Agarwal A. Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses. Rev Med Virol. 2017;27:1–12. https://doi.org/10.1002/rmv.1941.
Article
Google Scholar
Souza-Neto JA, Powell JR, Bonizzoni M. Aedes aegypti vector competence studies: a review. Infect Genet Evol. 2018;2019:191–209. https://doi.org/10.1016/j.meegid.2018.11.009.
Article
Google Scholar
Amarasinghe A, Kuritsky JN, Letson GW, Margolis HS. Dengue virus infection in Africa. Emerg Infect Dis. 2011;17(8):1349. https://doi.org/10.3201/eid1708.101515.
Tarnagda Z, Congo M, Sagna T, Ouédraogo C, Nikiéma V, Cissé A, et al. Outbreak of dengue fever in Ouagadougou, Burkina Faso,2013. Int J Microbiol Immunol Res. 2014;2:101–8.
Google Scholar
Tarnagda Z, Cissé A, Bicaba BW, Diagbouga S, Sagna T, Ilboudo AK, et al. Dengue fever in Burkina Faso, 2016. Emerg Infect Dis. 2018;24:170–2.
Article
Google Scholar
Im J, Balasubramanian R, Ouedraogo M, Rosny L, Nana W, Mogeni OD, et al. The epidemiology of dengue outbreaks in 2016 and 2017 in Ouagadougou, Burkina Faso. Heliyon. 2020;6:e04389. https://doi.org/10.1016/j.heliyon.2020.e04389.
Article
Google Scholar
Ouattara CA, Traore S, Sangare I, Traore TI, Meda ZC, Savadogo LGB. Spatiotemporal analysis of dengue fever in Burkina Faso from 2016 to 2019. BMC Public Health. 2022;22:1–8. https://doi.org/10.1186/s12889-022-12820-x.
Article
Google Scholar
WHO. Dengue fever–Burkina Faso. 2016. https://www.who.int/emergencies/disease-outbreak-news/item/18-november-2016-dengue-burkina-faso-en. Accessed 1 Dec 2022.
WHO. Dengue fever–Burkina Faso. 2017. https://www.who.int/csr/don/6-november-2017-dengue-burkina-faso/en/. Accessed 1 Dec 2022.
McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature. 2014;515:222–7. https://doi.org/10.1038/nature13964.
Article
CAS
Google Scholar
Rose NH, Sylla M, Badolo A, Lutomiah J, Ayala D, Aribodor OB, et al. Climate and urbanization drive mosquito preference for humans. Curr Biol. 2020;30:3570-3579.e6. https://doi.org/10.1016/j.cub.2020.06.092.
Article
CAS
Google Scholar
Gubler DJ. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop Med Health. 2011;39:3–11.
Article
Google Scholar
Zahouli JBZ, Koudou BG, Muller P, Malone D, Tano Y, Utzinger J. Urbanization is a main driver for the larvalecology of Aedes mosquitoes in arbovirus-endemic settings in south-eastern Côte d’Ivoire. PLoS Negl Trop Dis. 2017;11:1–23.
Article
Google Scholar
Alexander N, Lenhart AE, Romero-Vivas CME, Barbazan P, Morrison AC, Barrera R, et al. Sample sizes for identifying the key types of container occupied by dengue-vector pupae: the use of entropy in analyses of compositional data. Ann Trop Med Parasitol. 2006; 100(Suppl 1):S5-16. https://doi.org/10.1179/136485906X105471.
Lutomiah J, Barrera R, Makio A, Mutisya J, Koka H, Owaka S, et al. Dengue outbreak in Mombasa City, Kenya, 2013–2014: entomologic investigations. PLoS Negl Trop Dis. 2016;10:e0004981.
Article
Google Scholar
Wilson-Bahun TA, Kamgang B, Lenga A, Wondji CS. Larval ecology and infestation indices of two major arbovirus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazzaville, the capital city of the Republic of the Congo. Parasit Vectors. 2020;13:1–18. https://doi.org/10.1186/s13071-020-04374-x.
