Gondard M, Cabezas-Cruz A, Charles RA, Vayssier-Taussat M, Albina E, Moutailler S. Ticks and tick-borne pathogens of the Caribbean: current understanding and future directions for more comprehensive surveillance. Front Cell Infect Microbiol. 2017;7:490. https://doi.org/10.3389/fcimb.2017.00490.
Article
PubMed
PubMed Central
Google Scholar
Rajput ZI, Hu SH, Chen WJ, Arijo AG, Xiao CW. Importance of ticks and their chemical and immunological control in livestock. J Zhejiang Univ Sci B. 2006;7:912–21. https://doi.org/10.1631/jzus.2006.B0912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vesco U, Knap N, Labruna MB, Avsic-Zupanc T, Estrada-Pena A, Guglielmone AA, et al. An integrated database on ticks and tick-borne zoonoses in the tropics and subtropics with special reference to developing and emerging countries. Exp Appl Acarol. 2011;54:65–83. https://doi.org/10.1007/s10493-010-9414-4.
Article
PubMed
Google Scholar
Reye AL, Arinola OG, Hubschen JM, Muller CP. Pathogen prevalence in ticks collected from the vegetation and livestock in Nigeria. Appl Environ Microbiol. 2012;78:2562–8. https://doi.org/10.1128/AEM.06686-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Telmadarraiy Z, Chinikar S, Vatandoost H, Faghihi F, Hosseini-Chegeni A. Vectors of Crimean Congo hemorrhagic fever virus in Iran. J Arthropod-Borne Dis. 2015;9:137–47.
PubMed
PubMed Central
Google Scholar
Estrada-Pena A, de la Fuente J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antivir Res. 2014;108:104–28. https://doi.org/10.1016/j.antiviral.2014.05.016.
Article
CAS
PubMed
Google Scholar
Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antivir Res. 2013;100:159–89. https://doi.org/10.1016/j.antiviral.2013.07.006.
Article
CAS
PubMed
Google Scholar
Hawman DW, Feldmann H. Recent advances in understanding Crimean-Congo hemorrhagic fever virus. F1000Research. 2018. https://doi.org/10.12688/f1000research.16189.1.
Article
PubMed
PubMed Central
Google Scholar
Lwande OW, Irura Z, Tigoi C, Chepkorir E, Orindi B, Musila L, et al. Seroprevalence of Crimean Congo hemorrhagic fever virus in Ijara District, Kenya. Vector Borne Zoonotic Dis. 2012;12:727–32. https://doi.org/10.1089/vbz.2011.0914.
Article
PubMed
PubMed Central
Google Scholar
Raabe VN. Diagnostic testing for Crimean-Congo hemorrhagic fever. J Clin Microbiol. 2020. https://doi.org/10.1128/JCM.01580-19.
Article
PubMed
PubMed Central
Google Scholar
Akuffo R, Brandful JA, Zayed A, Adjei A, Watany N, Fahmy NT, et al. Crimean-Congo hemorrhagic fever virus in livestock ticks and animal handler seroprevalence at an abattoir in Ghana. BMC Infect Dis. 2016;16:324. https://doi.org/10.1186/s12879-016-1660-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carletti F, Castilletti C, Di Caro A, Capobianchi MR, Nisii C, Suter F, et al. Alkhurma hemorrhagic fever in travelers returning from Egypt, 2010. Emerg Infect Dis. 2010;16:1979–82. https://doi.org/10.3201/eid1612.101092.
Article
PubMed
PubMed Central
Google Scholar
Hoffman T, Lindeborg M, Barboutis C, Erciyas-Yavuz K, Evander M, Fransson T, et al. Alkhurma hemorrhagic fever virus RNA in Hyalomma rufipes ticks infesting migratory birds, Europe and Asia Minor. Emerg Infect Dis. 2018;24:879–82. https://doi.org/10.3201/eid2405.171369.
Article
PubMed
PubMed Central
Google Scholar
Vanderburg S, Rubach MP, Halliday JE, Cleaveland S, Reddy EA, Crump JA. Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review. PLoS Negl Trop Dis. 2014;8:e2787. https://doi.org/10.1371/journal.pntd.0002787.
Article
PubMed
PubMed Central
Google Scholar
Marrie TJ. Q fever—a review. Can Vet J La revue veterinaire canadienne. 1990;31:555–63.
CAS
Google Scholar
Maurin M, Raoult D. Q fever. Clin Microbiol Rev. 1999;12:518–53.
Article
CAS
Google Scholar
Hilbink F, Penrose M, Kovacova E, Kazar J. Q fever is absent from New Zealand. Int J Epidemiol. 1993;22:945–9. https://doi.org/10.1093/ije/22.5.945.
