Sonenshine DE, Roe RM. Biology of ticks. Oxford: Oxford University Press; 2013.
Google Scholar
Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol. 2012;28(10):437–46.
Article
PubMed
Google Scholar
Randolph SE. The impact of tick ecology on pathogen transmission dynamics. Ticks. 2008;40:72.
Google Scholar
Narasimhan S, Fikrig E. Tick microbiome: the force within. Trends Parasitol. 2015;31:315–23. https://doi.org/10.1016/j.pt.2015.03.010.
Article
PubMed
PubMed Central
Google Scholar
Bonnet SI, Binetruy F, Hernandez-Jarguin AM, Duron O. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell Infect Microbiol. 2017;7:236. https://doi.org/10.3389/fcimb.2017.00236.
Article
PubMed
PubMed Central
Google Scholar
Duron O, Noel V, McCoy KD, Bonazzi M, Sidi-Boumedine K, Morel O, et al. The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen Coxiella burnetii. PLOS Pathog. 2015;11:e1004892. https://doi.org/10.1371/journal.ppat.1004892.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith TA, Driscoll T, Gillespie JJ, Raghavan R. A Coxiella-like endosymbiont is a potential vitamin source for the lone star tick. Genome Biol Evol. 2015;7(3):831–8. https://doi.org/10.1093/gbe/evv016.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cowdry EV. A group of microorganisms transmitted hereditarily in ticks and apparently unassociated with disease. J Exp Med. 1925;41(6):817–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noda H, Munderloh UG, Kurtti TJ. Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Environ Microbiol. 1997;63:3926–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irwin P, Egan S, Greay T, Oskam C. Bacterial tick-associated infections in Australia: current studies and future directions. Microbiol Aust. 2018;12:35.
Google Scholar
Buettner PG, Westcott DA, Maclean J, Brown L, McKeown A, Johnson A, et al. Tick paralysis in spectacled flying-foxes (Pteropus conspicillatus) in North Queensland, Australia: impact of a ground-dwelling ectoparasite finding an arboreal host. PLoS ONE. 2013;8:e73078. https://doi.org/10.1371/journal.pone.0073078.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gofton AW, Doggett S, Ratchford A, Oskam CL, Paparini A, Ryan U, et al. Bacterial profiling reveals novel "Ca. Neoehrlichia", Ehrlichia, and Anaplasma species in Australian human-biting ticks. PLoS ONE. 2015;10:e0145449. https://doi.org/10.1371/journal.pone.0145449.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gofton AW, Oskam CL, Lo N, Beninati T, Wei H, McCarl V, et al. Inhibition of the endosymbiont “Candidatus Midichloria mitochondrii” during 16S rRNA gene profiling reveals potential pathogens in Ixodes ticks from Australia. Parasites Vectors. 2015;8:345. https://doi.org/10.1186/s13071-015-0958-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Loh SM, Gofton AW, Lo N, Gillett A, Ryan UM, Irwin PJ, et al. Novel Borrelia species detected in echidna ticks, Bothriocroton concolor, in Australia. Parasites Vectors. 2016;9:339. https://doi.org/10.1186/s13071-016-1627-x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Greay TL, Gofton AW, Paparini A, Ryan UM, Oskam CL, Irwin PJ. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites Vectors. 2018;11:12. https://doi.org/10.1186/s13071-017-2550-5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gofton AW, Waudby HP, Petit S, Greay TL, Ryan UM, Irwin PJ. Detection and phylogenetic characterisation of novel Anaplasma and Ehrlichia species in Amblyomma triguttatum subsp. from four allopatric populations in Australia. Ticks Tick-borne Dis. 2017;8:749–56. https://doi.org/10.1016/j.ttbdis.2017.05.009.
Article
PubMed
Google Scholar
Egan SL, Loh SM, Banks PB, Gillett A, Ahlstrom L, Ryan UM, et al. Bacterial community profiling highlights complex diversity and novel organisms in wildlife ticks. Ticks Tick-borne Dis. 2020;11:101407. https://doi.org/10.1016/j.ttbdis.2020.101407.
Article
PubMed
Google Scholar
Loh SM: Identification and characterisation of microorganisms in Australian wildlife ticks. Doctoral dissertation. Murdoch University; 2018.
Old JM, Sengupta C, Narayan E, Wolfenden J. Sarcoptic mange in wombats—a review and future research directions. Transbound Emerg Dis. 2018;65:399–407. https://doi.org/10.1111/tbed.12770.
Article
PubMed
CAS
Google Scholar
Hoogstraal H, Aeschlimann A. Tick-host specificity. Bull Soc Entomol Suisse. 1982;55:5–32.
