Vávra J, Lukeš J. Microsporidia and ‘the art of living together.’ In: Rollinson D, editor. Adv parasitol. Cambridge: Academic Press; 2013. p. 253–319.
Google Scholar
Becnel JJ, Takvorian PM, Cali A. Checklist of available generic names for microsporidia with type species and type hosts. In: Weiss LM, Becnel JJ, editors. Microsporidia. Chichester: Wiley; 2014. p. 671–86.
Google Scholar
Han B, Weiss LM. Microsporidia: obligate intracellular pathogens within the fungal kingdom. Microbiol Spectr. 2017. https://doi.org/10.1128/microbiolspec.FUNK-0018-2016.
Article
PubMed
Google Scholar
Didier ES, Weiss LM. Microsporidiosis: not just in AIDS patients. Curr Opin Infect Dis. 2011;24:490–5.
PubMed
PubMed Central
Google Scholar
Nkinin SW, Asonganyi T, Didier ES, Kaneshiro ES. Microsporidian infection is prevalent in healthy people in Cameroon. J Clin Microbiol. 2007;45:2841–6.
PubMed
PubMed Central
Google Scholar
Fayer R, Santin-Duran M. Epidemiology of microsporidia in human infections. In: Weiss LM, Becnel JJ, editors. Microsporidia pathogen opportunity. 1st ed. Hoboken: Wiley; 2014. p. 135–64.
Google Scholar
Franzen C, Müller A. Microsporidiosis: human diseases and diagnosis. Microbes Infect. 2001;3:389–400.
CAS
PubMed
Google Scholar
Stentiford GD, Becnel JJ, Weiss LM, Keeling PJ, Didier ES, Williams BAP, et al. Microsporidia—emergent pathogens in the global food chain. Trends Parasitol. 2016;32:336–48.
CAS
PubMed
PubMed Central
Google Scholar
Gern L, Rouvinez E, Toutoungi LN, Godfroid E. Transmission cycles of Borrelia burgdorferi sensu lato involving Ixodes ricinus and/or I. hexagonus ticks and the European hedgehog, Erinaceus europaeus, in suburban and urban areas in Switzerland. Folia Parasitol (Praha). 1977;44:309–14.
Google Scholar
Pfäffle M, Littwin N, Muders SV, Petney TN. The ecology of tick-borne diseases. Int J Parasitol. 2013;43:1059–77.
PubMed
Google Scholar
Millán J, Proboste T, de Fernández Mera IG, Chirife AD, de Fuente la J, Altet L. Molecular detection of vector-borne pathogens in wild and domestic carnivores and their ticks at the human-wildlife interface. Ticks Tick Borne Dis. 2016;7:284–90.
PubMed
Google Scholar
Földvári G. Life cycle and ecology of Ixodes ricinus: the roots of public health importance. In: Braks MAH, van Wieren SE, Takken W, Sprong H, editors. Ecology and prevention of Lyme borreliosis. Wageningen: Wageningen Academic Publishers; 2016. p. 31–40.
Google Scholar
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health. 2014;2:1–26.
Google Scholar
Oechslin CP, Heutschi D, Lenz N, Tischhauser W, Péter O, Rais O, et al. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland. Parasit Vectors. 2017. https://doi.org/10.1186/s13071-017-2500-2.
Article
PubMed
PubMed Central
Google Scholar
Ribeiro MFB, Guimarães AM. Encephalitozoon-like microsporidia in the ticks Amblyomma cajennense and Anocentor nitens (Acari: Ixodidae). J Med Entomol. 1998;35:1029–33.
CAS
PubMed
Google Scholar
Ribeiro MFB, Passos LMF. Natural co-infection of Babesia caballi and Encephalitozoon-like microsporidia in the tick Anocentor nitens (Acari: Ixodidae). J Invertebr Pathol. 2006;93:183–5.
PubMed
Google Scholar
Weiser J, Rehacek J, Zizka Z, Ciampor F, Kocianova E. Nosema slovaca Weiser et Rehacek, 1975 and Unikaryon ixodis (Weiser, 1957) comb. n. in ixodid ticks. Acta Parasitol. 1999;44:99–107.
