Mysterud A, Jore S, Østerås O, Viljugrein H. Emergence of tick-borne diseases at northern latitudes in Europe: a comparative approach. Sci Rep. 2017;7:16316.
Article
CAS
Google Scholar
Slatculescu, AM, Clow, KM, McKay, R, Talbot, B, Logan, JJ, Thickstun, CR et al. Species distribution models for the eastern blacklegged tick, Ixodes scapularis, and the Lyme disease pathogen, Borrelia burgdorferi, in Ontario, Canada. Plos ONE. 2020;15:e0238126
Gern L, Estrada-Peña A, Frandsen F, Gray JS, Jaenson TGT, Jongejan F, et al. European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt für Bakteriologie. 1998;287:196–204.
Article
CAS
Google Scholar
Vayssier-Taussat M, Kazimirova M, Hubalek Z, Hornok S, Farkas R, Cosson J-F, et al. Emerging horizons for tick-borne pathogens: from the “one pathogen-one disease” vision to the pathobiome paradigm. Future Microbiol. 2015;10:2033–43.
Article
CAS
Google Scholar
Estrada-Peña A, Fuente J. Host histribution does not limit the range of the tick Ixodes ricinus but impacts the circulation of transmitted pathogens. Front Cell Infect Microbiol. 2017;7:405.
Article
Google Scholar
Tälleklint L, Jaenson TGT. Relationship between Ixodes ricinus density and prevalence of infection with Borrelia-like spirochetes and density of infected ticks. J Med Entomol. 1996;33:805–11.
Article
Google Scholar
Gray JS, Kahl O, Janetzki C, Stein J. Studies on the ecology of Lyme disease in a deer forest in County Galway Ireland. J Med Entomol. 1992;29:915–20.
Article
CAS
Google Scholar
Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ. Keesing, F Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. Plos Biol. 2006;4:1058–68.
Article
CAS
Google Scholar
Mysterud A, Easterday WR, Stigum VM, Aas AB, Meisingset EL, Viljugrein H. Contrasting emergence of Lyme disease across ecosystems. Nat Comm. 2016;7:11882.
Article
CAS
Google Scholar
Gilbert L, Maffey GL, Ramsay SL, Hester AJ. The effect of deer management on the abundance of Ixodes ricinus in Scotland. Ecol Appl. 2012;22:658–67.
Article
CAS
Google Scholar
Hofmeester TR, Sprong H, Jansen PA, Prins HHT, Van Wieren SE. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasite Vector. 2017;10:433.
Article
Google Scholar
Humair PF, Gern L. Relationship between Borrelia burgdorferi sensu lato species, red squirrels (Sciurus vulgaris) and Ixodes ricinus in enzootic areas in Switzerland. Acta Tropica. 1998;69:213–27.
Article
CAS
Google Scholar
Poulin R, George-Nascimento M. The scaling of total parasite biomass with host body mass. Int J Parasitol. 2007;37:359–64.
Article
Google Scholar
Hechinger RF, Lafferty KD, Dobson AP, Brown JH, Kuris AM. A common scaling rule for abundance, energetics, and production of parasitic and free-living species. Science. 2011;333:445.
Article
CAS
Google Scholar
Levi T, Keesing F, Holt RD, Barfield M, Ostfeld RS. Quantifying dilution and amplification in a community of hosts for tick-borne pathogens. Ecol Appl. 2016;26:484–98.
Article
Google Scholar
Keesing F, Brunner J, Duerr S, Killilea M, LoGiudice K, Schmidt K, et al. Hosts as ecological traps for the vector of Lyme disease. Proc R Soc Lond Ser B. 2009;276:3911–9.
CAS
Google Scholar
Mysterud A, Stigum VM, Seland IV, Herland A, Easterday WJ, Jore S, et al. Tick abundance, pathogen prevalence, and disease incidence in two contrasting regions at the northern distribution range of Europe. Parasite Vector. 2018;11:309.
Article
Google Scholar
Mysterud A, Stigum VM, Jaarsma R, Sprong H. Genospecies of Borrelia burgdorferi detected in 16 mammal species and questing ticks from Norway. Sci Rep. 2019;9:5088.
Article
CAS
Google Scholar
Kiffner C, Lödige C, Alings M, Rühe F. Attachment site selection of ticks on roe deer Capreolus capreolus. Exp Appl Acarol. 2011;53:79–94.
Article
CAS
Google Scholar
Mysterud A, Hatlegjerde IL, Sørensen OJ. Attachment site selection of life stages of Ixodes ricinus ticks on a main large host in Europe, the red deer (Cervus elaphus). Parasite Vector. 2014;7:510.
Google Scholar
Lydecker HW, Banks PB, Hochuli DF. Counting ticks (Acari: Ixodida) on hosts is complex: a review and comparison of methods. J Med Entomol. 2019;56:1527–33.
Article
Google Scholar
Martin TG, Wintle BA, Rhodes JR, Kuhnert PM, Field SA, Low-Choy SJ, et al. Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett. 2005;8:1235–46.
Article
Google Scholar
Gervasi SS, Civitello DJ, Kilvitis HJ, Martin LB. The context of host competence: a role for plasticity in host-parasite dynamics. Trends Parasitol. 2015;31:419–25.
Article
Google Scholar
Hofmeester TR, Coipan EC, Van Wieren SE, Prins HHT, Takken W, Sprong H. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle. Environ Res Lett. 2016;11:043001.
Article
Google Scholar
Hofmeester TR, Krawczyk AI, van Leeuwen AD, Fonville M, Montizaan MGE, Van Den Berge K, et al. Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick-borne pathogens. Parasite Vector. 2018;11:600.
Article
CAS
Google Scholar
D’Amico G, Juránková J, Tabaran FA, Frgelecová L, Forejtek P, Matei IA, et al. Occurrence of ticks in the subcutaneous tissue of red foxes, Vulpes vulpes in Czech Republic and Romania. Ticks Tick Borne Dis. 2017;8:309–12.
Article
CAS
Google Scholar
Dwuznik D, Mierzejewska EJ, Kowalec M, Alsarraf M, Stanczak L, Opalinska P, et al. Ectoparasites of red foxes (Vulpes vulpes) with a particular focus on ticks in subcutaneous tissues. Parasitology. 2020;147:1359–68.
Article
CAS
Google Scholar
Haut M, Król N, Obiegala A, Seeger J, Pfeffer M. Under the skin: Ixodes ticks in the subcutaneous tissue of red foxes (Vulpes vulpes) from Germany. Parasites Vectors. 2020;13:189.
Article
CAS
Google Scholar
Mehl R. The distribution and host relations of Norwegian ticks (Acari, Ixodides). Fauna norvegica Series B. 1983;30:46–51.
Google Scholar
Hofmeester TR, Jansen PA, Wijnen HJ, Coipan EC, Fonville M, Prins HHT, et al. Cascading effects of predator activity on tick-borne disease risk. Proc Biol Sci. 2017;284:54.
Google Scholar