Google Scholar
Cunningham AA. Disease risks of wildlife translocations. Conserv Biol. 1996;10(2):349–53.
Article
Google Scholar
Lyles AM, Dobson AP. Infectious disease and intensive management: population dynamics, threatened hosts, and their parasites. J Zoo Wildl Med. 1993;5:315–26.
Google Scholar
Roberts FHS. The Australian species of Aponomma and Amblyomma (Ixodoidea). Aust J Zool. 1953;1(1):111–61.
Article
Google Scholar
Laan B, Handasyde K, Beveridge I. Occurrence of the tick Haemaphysalis bancrofti Nuttall & Warburton, 1915 in Victoria with additional data on its distribution and with scanning electron micrographs of life cycle stages. Proc R Soc Victoria. 2011;56:189.
Google Scholar
Jackson J, Beveridge I, Chilton NB, Andrews RH. Distributions of the paralysis ticks Ixodes cornuatus and Ixodes holocyclus in south-eastern Australia. Aust Vet J. 2007;85:420–4. https://doi.org/10.1111/j.1751-0813.2007.00183.x.
Article
PubMed
CAS
Google Scholar
Seddon HR. Diseases of domestic animals in Australia: arthropod infestations: (ticks and mites): together with a section on animals. Department of Health: Insects and Other Agents Harmful to Stock. Commonwealth of Australia; 1968.
Google Scholar
Macalister A. On some species of parasites hitherto undescribed. 1871.
Roberts FHS. A systematic study of the Australian species of the genus Ixodes (Acarina: Ixodidae). Aust J Zool. 1960;8(3):392–486.
Article
Google Scholar
Vilcins IME, Old JM, Deane E. Molecular detection of Rickettsia, Coxiella and Rickettsiella DNA in three native Australian tick species. Exp Appl Acarol. 2009;49:229–42. https://doi.org/10.1007/s10493-009-9260-4.
Article
PubMed
Google Scholar
Barker SC, Walker AR. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa. 2014;3816:1–144. https://doi.org/10.11646/zootaxa.3816.1.1.
Article
Google Scholar
Roberts FHS. Australian ticks. 1970.
Egan S: Profiling the bacterial microbiome of ticks that parasitise bandicoots in Australia. Doctoral dissertation. Murdoch University; 2017.
QGIS Development Team 2020. QGIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. Accessed 06 Jan 2020.
ICSM (2018) Geocentric Datum of Australia 2020 technical manual, version 1.3. https://www.icsm.gov.au/sites/default/files/2020-01/GDA2020%20Technical%20Manual%20V1.3.pdf. Accessed Jan 2020.
Documentation QGIS 3.10. https://docs.qgis.org/3.10/en/docs/user_manual/working_with_vector/vector_properties.html?highlight=point%20displacement#point-displacement-renderer. Accessed 15 Jan 2020.
Ravi RK, Walton K, Khosroheidari M. MiSeq: a next generation sequencing platform for genomic analysis. Disease gene identification: Springer; 2018. p. 223–32.
Google Scholar
Xiang L, Pozniak B, Cheng TY. Bacteriological analysis of saliva from partially or fully engorged female adult Rhipicephalus microplus by next-generation sequencing. Antonie Van Leeuwenhoek. 2017;110 1:105-13; doi: https://doi.org/10.1007/s10482-016-0780-8.
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20. https://doi.org/10.1093/bioinformatics/btt593.
Article
PubMed
CAS
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6. https://doi.org/10.1038/nmeth.f.303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1. https://doi.org/10.1093/bioinformatics/btq461.
Article
PubMed
CAS
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8. https://doi.org/10.1038/nmeth.2604.
Article
PubMed
CAS
Google Scholar
Fox J, Bouchet-Valat M, Andronic L, Ash M, Boye T, Calza S, et al. Package Rcmdr. 2020.
Team R: RStudio: integrated development for R. 1.2.5033 edn. RStudio, Boston, MA. 2019.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version. 2019;2(5–6):2019.
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smales L. Parasites of the wombat Vombatus ursinus from the Gippsland region, Victoria. Trans R Soc S Aust. 1987;111:129–30.
Google Scholar
Skerratt LF. Diseases and parasites of the common wombat Vombatus ursinus in the Healesville area of Victoria. New York: Surrey Beatty & Sons; 1998.
Google Scholar
Skerratt LF, Skerratt JHL, Banks S, Martin RW, Handasyde K. Aspects of the ecology of common wombats (Vombatus ursinus) at high density on pastoral land in Victoria. Aust J Zool. 2004;52(3):303–30.