Google Scholar
Rehácek J, Weiser J. Natural infection of the tick Dermacentor reticulatus (Fabr.) with the microsporidian Nosema slovaca Weiser et Rehácek in Slovakia. Folia Parasitol (Praha). 1978;25:165–70.
Google Scholar
Weiser J, Rehacek J. A microsporidian from Dermacentor reticulatus. II Inernationales Arbeitskolloquium uber Naturherde von Infekt Zentraleuropa. 1976;487–9.
Rehacek J, Kovacova E, Kocianova E. Isolation of Nosema slovaca (Microsporidiae) from Dermacentor reticulatus ticks (Acari: Ixodidae) collected in Hungary. Exp Appl Acarol. 1996;20:57–60.
Google Scholar
Tokarev YS, Dubinina H, Alekseev A. Microsporidian infection in a natural population of Ixodes persulcatus schulze (Acarina: Ixodidae) in North-Western Russia. Bul Acad Stiint Mold. 2007;302:66.
Google Scholar
Tokarev YS, Movile AA. A first record of microsporidia in the ixodid tick Ixodes ricinus L. (Ixodidae) in the territory of the CIS, Republic Moldova. Parazitologiia. 2004;1970:388–405.
Google Scholar
Weiser J, Rehacek J. Nosema slovaca sp. n.: a second microsporidian of the tick Ixodes ricinus. J Invertebr Pathol. 1975;26:411.
CAS
PubMed
Google Scholar
Weiser J. Parasites of some blood sucking arthropods. Českoslov Parasitol. 1957;4:355–8.
Google Scholar
Krinsky WL. Nosema parkei sp. n., a Microsporidian from the Argasid Tick, Ornithodoros parkei Cooley. J Protozool. 1970;24:52–6.
Google Scholar
Weiss LM, Vossbrinck CR. Microsporidiosis: molecular and diagnostic aspects. Adv Parasitol. 1998;40:351–95.
CAS
PubMed
Google Scholar
Shehab AY, Moneer EA, Allam AF, Khalil SS, Tolba MM. Intestinal Microsporidia infection in leukemic children: microscopic and molecular detection. Acta Parasitol. 2021;66:346–53.
CAS
PubMed
Google Scholar
Williams BAP, Hamilton KM, Jones MD, Bass D. Group-specific environmental sequencing reveals high levels of ecological heterogeneity across the microsporidian radiation. Environ Microbiol Rep. 2018;10:328–36.
PubMed
PubMed Central
Google Scholar
Trzebny A, Slodkowicz-Kowalska A, Becnel JJ, Sanscrainte N, Dabert M. A new method of metabarcoding Microsporidia and their hosts reveals high levels of microsporidian infections in mosquitoes (Culicidae). Mol Ecol Resour. 2020;20:1486–504.
CAS
PubMed
PubMed Central
Google Scholar
Dubuffet A, Chauvet M, Moné A, Debroas D, Lepère C. A phylogenetic framework to investigate the microsporidian communities through metabarcoding and its application to lake ecosystems. Environ Microbiol. 2021;23:4344–59.
CAS
PubMed
Google Scholar
Rijpkema S, Bruinink H. Detection of Borrelia burgdorferi sensu lato by PCR in questing Ixodes ricinus larvae from the Dutch North Sea island of Ameland. Exp Appl Acarol. 1996;20:381–5.
CAS
PubMed
Google Scholar
Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J. Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol Phylogenet Evol. 2010;56:222–41.
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
CAS
PubMed
PubMed Central
Google Scholar
Hannon GJ. FASTX-Toolkit. 2010. http://hannonlab.cshl.edu. Accessed Aug 2020.
Edgar RC. UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv. 2016. https://doi.org/10.1101/074252.
Article
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
CAS
PubMed
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
CAS
PubMed
Google Scholar
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7:203–14.
CAS
PubMed
Google Scholar
Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA. Database indexing for production MegaBLAST searches. Bioinformatics. 2008;24:1757–64.
