longevity, fecundity and F1 generation developmental period of Aedes aegypti. Dengue Bull. 2005;29:192–6.
Google Scholar
Simsek FM, Akiner MM, Caglar SS. Effects of sublethal concentration of Vectobac 12 AS on some biological parameters of the malaria vector Anopheles superpictus. J Anim Vet Adv. 2009;8:1326–31.
CAS
Google Scholar
Spitzen J, Ponzio C, Koenraadt CJM, Pates Jamet HV, Takken W. Absence of close-range excitorepellent effects in malaria mosquitoes exposed to deltamethrin-treated bed nets. Am J Trop Med Hyg. 2014;90:1124–32.
Article
PubMed
PubMed Central
Google Scholar
Becker N, Rettich F. Protocol for the introduction of new Bacillus thuringiensis israelensis products into the routine mosquito control program in Germany. J Am Mosq Control Assoc. 1994;10:527–33.
CAS
PubMed
Google Scholar
Cerstiaens A, Verleyen P, Van Rie J, Van Kerkhove E, Schwartz JL, Laprade R, et al. Effect of Bacillus thuringiensis Cry1 toxins in insect hemolymph and their neurotoxicity in brain cells of Lymantria dispar. Appl Environ Microbiol. 2001;67:3923–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sunday OO, Kayode A, Mo A. Laboratory review of sublethal effects of cypermethrin on oviposition, life span and egg development in Culex quinquefasciatus Say (Diptera: Culicidae). Int J Mosq Res. 2016;3:20–5.
Google Scholar
Ndoen E, Wild C, Dale P, Sipe N, Dale M. Mosquito longevity, vector capacity, and malaria incidence in West Timor and Central Java, Indonesia. ISRN Public Health. 2012;2012:1–5.
Article
Google Scholar
Smith DL, McKenzie FE. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J. 2004;3:13.
Article
PubMed
PubMed Central
Google Scholar
Antonio GE, Sánchez D, Williams T, Marina CF. Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti. Pest Manag Sci. 2009;65:323–6.
Article
CAS
PubMed
Google Scholar
Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED. Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol. 2002;39:162–72.
Article
PubMed
Google Scholar
Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012;28:114–21.
Article
PubMed
Google Scholar
Siegel JP, Novak RJ, Lampman RL, Steinly BA. Statistical appraisal of the weight-wing length relationship of mosquitoes. J Med Entomol. 1992;29:711–4.
Article
CAS
PubMed
Google Scholar
Jirakanjanakit N, Leemingsawat S, Thongrungkiat S, Apiwathnasorn C, Singhaniyom S, Bellec C, et al. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti. Trop Med Int Heal. 2007;12:1354–60.
Article
CAS
Google Scholar
Briegel H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J Med Entomol. 1990;27:839–50.
Article
CAS
PubMed
Google Scholar
Takken W, Klowden MJ, Chambers GM. Effect of body size on host seeking and blood meal utilization in Anopheles gambiae sensu stricto (Diptera: Culicidae): the disadvantage of being small. J Med Entomol. 1998;35:639–45.
Article
CAS
PubMed
Google Scholar
Alcalay Y, Tsurim I, Ovadia O. Female mosquitoes disperse further when they develop under predation risk. Behav Ecol. 2018;29:1402–8.
Google Scholar
Owusu HF, Chitnis N, Müller P. Insecticide susceptibility of Anopheles mosquitoes changes in response to variations in the larval environment. Sci Rep. 2017;7:3667.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oliver SV, Brooke BD. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis. Malar J. 2013;12:44.
Article
PubMed
PubMed Central
Google Scholar
Seenivasagan T, Iqbal ST, Guha L. Forced egg retention and oviposition behavior of malaria, dengue and filariasis vectors to a topical repellent diethyl-phenylacetamide. Indian J Exp Biol. 2015;53:440–5.
CAS
PubMed
Google Scholar