West-Eberhard MJ. Developmental plasticity and evolution. Oxford: Oxford University Press; 2003.
Book
Google Scholar
Thompson DB. Different spatial scales of natural selection and gene flow: the evolution of behavioral geographic variation and phenotypic plasticity. In: Foster S, Endler J, editors. Geographic diversification of behavior: an evolutionary perspective. Oxford: Oxford University Press; 1999. p. 33–51.
Google Scholar
WHO. Chagas disease (also known as American trypanosomiasis). 2021. https://www.who.int/es/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis). Accessed 27 May 2022.
de Paiva VF, Belintani T, de Oliveira J, Galvão C, da Rosa JA. A review of the taxonomy and biology of Triatominae subspecies (Hemiptera: Reduviidae). Parasitol Res. 2022;121:499–512. https://doi.org/10.1007/s00436-021-07414-2.
Article
Google Scholar
Schofield CJ, Galvão C. Classification, evolution and species groups within the Triatominae. Acta Trop. 2009;110:88–100. https://doi.org/10.1016/j.actatropica.2009.01.010.
Article
CAS
Google Scholar
Cavallo MJ, Amelotti I, Gorla DE. Invasion of rural houses by wild Triatominae in the arid Chaco. J Vector Ecol. 2016;41:97–102. https://doi.org/10.1111/jvec.12199.
Article
Google Scholar
Brito RN, Gorla DE, Diotaiuti L, Gomes ACF, Souza RCM, Abad-Franch F. Drivers of house invasion by sylvatic Chagas disease vectors in the Amazon-Cerrado transition: a multi-year, state-wide assessment of municipality-aggregated surveillance data. PLoS Negl Trop Dis. 2017;11:e0006035. https://doi.org/10.1371/journal.pntd.0006035.
Article
Google Scholar
Cardozo M, Fiad FG, Crocco LB, Gorla DE. Triatominae of the semi-arid Chaco in Central Argentina. Acta Trop. 2021;224:106158. https://doi.org/10.1016/j.actatropica.2021.106158.
Article
Google Scholar
Wisnivesky-Colli C, Schweigmann NJ, Alberti A, Pietrokovsky SM, Conti O, Montoya S, et al. Sylvatic American trypanosomiasis in Argentina. Trypanosoma cruzi infection in mammals from the Chaco forest in Santiago del Estero. Trans R Soc Trop Med Hyg. 1992;86:38–41. https://doi.org/10.1016/0035-9203(92)90433-d.
Article
CAS
Google Scholar
Rodríguez CS, Crocco LB, Nattero J. Competencia vectorial de Triatoma guasayana (Hemiptera: Reduviidae): patrón de alimentación y excreción. Rev Soc Entomol Arg. 2004;63:11–6.
Google Scholar
Loza-Murguía M, Noireau F. Vectorial capacity of Triatoma guasayana (Wygodzinsky & Abalos) (Hemiptera: Reduviidae) compared with two other species of epidemic importance. Neotrop Entomol. 2010;39:799–809. https://doi.org/10.1590/S1519-566X2010000500020.
Article
Google Scholar
Abrahan LB, Gorla DE, Catalá SS. Dispersal of Triatoma infestans and other triatominae species in the arid Chaco of Argentina—Flying, walking or passive carriage? The importance of walking females. Mem Inst Oswaldo Cruz. 2011;106:232–9. https://doi.org/10.1590/S0074-02762011000200019.
Article
Google Scholar
Lucero DE, Ribera W, Pizarro JC, Plaza C, Gordon LW, Peña R, et al. Sources of blood meals of sylvatic Triatoma guasayana near Zurima, Bolivia, assayed with qPCR and 12S cloning. PLoS Negl Trop Dis. 2014;8:e3365. https://doi.org/10.1371/journal.pntd.0003365.
Article
Google Scholar
Carcavallo RU, Canale DM, Martínez A. Habitats de triatominos argentinos y zonas ecológicas donde prevalecen. Chagas. 1988;5:8–17.
Google Scholar
Canale DM, Cecere MC, Chuit R, Gurtler RE. Peridomestic distribution of Triatoma garciabesi and Triatoma guasayana in northwest Argentina. Med Vet Entomol. 2000;14:383–90. https://doi.org/10.1046/j.1365-2915.2000.00254.x.
Article
CAS
Google Scholar
Rodríguez-Planes LI, Vazquez-Prokopec GM, Cecere MC, Canale DM, Gürtler RE. Selective insecticide applications directed against Triatoma infestans (Hemiptera: Reduviidae) affected a nontarget secondary vector of chagas disease Triatoma garciabesi. J Med Entomol. 2016;53:144–51. https://doi.org/10.1093/jme/tjv167.
Article
Google Scholar
Dujardin JP, Schofield CJ, Panzera F. Les vecteurs de la maladie de Chagas: recherches taxonomiques, biologiques et génétiques. 2000. Brussels: Académie royale des sciences d'outre-mer. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/2021-08/010023185.pdf.
Almeida CE, Marcet PL, Gumiel M, Takiya DM, Cardozo-de-Almeida M, Pacheco RS, et al. Phylogenetic and phenotypic relationships among Triatoma carcavalloi (Hemiptera: Reduviidae: Triatominae) and related species collected in domiciles in Rio Grande do Sul State Brazil. J Vector Ecol. 2009;34:164–73. https://doi.org/10.1111/j.1948-7134.2009.00023.x.