Article
CAS
PubMed
Google Scholar
Gossler R, Hunermund G. Serological studies on cattle in catchment area of Kabete (Kenia). 2. Determination of antibodies against Mycobacterium paratuberculosis, Brucella, Salmonella, Pasteurella multocida, Listeria and Leptospira. Berl Munch Tierarztl Wochenschr. 1973;86:267–70.
CAS
PubMed
Google Scholar
Vanek E, Thimm B. Q fever in Kenya. Serological investigations in man and domestic animals. East Afr Med J. 1976;53:678–84.
CAS
PubMed
Google Scholar
Kobbe R, Kramme S, Kreuels B, Adjei S, Kreuzberg C, Panning M, et al. Q fever in young children, Ghana. Emerg Infect Dis. 2008;14:344–6. https://doi.org/10.3201/eid1402.070971.
Article
PubMed
PubMed Central
Google Scholar
Adu-Addai B, Koney EB, Addo P, Kaneene J, Mackenzie C, Agnew DW. Importance of infectious bovine reproductive diseases: an example from Ghana. Vet Rec. 2012;171:47. https://doi.org/10.1136/vr.100789.
Article
CAS
PubMed
Google Scholar
Johnson SAM, Kaneene JB, Asare-Dompreh K, Tasiame W, Mensah IG, Afakye K, et al. Seroprevalence of Q fever in cattle, sheep and goats in the Volta region of Ghana. Vet Med Sci. 2019;5:402–11. https://doi.org/10.1002/vms3.160.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parola P, Inokuma H, Camicas JL, Brouqui P, Raoult D. Detection and identification of spotted fever group Rickettsiae and Ehrlichiae in African ticks. Emerg Infect Dis. 2001;7:1014–7. https://doi.org/10.3201/eid0706.010616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mediannikov O, Diatta G, Fenollar F, Sokhna C, Trape JF, Raoult D. Tick-borne rickettsioses, neglected emerging diseases in rural Senegal. PLoS Negl Trop Dis. 2010. https://doi.org/10.1371/journal.pntd.0000821.
Article
PubMed
PubMed Central
Google Scholar
Leshem E, Meltzer E, Schwartz E. Travel-associated zoonotic bacterial diseases. Curr Opin Infect Dis. 2011;24:457–63. https://doi.org/10.1097/QCO.0b013e32834a1bd2.
Article
PubMed
Google Scholar
Kjemtrup AM, Conrad PA. Human babesiosis: an emerging tick-borne disease. Int J Parasitol. 2000;30:1323–37. https://doi.org/10.1016/s0020-7519(00)00137-5.
Article
CAS
PubMed
Google Scholar
Spengler JR, Bergeron E, Rollin PE. Seroepidemiological studies of Crimean-Congo hemorrhagic fever virus in domestic and wild animals. PLoS Negl Trop Dis. 2016;10:e0004210. https://doi.org/10.1371/journal.pntd.0004210.
Article
PubMed
PubMed Central
Google Scholar
Chinikar S, Ghiasi SM, Hewson R, Moradi M, Haeri A. Crimean-Congo hemorrhagic fever in Iran and neighboring countries. J Clin Virol. 2010;47:110–4. https://doi.org/10.1016/j.jcv.2009.10.014.
Article
CAS
PubMed
Google Scholar
Appannanavar SB, Mishra B. An update on Crimean Congo hemorrhagic fever. J Glob Infect Dis. 2011;3:285–92. https://doi.org/10.4103/0974-777X.83537.
Article
PubMed
PubMed Central
Google Scholar
Amissah-Reynolds PK. Zoonotic risks from domestic animals in Ghana. Int J Pathogen Res. 2020;3:17–31. https://doi.org/10.9734/ijpr/2020/v4i330113.
Article
Google Scholar
Walker AR, Bouattour A, Camicas J-L, Estrada-Peña A, Horak IG, Latif AA, et al. Ticks of domestic animals in Africa: a guide to identification of species. Bioscience Reports University of Edinburgh 2003.
Garrison AR, Alakbarova S, Kulesh DA, Shezmukhamedova D, Khodjaev S, Endy TP, et al. Development of a TaqMan minor groove binding protein assay for the detection and quantification of Crimean-Congo hemorrhagic fever virus. Am J Trop Med Hyg. 2007;77:514–20.
Article
CAS
Google Scholar
Koehler JW, Delp KL, Hall AT, Olschner SP, Kearney BJ, Garrison AR, et al. Sequence optimized real-time reverse transcription polymerase chain reaction assay for detection of Crimean-Congo hemorrhagic fever virus. Am J Trop Med Hyg. 2018;98:211–5. https://doi.org/10.4269/ajtmh.17-0165.