Article
CAS
Google Scholar
Badolo A, Sombié A, Yaméogo F, Wangrawa DW, Sanon A, Pignatelli PM, et al. First comprehensive analysis of Aedes aegypti bionomics during an arbovirus outbreak in west Africa: dengue in Ouagadougou, Burkina Faso, 2016–2017. PLoS Negl Trop Dis. 2022;16:1–25.
Article
Google Scholar
Ferede G, Tiruneh M, Abate E, Kassa WJ, Wondimeneh Y, Damtie D, et al. Distribution and larval breeding habitats of Aedes mosquito species in residential areas of northwest Ethiopia. Epidemiol Health. 2018;40:e2018015.
Ouattara LPE, Sangaré I, Namountougou M, Hien A, Ouari A, Soma DD, et al. Surveys of arboviruses vectors in four cities stretching along a railway transect of Burkina Faso: risk transmission and insecticide susceptibility status of potential vectors. Front Vet Sci. 2019;6:1–9.
Article
Google Scholar
Padonou GG, Ossè R, Salako AS, Aikpon R, Sovi A, Kpanou C. Entomological assessment of the risk of dengue outbreak in Abomey-Calavi Commune Benin. Trop Med Health. 2020;48:20. https://doi.org/10.1186/s41182-020-00207-w.
Halstead SB. Dengue vaccine development: a 75% solution ? Lancet. 2012;380:1535–6. https://doi.org/10.1016/S0140-6736(12)61510-4.
Article
Google Scholar
Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet. 2012;380:1559–67. https://doi.org/10.1016/S0140-6736(12)61428-7.
Article
CAS
Google Scholar
Sombié A, Saiki E, Yaméogo F, Sakurai T, Shirozu T, Fukumoto S, et al. High frequencies of F1534C and V1016I kdr mutations and association with pyrethroid resistance in Aedes aegypti from Somgandé (Ouagadougou), Burkina Faso. Trop Med Health. 2019;47:1–8. https://doi.org/10.1186/s41182-018-0134-5.
Article
Google Scholar
Badolo A, Sombié A, Pignatelli PM, Sanon A, Yaméogo F, Wangrawa DW, et al. Insecticide resistance levels and mechanisms in Aedes aegypti populations in and around Ouagadougou, Burkina Faso. PLoS Negl Trop Dis. 2019;13:e0007439.
Article
CAS
Google Scholar
Bonnet E, Fournet F, Benmarhnia T, Ouedraogo S, Dabiré R, Ridde V. Impact of a community-based intervention on Aedes aegypti and its spatial distribution in Ouagadougou, Burkina Faso. Infect Dis Poverty. 2020;9:1–9.
Article
Google Scholar
Dickson LB, Jiolle D, Minard G, Moltini-Conclois I, Volant S, Ghozlane A, et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci Adv. 2017;3:1–14.
Article
Google Scholar
Overgaard HJ, Olano VA, Jaramillo JF, Matiz MI, Sarmiento D, Stenström TA, et al. A cross-sectional survey of Aedes aegypti immature abundance in urban and rural household containers in central Colombia. Parasit Vectors. 2017;10:1–12.
Article
Google Scholar
Medeiros-Sousa AR, de Oliveira-Christe R, Camargo AA, Scinachi CA, Milani GM, Urbinatti PR, et al. Influence of water’s physical and chemical parameters on mosquito (Diptera: Culicidae) assemblages in larval habitats in urban parks of São Paulo, Brazil. Acta Tropica. 2020;205:105394.
Article
CAS
Google Scholar
Schneider JR, Chadee DD, Mori A, Romero-Severson J, Severson DW. Heritability and adaptive phenotypic plasticity of adult body size in the mosquito Aedes aegypti with implications for dengue vector competence. Infect Genet Evol. 2011;11:11–6. https://doi.org/10.1016/j.meegid.2010.10.019.
Article
Google Scholar
Barreaux AMG, Stone CM, Barreaux P, Koella JC. The relationship between size and longevity of the malaria vector Anopheles gambiae (ss) depends on the larval environment. Parasit Vectors. 2018;11:1–9.
Article
Google Scholar
Maciel-De-Freitas R, Codeço CT, Lourenço-De-Oliveira R. Body size-associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Med Vet Entomol. 2007;21:284–92.