Article
Google Scholar
Gemmell RT, Cepon G, Green PE, Stewart NP. Some effects of tick infestations on juvenile northern brown bandicoot (Isoodon macrourus). J Wildl Dis. 1991;27(2):269–75.
Article
CAS
PubMed
Google Scholar
Spencer AJ, Canfield PJ. Haematological characterisation of heavy tick infestation in koalas (Phascolarctos cinereus). Compar Haematol Int. 1993;3(4):225–9.
Article
Google Scholar
Roberts FHS. Further observations on the Australian species of Aponomma and Amblyomma with descriptions of the nymphs of Amblyomma moreliae (L. Koch) and Amb. loculosum Neumann (Acarina: Ixodidae). Aust J Zool. 1964;12:288–314.
Article
Google Scholar
Hammer JF, Emery D, Bogema DR, Jenkins C. Detection of Theileria orientalis genotypes in Haemaphysalis longicornis ticks from southern Australia. Parasites Vectors. 2015;8:229. https://doi.org/10.1186/s13071-015-0839-9.
Article
PubMed
PubMed Central
Google Scholar
Bremner KC. Observations on the biology of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) with particular reference to its mode of reproduction by parthenogenesis. Aust J Zool. 1959;7(1):7–12.
Article
Google Scholar
Hoogstraal H, Roberts FH, Kohls GM, Tipton VJ. Review of Haemaphysalis (Kaiseriana) longicornis Neumann (resurrected) of Australia, New Zealand, New Caledonia, Fiji, Japan, Korea, and northeastern China and USSR, and its parthenogenetic and bisexual populations (Ixodoidea, Ixodidae). J Parasitol. 1968;78:1197–213.
Article
Google Scholar
Sun J, Liu Q, Lu L, Ding G, Guo J, Fu G, et al. Coinfection with four genera of bacteria (Borrelia, Bartonella, Anaplasma, and Ehrlichia) in Haemaphysalis longicornis and Ixodes sinensis ticks from China. Vector-Borne Zoon Dis. 2008;8:791–5. https://doi.org/10.1089/vbz.2008.0005.
Article
Google Scholar
James MP, Saunders BW, Guy LA, Brookbanks EO, Charleston WA, Uilenberg G. Theileria orientalis, a blood parasite of cattle. First report in New Zealand. N Z Vet J. 1984;32:154–6. https://doi.org/10.1080/00480169.1984.35103.
Article
PubMed
CAS
Google Scholar
Stewart NP, Uilenberg G, De Vos AJ. Review of Australian species of Theileria, with special reference to Theileria buffeli of cattle. Trop Anim Health Prod. 1996;28(1):81–90.
Article
CAS
PubMed
Google Scholar
Bagnall BG, Doube BM. The Australian paralysis tick Ixodes holocyclus. Aust Vet J. 1975;51(3):159–60.
Article
Google Scholar
Stone BF, Binnington KC, Gauci M, Aylward JH. Tick/host interactions for Ixodes holocyclus: role, effects, biosynthesis and nature of its toxic and allergenic oral secretions. Exp Appl Acarol. 1989;7(1):59–69.
Article
CAS
PubMed
Google Scholar
Moorhouse DE. Observations on copulation in Ixodes holocyclus Neumann and the feeding of the male. J Med Entomol. 1966;3(2):168–71.
Article
Google Scholar
Vilcins IME, Kosoy M, Old JM, Deane EM. Bartonella-like DNA detected in Ixodes tasmani ticks (Acari: Ixodida) infesting koalas (Phascolarctos cinereus) in Victoria Australia. Vector-Borne Zoon Dis. 2009;9:499–503. https://doi.org/10.1089/vbz.2008.0132.
Article
Google Scholar
Vilcins IME, Old JM, Deane E. Detection of a Hepatozoon and spotted fever group Rickettsia species in the common marsupial tick (Ixodes tasmani) collected from wild Tasmanian devils (Sarcophilus harrisii) Tasmania. Vet Parasitol. 2009;162:23–31. https://doi.org/10.1016/j.vetpar.2009.02.015.
Article
PubMed
Google Scholar
Izzard L, Graves S, Cox E, Fenwick S, Unsworth N, Stenos J. Novel rickettsia in ticks, Tasmania, Australia. Emerg Infect Dis. 2009;15:1654–6. https://doi.org/10.3201/eid1510.090799.
Article
PubMed
PubMed Central
Google Scholar
Vilcins IME, Old JM, Deane EM. Detection of a spotted fever group Rickettsia in the tick Ixodes tasmani collected from koalas in Port Macquarie Australia. J Med Entomol. 2008;45(4):745–50.