Article
PubMed
Google Scholar
Jiang J, Stromdahl EY, Richards AL. Detection of Rickettsia parkeri and Candidatus Rickettsia andeanae in Amblyomma maculatum Gulf Coast ticks collected from humans in the United States. Vector Borne Zoonotic Dis. 2012;12:175–82. https://doi.org/10.1089/vbz.2011.0614.
Article
PubMed
Google Scholar
Mc VMLL, Branscum AJ, Collins MT, Gardner IA. Frequentist and Bayesian approaches to prevalence estimation using examples from Johne’s disease. Anim Health Res Rev. 2008;9:1–23. https://doi.org/10.1017/S1466252307001314.
Article
Google Scholar
Ntiamoa-Baidu Y, Carr-Saunders C, Matthews BE, Preston PM, Walker AR. An updated list of the ticks of Ghana and an assessment of the distribution of the ticks of Ghanaian wild mammals in different vegetation zones. Bull Entomol Res. 2004;94:245–60. https://doi.org/10.1079/ber2004302.
Article
CAS
PubMed
Google Scholar
Ntiamoa-Baidu Y, Carr-Saunders C, Matthews BE, Preston PM, Walker AR. Ticks associated with wild mammals in Ghana. Bull Entomol Res. 2005;95:205–19. https://doi.org/10.1079/ber2004352.
Article
CAS
PubMed
Google Scholar
Walker AR, Koney EB. Distribution of ticks (Acari: Ixodida) infesting domestic ruminants in Ghana. Bull Entomol Res. 1999;89:473–9. https://doi.org/10.1017/S0007485399000619.
Article
Google Scholar
de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci J Virtual Libr. 2008;13:6938–46. https://doi.org/10.2741/3200.
Article
Google Scholar
Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol. 2012;28:437–46. https://doi.org/10.1016/j.pt.2012.07.003.
Article
PubMed
Google Scholar
Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129:S3-14. https://doi.org/10.1017/s0031182004005967.
Article
PubMed
Google Scholar
Plummer PJ, McClure JT, Menzies P, Morley PS, Van den Brom R, Van Metre DC. Management of Coxiella burnetii infection in livestock populations and the associated zoonotic risk: a consensus statement. J Vet Intern Med. 2018;32:1481–94. https://doi.org/10.1111/jvim.15229.
Article
PubMed
PubMed Central
Google Scholar
Andoh M, Sakata A, Takano A, Kawabata H, Fujita H, Une Y, et al. Detection of Rickettsia and Ehrlichia spp. in ticks associated with exotic reptiles and amphibians imported into Japan. PLoS ONE. 2015;10:e0133700. https://doi.org/10.1371/journal.pone.0133700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amoako N, Duodu S, Dennis FE, Bonney JHK, Asante KP, Ameh J, et al. Detection of dengue virus among children with suspected malaria, Accra, Ghana. Emerg Infect Dis. 2018;24:1544–7. https://doi.org/10.3201/eid2408.180341.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nooroong P, Trinachartvanit W, Baimai V, Ahantarig A. Phylogenetic studies of bacteria (Rickettsia, Coxiella, and Anaplasma) in Amblyomma and Dermacentor ticks in Thailand and their co-infection. Ticks Tick-Borne Dis. 2018;9:963–71. https://doi.org/10.1016/j.ttbdis.2018.03.027.
Article
PubMed
Google Scholar
Raileanu C, Moutailler S, Pavel I, Porea D, Mihalca AD, Savuta G, et al. Borrelia diversity and co-infection with other tick borne pathogens in ticks. Front Cell Infect Microbiol. 2017;7:36. https://doi.org/10.3389/fcimb.2017.00036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moutailler S, Valiente Moro C, Vaumourin E, Michelet L, Tran FH, Devillers E, et al. Co-infection of ticks: the rule rather than the exception. PLoS Negl Trop Dis. 2016;10:e0004539. https://doi.org/10.1371/journal.pntd.0004539.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clay K, Klyachko O, Grindle N, Civitello D, Oleske D, Fuqua C. Microbial communities and interactions in the lone star tick, Amblyomma americanum. Mol Ecol. 2008;17:4371–81. https://doi.org/10.1111/j.1365-294x.2008.03914.x.
Article
CAS
PubMed
Google Scholar
Randolph SE, Gern L, Nuttall PA. Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Parasitol Today. 1996;12:472–9. https://doi.org/10.1016/s0169-4758(96)10072-7.
Article
CAS
PubMed
Google Scholar
Swanson SJ, Neitzel D, Reed KD, Belongia EA. Coinfections acquired from Ixodes ticks. Clin Microbiol Rev. 2006;19:708–27. https://doi.org/10.1128/CMR.00011-06.
Article
PubMed
PubMed Central
Google Scholar