Article
CAS
Google Scholar
Evans MV, Shiau JC, Solano N, Brindley MA, Drake JM, Murdock CC. Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasit Vectors. 2018;11:1–13.
Article
Google Scholar
Saifur RGM, Dieng H, Hassan AA, Salmah MRC, Satho T, Miake F, et al. Changing domesticity of Aedes aegypti in northern peninsular Malaysia: reproductive consequences and potential epidemiological implications. PLoS One. 2012;7:e30919.
Article
CAS
Google Scholar
Morales Vargas RE, Ya-umphan P, Phumala-Morales N, Komalamisra N, Dujardin JP. Climate associated size and shape changes in Aedes aegypti (Diptera: Culicidae) populations from Thailand. Infect Genet Evol. 2010;10:580–5. https://doi.org/10.1016/j.meegid.2010.01.004.
Article
Google Scholar
Juliano SA, O’Meara GF, Morrill JR, Cutwa MM. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia. 2002;130:458–69. https://doi.org/10.1007/s004420100811.
Article
Google Scholar
WHO/Special Programme for Research and Training in Tropical Diseases (TDR). Operational guide for assessing the productivity of Aedes aegypti breeding sites. 2011. https://www.who.int/tdr/publications/documents/sop-pupal-surveys.pdf. Accessed 1 Dec 2022.
Rueda LM. Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission (Zootaxa 58). Mount Wellington: Magnolia Press; 2004.
Google Scholar
Huang Y-M. The subgenus Stegomyia of Aedes in the Afrotropical Region with keys to the species (Diptera: Culicidae). 700th ed. Auckland: Magnolia Press; 2004.
Google Scholar
Bargielowski I, Nimmo D, Alphey L, Koella JC. Comparison of life history characteristics of the genetically modified OX513A line and a wild type strain of Aedes aegypti. PLoS ONE. 2011;6:1–7.
Google Scholar
Briegel H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria J Med Entomol. 1990;27:839–50.
Article
CAS
Google Scholar
WHO/Regional Office for South-East Asia. Comprehensive guideline for prevention and control of dengue and dengue haemorrhagic Fever. Revised and expanded edition. 2011. https://apps.who.int/iris/handle/10665/204894. Accessed 1 Dec 2022.
Google Scholar
Mukhtar MU, Han Q, Liao C, Haq F, Arslan A, Bhatti A. Seasonal distribution and container preference ratio of the dengue fever vector (Aedes aegypti, Diptera: Culicidae) in Rawalpindi. Pakistan J Med Entomol. 2018;55:1011–5.
Article
Google Scholar
Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, Maechler M, Brooks M. glmmTMB: generalized linear mixed models using template model builder. R package version 0.1. 3. 2017. https://rdrr.io/cran/glmmTMB/. Accessed 1 Dec 2022.
Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R Packag version 020. 2018. https://CRAN.R-project.org/package=DHARMa. Accessed 1 Dec 2022.
WHO. Application of resolution WHA22.47. Technical guide for a system of yellow fever surveillance. 1971. https://apps.who.int/iris/bitstream/handle/10665/218621/WER4649_493-500.PDF?sequence=1&isAllowed=y. Accessed 1 Dec 2022.
Agboli E, Zahouli JBZ, Badolo A, Jöst H. Mosquito-associated viruses and their related mosquitoes in West Africa. Viruses. 2021;13:891. https://doi.org/10.3390/v13050891.
Mordecai EA, Ryan SJ, Caldwell JM, Shah MM, LaBeaud AD. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet Health. 2020;4:e416–23. https://doi.org/10.1016/S2542-5196(20)30178-9.
Article
Google Scholar
WHO/Special Programme for Research and Training in Tropical Diseases (TDR). A review of entomological sampling methods and indicators for dengue vectors. 2003. https://apps.who.int/iris/handle/10665/68575. Accessed 1 Dec 2022.
Ministère de la Santé/DGESS Burkina Faso. Avril 2018 Direction générale des études et des statistiques sectorielles 03 BP 7009 Ouagadougou 03. Annuaire statistiaue 2018. Ouagadougou: Ministère de la Santé; 2018. http://cns.bf/IMG/pdf/annuaire_ms_2018.pdf. Accessed 1 Dec 2022.