Article
CAS
PubMed
Google Scholar
Weilgama DJ. Transmission of Theileria peramelis Mackerras, 1959 by Ixodes tasmani. Parasite lives: papers on parasites, their hosts and their associations to honour JFA Sprent/edited by Mary Cremin, Colin Dobson and Douglas E Moorehouse. 1986.
Moorhouse DE. The accumulation of microfilariae beneath the sites of attachment of Ixodes tasmani. Trans R Soc Trop Med Hyg. 1969;63:22.
PubMed
CAS
Google Scholar
Burnard D, Weaver H, Gillett A, Loader J, Flanagan C, Polkinghorne A. Novel Chlamydiales genotypes identified in ticks from Australian wildlife. Parasites Vectors. 2017;10:46. https://doi.org/10.1186/s13071-017-1994-y.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stewart NP, Devos AJ, Shiels IA, Jorgensen WK. Transmission of Theileria buffeli to cattle by Haemaphysalis bancrofti fed on artificially infected mice. Vet Parasitol. 1989;34(1–2):123–7.
Article
CAS
PubMed
Google Scholar
Swei A, Kwan JY. Tick microbiome and pathogen acquisition altered by host blood meal. ISME J. 2017;11:813–6. https://doi.org/10.1038/ismej.2016.152.
Article
PubMed
Google Scholar
Panetta JL, Sima R, Calvani NED, Hajdusek O, Chandra S, Panuccio J, et al. Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney Australia. Parasites Vectors. 2017;10:616. https://doi.org/10.1186/s13071-017-2579-5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lalzar I, Friedmann Y, Gottlieb Y. Tissue tropism and vertical transmission of Coxiella in Rhipicephalus sanguineus and Rhipicephalus turanicus ticks. Environ Microbiol. 2014;16(12):3657–68.
Article
PubMed
Google Scholar
Tozer SJ, Lambert SB, Strong CL, Field HE, Sloots TP, Nissen MD. Potential animal and environmental sources of Q fever infection for humans in Queensland. Zoon Public Health. 2014;61:105–12. https://doi.org/10.1111/zph.12051.
Article
CAS
Google Scholar
Bennett MD, Woolford L, Banazis MJ, O′Hara AJ, Warren KS, Nicholls PK, et al. Coxiella burnetii in western barred bandicoots (Perameles bougainville) from Bernier and Dorre Islands in Western Australia. Ecohealth. 2011;8:519–24. https://doi.org/10.1007/s10393-011-0729-3.
Article
PubMed
Google Scholar
Cooper A, Barnes T, Potter A, Ketheesan N, Govan B. Determination of Coxiella burnetii seroprevalence in macropods in Australia. Vet Microbiol. 2012;155:317–23. https://doi.org/10.1016/j.vetmic.2011.08.023.
Article
PubMed
Google Scholar
Cooper A, Stephens J, Ketheesan N, Govan B. Detection of Coxiella burnetii DNA in wildlife and ticks in northern Queensland Australia. Vector-Borne Zoon Dis. 2013;13:12–6. https://doi.org/10.1089/vbz.2011.0853.
Article
CAS
Google Scholar
Ehounoud CB, Yao KP, Dahmani M, Achi YL, Amanzougaghene N, Kacou N′Douba A, et al. Multiple pathogens including potential new species in tick vectors in Cote d′Ivoire. PLOS Neglect Trop Dis. 2016;10:e0004367. https://doi.org/10.1371/journal.pntd.0004367.
Article
CAS
Google Scholar
Dumler JS, Bakken JS. Ehrlichial diseases of humans: emerging tick-borne infections. Clin Infect Dis. 1995;20(5):1102–10.
Article
CAS
PubMed
Google Scholar
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum–a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol. 2013;3:31. https://doi.org/10.3389/fcimb.2013.00031.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gordon DM, Cowling A. The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology. 2003;149:3575–86. https://doi.org/10.1099/mic.0.26486-0.
Article
PubMed
CAS
Google Scholar
Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123–40.
Article
CAS
PubMed
Google Scholar
Rupan R, Jennison AV, Smith HV, Cobbold RN. Carriage of Shiga-toxigenic Escherichia coli by native marsupials in Australia. Vet Microbiol. 2012;155:279–83. https://doi.org/10.1016/j.vetmic.2011.08.013.
Article
PubMed
Google Scholar
Ceraul SM, Sonenshine DE, Hynes WL. Resistance of the tick Dermacentor variabilis (Acari: Ixodidae) following challenge with the bacterium Escherichia coli (Enterobacteriales: Enterobacteriaceae). J Med Entomol. 2002;39(2):376–83.