CAS
PubMed
PubMed Central
Google Scholar
Zhu X, Wittner M, Tanowitz HB, Kotler D, Cali A, Weiss LM, et al. Small subunit rRNA sequence of Enterocytozoon bieneusi and its potential diagnostic role with use of the polymerase chain reaction. J Infect Dis. 1993;168:1570–5.
CAS
PubMed
Google Scholar
Zhang L, Du Y, Wang YJ. A new species of Endoreticulatus (Protozoa, Microspore) from the larva of silkworm, Bombyx mori L. J Southwest Agric Univ. 1995;17:363–7.
Google Scholar
Malone LA. A new pathogen, Microsporidium itiiti n. sp. (Microsporidia) from the Argentine stem weevil, Listronotis bonariensis (Coleoptera: Curculionidae). J Protozool. 1985;32:531–5.
Google Scholar
Pilarska DK, Radek R, Huang W-F, Takov DI, Linde A, Solter LF. Review of the genus Endoreticulatus (Microsporidia, Encephalitozoonidae) with description of a new species isolated from the grasshopper Poecilimon thoracicus (Orthoptera: Tettigoniidae) and transfer of Microsporidium itiiti Malone to the genus. J Invertebr Pathol. 2015;124:23–30.
PubMed
Google Scholar
Zwölfer W. Die Pebrie des Schwammspinner und Goldafters, eine neue wirtschaftlich bedeutungsvolle Infektionskrankheit. Zeitschrift Für Angew Entomol. 1927;12:498–500.
Google Scholar
Cali A, El Gary M. Ultrastructural study of the development of Pleistophora schubergi Zwölfer, 1927 (Protozoa, Microsporida) in larvae of the spruce budworm, Choristoneura fumiferana and its subsequent taxonomic change to the genus Endoreticulatus. J Protozool. 1991;38:271–8.
Google Scholar
Wang CY, Solter LF, T’sui WH, Wang CH. An Endoreticulatus species from Ocinara lida (Lepidoptera: Bombycidae) in Taiwan. J Invertebr Pathol. 2005;89:123–35.
PubMed
Google Scholar
Hoch G, Verucchi S, Schopf A. Microsporidian pathogens of the oak processionary moth, Thaumetopoea processionea (L.) (Lep., Thaumetopoeidae), in eastern Austria’s oak forests. Mitt Dtsch Ges Allg Angew Ent. 2008;16:225–8.
Google Scholar
Malysh JM, Kononchuk AG, Frolov AN. Detection of microsporidia infecting beet webworm Loxostege sticticalis (Pyraloidea: Crambidae) in European part of Russia in 2006–2008. Plant Prot News. 2019. https://doi.org/10.31993/2308-6459-2019-2(100)-45-51.
Article
Google Scholar
Qiu H, Lu X, Li M, He X, He X. Phylogenetic analysis of complete rRNA gene sequence of Endoreticulatus sp. Shengzhou from the silkworm Bombyx mori in Zhejiang of China. J Anim Vet Adv. 2012;11:1056–62.
CAS
Google Scholar
Xu X, Shen Z, Zhu F, Tao H, Tang X, Xu L. Phylogenetic characterization of a microsporidium (Endoreticulatus sp. Zhenjiang) isolated from the silkworm, bombyx mori. Parasitol Res. 2012;110:815–9.
PubMed
Google Scholar
Pilarska D, Takov D, Hyliš M, Radek R, Fiala I, Solter L, et al. Natural occurrence of microsporidia infecting Lepidoptera in Bulgaria. Acta Parasitol. 2017;62:858–69.
CAS
PubMed
Google Scholar
Pilarska D, Linde A, Solter L, McManus M, Takov D. New data on the biology of the microsporidium Endoreticulatus schubergi infecting the browntail moth Euproctis chrysorhoea (Lepidopter: Lymantriidae). Acta Zool Bulg. 2002;54:55–62.
Google Scholar
Kleespies RG, Vossbrinck CR, Lange M, Jehle JA. Morphological and molecular investigations of a microsporidium infecting the European grape vine moth, lobesia botrana den. et Schiff., and its taxonomic determination as Cystosporogenes legeri nov. comb. J Invertebr Pathol. 2003;83:240–8.