Bowman LR, Runge-Ranzinger S, McCall PJ. Assessing the relationship between vector indices and dengue transmission : a systematic review of the evidence. PLoS Negl Trop Dis. 2014; 8(5):1–11. https://doi.org/10.1371/journal.pntd.0002848.
Brady OJ, Smith DL, Scott TW, Hay SI. Dengue disease outbreak definitions are implicitly variable. Epidemics. 2015;11:92–102. https://doi.org/10.1016/j.epidem.2015.03.002.
Ridde V, Agier I, Bonnet E, Carabali M, Dabiré KR, Fournet F, et al. Presence of three dengue serotypes in Ouagadougou (Burkina Faso): research and public health implications. Infect Dis Poverty. 2016;5:1–13. https://doi.org/10.1186/s40249-016-0120-2.
Article
Google Scholar
Getachew D, Tekie H, Gebre-michael T, Balkew M, Mesfin A. Breeding sites of Aedes aegypti: potential dengue vectors in Dire Dawa, East Ethiopia. Hindawi Publ Corp Interdiscip Perspect Infect Dis. 2015;2015:8.
Google Scholar
Saleh F, Kitau J, Konradsen F, Alifrangis M, Lin CH, Juma S, et al. Habitat characteristics for immature stages of Aedes aegypti in Zanzibar city, Tanzania. J Am Mosq Control Assoc. 2018;34:190–200.
Article
Google Scholar
Abilio AP, Kampango A, Candrinho B, Sibindy S, Luciano J, De Almeida G, et al. Distribution and breeding sites of Aedes aegypti and Aedes albopictus in 32 urban/peri- urban districts of Mozambique : implication for assessing the risk of arbovirus outbreaks. PLoS Negl Trop Dis. 2018;12:e0006692.
Article
Google Scholar
Karuitha M, Bargul J, Lutomiah J, Muriu S, Nzovu J, Sang R, et al. Larval habitat diversity and mosquito species distribution along the coast of Kenya. Wellcome Open Res. 2019;13:175. https://doi.org/10.12688/wellcomeopenres.15550.1.
Article
Google Scholar
Gopalakrishnan R, Das M, Baruah I, Veer V, Dutta P. Physicochemical characteristics of habitats in relation to the density of container-breeding mosquitoes in Asom, India. J Vector Borne Dis. 2013;50:215–9.
Google Scholar
Multini LC, Oliveira-Christe R, Medeiros-Sousa AR, Evangelista E, Barrio-Nuevo KM, Mucci LF, et al. The influence of the pH and salinity of water in breeding sites on the occurrence and community composition of immature mosquitoes in the green belt of the city of São Paulo, Brazil. Insects. 2021;12:797.
Article
Google Scholar
Schneider JR, Morrison AC, Astete H, Scott TW, Wilson ML. Adult size and distribution of Aedes aegypti (Diptera: Culicidae) associated with larval habitats in Iquitos. Peru J Med Entomol. 2004;41:634–42.
Article
Google Scholar
Steinwascher K. Competition among Aedes aegypti larvae. PloS ONE. 2018;13:e0202455.
Article
Google Scholar
Gutiérrez EHJ, Walker KR, Ernst KC, Riehle MA, Davidowitz G. Size as a proxy for survival in Aedes aegypti (Diptera: Culicidae) mosquitoes. J Med Entomol. 2020;57:1228–38.
Article
Google Scholar
Ezeakacha NF, Yee DA. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit Vectors. 2019;12:1–11. https://doi.org/10.1186/s13071-019-3391-1.
Article
Google Scholar
Mohammed A, Chadee DD. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Trop. 2011;119:38–43. https://doi.org/10.1016/j.actatropica.2011.04.004.
Article
Google Scholar
Scott TW, et al. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol. 2000;37:77–88.
Article
CAS
Google Scholar
Alto BW, Reiskind MH, Lounibos LP. Size alters susceptibility of vectors to dengue virus infection and dissemination. Am J Trop Med Hyg. 2008;79:688–95.
Article
CAS
Google Scholar