Article
PubMed
Google Scholar
Sonenshine DE, Ceraul SM, Hynes WE, Macaluso KR, Azad AF. Expression of defensin-like peptides in tick hemolymph and midgut in response to challenge with Borrelia burgdorferi, Escherichia coli and Bacillus subtilis. Ticks and tick-borne pathogens: Springer; 2003. p. 127–34.
Google Scholar
Andreotti R, de León AAP, Dowd SE, Scoles GA. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 2011;11:6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murrell A, Dobson SJ, Yang X, Lacey E, Barker SC. A survey of bacterial diversity in ticks, lice and fleas from Australia. Parasitol Res. 2003;89:326–34. https://doi.org/10.1007/s00436-002-0722-4.
Article
PubMed
Google Scholar
Swe PM, Reynolds SL, Fischer K. Parasitic scabies mites and associated bacteria joining forces against host complement defence. Parasite Immunol. 2014;36:585–93. https://doi.org/10.1111/pim.12133.
Article
PubMed
CAS
Google Scholar
Taponen S, Supre K, Piessens V, Van Coillie E, De Vliegher S, Koort JM. Staphylococcus agnetis sp. nov., a coagulase-variable species from bovine subclinical and mild clinical mastitis. Int J Syst Evol Microbiol. 2012;62:61–5. https://doi.org/10.1099/ijs.0.028365-0.
Article
PubMed
CAS
Google Scholar
Al-Rubaye AA, Couger MB, Ojha S, Pummill JF, Koon JA 2nd, Wideman RF Jr, et al. Genome analysis of Staphylococcus agnetis, an agent of lameness in broiler chickens. PLoS ONE. 2015;10:e0143336. https://doi.org/10.1371/journal.pone.0143336.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoedemaekers A, Schulin T, Tonk B, Melchers WJ, Sturm PD. Ventilator-associated pneumonia caused by Dolosigranulum pigrum. J Clin Microbiol. 2006;44:3461–2. https://doi.org/10.1128/JCM.01050-06.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lecuyer H, Audibert J, Bobigny A, Eckert C, Janniere-Nartey C, Buu-Hoi A, et al. Dolosigranulum pigrum causing nosocomial pneumonia and septicemia. J Clin Microbiol. 2007;45:3474–5. https://doi.org/10.1128/JCM.01373-07.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gobeli Brawand S, Cotting K, Gomez-Sanz E, Collaud A, Thomann A, Brodard I, et al. Macrococcus canis sp. nov., a skin bacterium associated with infections in dogs. Int J Syst Evol Microbiol. 2017;67:621–6. https://doi.org/10.1099/ijsem.0.001673.
Article
PubMed
CAS
Google Scholar
Rurangirwa FR, Teitzel CA, Cui J, French DM, McDonough PL, Besser T. Streptococcus didelphis sp. nov., a Streptococcus with marked catalase activity isolated from opossums (Didelphis virginiana) with suppurative dermatitis and liver fibrosis. Int J Syst Evol Microbiol. 2000;50:759–65. https://doi.org/10.1099/00207713-50-2-759.
Article
PubMed
CAS
Google Scholar
Vieira VV, Teixeira LM, Zahner V, Momen H, Facklam RR, Steigerwalt AG, et al. Genetic relationships among the different phenotypes of Streptococcus dysgalactiae strains. Int J Syst Evol Microbiol. 1998;48(4):1231–43.
CAS
Google Scholar
Abdullah HH, El-Molla A, Salib FA, Allam NA, Ghazy AA, Abdel-Shafy S. Morphological and molecular identification of the brown dog tick Rhipicephalus sanguineus and the camel tick Hyalomma dromedarii (Acari: Ixodidae) vectors of rickettsioses in Egypt. Vet World. 2016;9:1087–101. https://doi.org/10.14202/vetworld.2016.1087-1101.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lv J, Wu S, Zhang Y, Zhang T, Feng C, Jia G, et al. Development of a DNA barcoding system for the Ixodida (Acari: Ixodida). Mitochondrial DNA. 2014;25:142–9. https://doi.org/10.3109/19401736.2013.792052.
Article
PubMed
CAS
Google Scholar
Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc. 2011;86:379–405. https://doi.org/10.1111/j.1469-185X.2010.00151.x.
Article
PubMed
Google Scholar
Viggers KL, Lindenmayer DB, Spratt DM. The importance of disease in reintroduction programmes. Wildl Res. 1993;20(5):687–98.
Article
Google Scholar