CAS
PubMed
Google Scholar
Canning EU, Curry A, Cheney SA, Lafranchi-Tristem NJ, Ebert D, Rifardt D, et al. Flabelliforma montana (Phylum Microsporidia) from Phlebotomus ariasi (Diptera, Psychodidae): ultrastructural observations and phylogenetic relationships. Eur J Protistol. 2001;37:207–21.
Google Scholar
Kyei-Poku G, Gauthier D, Schwarz R, van Frankenhuyzen K. Morphology, molecular characteristics and prevalence of a Cystosporogenes species (Microsporidia) isolated from Agrilus anxius (Coleoptera: Buprestidae). J Invertebr Pathol. 2011;107:1–10.
CAS
PubMed
Google Scholar
Solter LF, Pilarska DK, McManus ML, Zúbrik M, Patočka J, Huang WF, et al. Host specificity of microsporidia pathogenic to the gypsy moth, Lymantria dispar (L.): field studies in Slovakia. J Invertebr Pathol. 2010;105:1–10.
PubMed
Google Scholar
Corsaro D, Wylezich C, Venditti D, Michel R, Walochnik J, Wegensteiner R. Filling gaps in the microsporidian tree: rDNA phylogeny of Chytridiopsis typographi (Microsporidia: Chytridiopsida). Parasitol Res. 2019;118:169–80.
PubMed
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
CAS
PubMed
PubMed Central
Google Scholar
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29:1695–701.
CAS
PubMed
Google Scholar
Zwickl DM. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Austin: The University of Texas at Austin; 2006.
Google Scholar
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
PubMed
PubMed Central
Google Scholar
Rambaut A. FigTree v. 1.4.4. 2018. https://github.com/rambaut/figtree. Accessed Aug 2020.
Pearson K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos Mag Ser. 1900;5(50):157–75.
Google Scholar
Yates F. Contingency tables involving small numbers and the χ 2 test. Suppl J R Stat Soc. 1934;1:217.
Google Scholar
Duzlu O, Yildirim A, Onder Z, Ciloglu A, Yetismis G, Inci A. Prevalence and genotyping of microsporidian parasites in dogs in Turkey: zoonotic concerns. J Eukaryot Microbiol. 2019;66:771–7.
CAS
PubMed
Google Scholar
Piekarska J, Kicia M, Wesołowska M, Kopacz Ż, Gorczykowski M, Szczepankiewicz B, et al. Zoonotic microsporidia in dogs and cats in Poland. Vet Parasitol. 2017;246:108–11.
PubMed
Google Scholar
Piekarska J, Kicia M, Wesolowska M, Kopacz Z, Gorczykowski M, Sobieraj B, et al. Human-pathogenic microsporidia in household dogs and cats in Wroclaw (Poland). Ann Parasitol. 2016;62:2016.
Google Scholar
Xu H, Jin Y, Wu W, Li P, Wang L, Li N, et al. Genotypes of Cryptosporidium spp., Enterocytozoon bieneusi and Giardia duodenalis in dogs and cats in Shanghai, China. Parasit Vectors. 2016;9:1–9.
PubMed
PubMed Central
Google Scholar
Suankratay C, Thiansukhon E, Nilaratanakul V, Putaporntip C, Jongwutiwes S. Disseminated infection caused by novel species of Microsporidium, Thailand. Emerg Infect Dis. 2012;18:302–4.
PubMed
PubMed Central
Google Scholar
Pariyakanok L, Satitpitakul V, Putaporntip C, Jongwutiwes S. Femtosecond laser-assisted anterior lamellar keratoplasty in stromal keratitis caused by an Endoreticulatus-like microsporidia. Cornea. 2015;34:588–91.
PubMed
Google Scholar
Solter LF. Epizootiology of Microsporidiosis in invertebrate hosts. In: Weiss LM, Becnel JJ, editors. Microsporidia pathogen opportunity. First Edition. Hoboken: Wiley; 2014. p. 165–94.
Google Scholar
Andreadis TG. Microsporidian parasites of mosquitoes. J Am Mosq Control Assoc. 2007;23:3–29.
PubMed
Google Scholar
Dunn AM, Smith JE. Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes Infect. 2001;3:381–8.
CAS
PubMed
Google Scholar
Dunn AM, Terry RS, Smith JE. Transovarial transmission in the Microsporidia. Adv Parasitol. 2001;48:57–100.
CAS
PubMed
Google Scholar
Pilarska DK, Solter LF, Kereselidze M, Linde A, Hoch G. Microsporidian infections in Lymantria dispar larvae: interactions and effects of multiple species infections on pathogen horizontal transmission. J Invertebr Pathol. 2006;93:105–13.
PubMed
Google Scholar
Goertz D, Hoch G. Horizontal transmission pathways of terrestrial microsporidia: a quantitative comparison of three pathogens infecting different organs in Lymantria dispar L. (Lep.: Lymantriidae) larvae. Biol Control. 2008;44:196–206.
Google Scholar
Goertz D, Hoch G. Vertical transmission and overwintering of microsporidia in the gypsy moth, Lymantria dispar. J Invertebr Pathol. 2008;99:43–8.
PubMed
Google Scholar
Hajdušek O, Šíma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, et al. Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol. 2013;4:1–15.
Google Scholar
Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun. 2016;7:10507.
CAS
PubMed
PubMed Central
Google Scholar
Smith AA, Pal U. Immunity-related genes in Ixodes scapularis-perspectives from genome information. Front Cell Infect Microbiol. 2014;4:1–12.
Google Scholar
Kotsyfakis M, Schwarz A, Erhart J, Ribeiro JMC. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci Rep. 2015;5:1–10.
Google Scholar
Gillespie JP, Kanost MR, Trenczek T. Biological mediators of insect immunity. Annu Rev Entomol. 1997;23:159–66.
Google Scholar
Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol. 1998;10:23–8.
CAS
PubMed
Google Scholar
Cotter SC, Wilson K. Heritability of immune function in the caterpillar Spodoptera littoralis. Heredity (Edinb). 2002;88:229–34.
CAS
Google Scholar
Nigam Y, Maudlin I, Welburn S, Ratcliffe NA. Detection of phenoloxidase activity in the Hemolymph of Tsetse flies, refractory and susceptible to infection with Trypanosoma brucei rhodesiense. J Invertebr Pathol. 1997;69:279–81.
CAS
PubMed
Google Scholar
Reeson AF, Wilson K, Gunn A, Hails RS, Goulson D. Baculovirus resistance in the noctuid Spodoptera exempta is phenotypically plastic and responds to population density. Proc R Soc B Biol Sci. 1998;265:1787–91.
Google Scholar
Hagen HE, Grunewald J, Ham PJ. Induction of the prophenoloxidase-activating system of Simulium (Diptera: Simuliidae) following Onchocerca (Nematoda: Filarioidea) infection. Parasitology. 1994;109:649–55.
PubMed
Google Scholar
Gomes SAO, Feder D, Thomas NES, Garcia ES, Azambuja P. Rhodnius prolixus infected with Trypanosoma rangeli in vivo and in vitro experiments. J Invertebr Pathol. 1999;73:289–93.
CAS
PubMed
Google Scholar
Sokolova JY, Tokarev YS, Lozinskaia YL, Glupov VV. A morphofunctional analysis of the hemocytes in the cricket Gryllus bimaculatus (Orthoptera: Gryllidae) normally and in acute microsporidiosis due to Nosema grylli. Parazitologiia. 2000;34:408–19.
PubMed
Google Scholar
Tokarev YS, Sokolova YY, Entzeroth R. Microsporidia-insect host interactions: teratoid sporogony at the sites of host tissue melanization. J Invertebr Pathol. 2007;94:70–3.
PubMed
Google Scholar
Loker ES, Adema CM, Zhang SM, Kepler TB. Invertebrate immune systems – not homogeneous, not simple, not well understood. Immunol Rev. 2004;198:10–24.
PubMed
PubMed Central
Google Scholar