Article
Google Scholar
Justi SA, Russo CA, Mallet JRDS, Obara MT, Galvão C. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae). Parasit Vectors. 2014;7:1–12.
Article
Google Scholar
Gorla D, Noireau F. Geographic distribution of Triatominae vectors in America. In: Telleria J, Tibayrenc M, editors. American trypanosomiasis Chagas disease. Amsterdam: Elsevier; 2017. p. 197–221.
Chapter
Google Scholar
Wisnivesky-Colli C, Gürtler RE, Solarz ND, Schweigmann NJ, Pietrokovsky SM, Alberti A, et al. Dispersive flight and house invasion by Triatoma guasayana and Triatoma sordida in Argentina. Mem Inst Oswaldo Cruz. 1993;88:27–32. https://doi.org/10.1590/S0074-02761993000100006.
Article
CAS
Google Scholar
Noireau F, Dujardin JP. Flight and nutritional status of sylvatic Triatoma sordida and Triatoma guasayana. Mem Inst Oswaldo Cruz. 2001;96:385–9.
Article
CAS
Google Scholar
Lehane MJ, McEwen PK, Whitaker CJ, Schofield CJ. The role of temperature and nutritional status in flight initiation by Triatoma infestans. Acta Trop. 1992;52:27–38. https://doi.org/10.1016/0001-706X(92)90004-H.
Article
CAS
Google Scholar
Schofield CJ, Lehane M, McEwen P, Catalá SS, Gorla DE. Dispersive flight by Triatoma infestans under natural climatic conditions in Argentina. Med Vet Entomol. 1992;6:51–6. https://doi.org/10.1111/j.1365-2915.1992.tb00035.x.
Article
CAS
Google Scholar
McEwen P, Lehane M. Factors influencing flight initiation in the triatomine bug Triatoma sordida (Hemiptera: Reduviidae). Insect Sci Applic. 1993;14:461–4. https://doi.org/10.1017/S1742758400014132.
Article
Google Scholar
McEwen P, Lehane M, Whitaker C. The effect of adult population density on flight initiation in Triatoma infestans (Klug) (Hemiptera: Reduviidae). J Appl Entomol. 1993;116:321–5. https://doi.org/10.1111/j.1439-0418.1993.tb01203.x.
Article
Google Scholar
Harrison RG. Dispersal polymorphisms in insects. Annu Rev Ecol Syst. 1980;11:95–118. https://doi.org/10.1146/annurev.es.11.110180.000523.
Article
Google Scholar
Gurevitz JM, Kitron U, Gürtler RE. Flight muscle dimorphism and heterogeneity in flight initiation of field-collected Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol. 2007;44:186–91. https://doi.org/10.1093/jmedent/44.2.186.
Article
Google Scholar
Hernández ML, Dujardin JP, Gorla DE, Catalá SS. Can body traits, other than wings, reflect the flight ability of Triatominae bugs? Rev Soc Bra Med Trop. 2015;48:682–91. https://doi.org/10.1590/0037-8682-0249-2015.
Article
Google Scholar
Hernández ML, Espinoza J, Gomez M, Gorla D. Morphological changes associated with brachypterous Triatoma guasayana (Hemiptera, Reduviidae) and their relationship with flight. Int J Trop Insect Sci. 2020;40:413–21. https://doi.org/10.1007/s42690-019-00092-9.
Article
Google Scholar
Almeida CE, Oliveira HL, Correia N, Dornak LL, Gumiel M, Neiva VL, et al. Dispersion capacity of Triatoma sherlocki, Triatoma juazeirensis and laboratory-bred hybrids. Acta Trop. 2012;122:71–9. https://doi.org/10.1016/j.actatropica.2011.12.001.
Article
Google Scholar
Lawrence MG. The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. Bull Am Meteorol Soc. 2005;86:225–34. https://doi.org/10.1175/BAMS-86-2-225.
Article
Google Scholar
Johnson CG. Migration and dispersal of insects by flight. London: Methuen; 1969.
Google Scholar
Ekkens DB. Nocturnal flights of Triatoma (Hemiptera: Reduviidae) in Sabino Canyon, Arizona: I light collections. J Med Entomol. 1981;18:211–27. https://doi.org/10.1093/JMEDENT/18.3.211.
Article
Google Scholar
Dryden IL, Mardia KV. Statistical shape analysis. Chichester: Wiley; 1998.
Google Scholar
Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Res. 2011;11:353–7. https://doi.org/10.1111/j.1755-0998.2010.02924.x.
Article
Google Scholar
Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat versión 2016 Universidad Nacional de Córdoba. Córdoba: FCA; 2016.
Google Scholar
Lachenbruch PA. An almost unbiased method of obtaining confidence intervals for the probability of misclassification in discriminant analysis. Biometrics. 1967;23:639–45.
Article
CAS
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9. https://doi.org/10.1093/molbev/msy096.
Article
CAS
Google Scholar
Ascarrunz E, Claude J, Joyce WG. Estimating the phylogeny of geoemydid turtles (Cryptodira) from landmark data: an assessment of different methods. PeerJ. 2019;7:e7476. https://doi.org/10.7717/peerj.7476.
Article
Google Scholar
Rosenberg MS, Anderson CD. PASSaGE: pattern analysis, spatial statistics, and geographic exegesis. version 2. Methods Ecol Evol. 2011;2:229–32. https://doi.org/10.1111/j.2041-210X.2010.00081.x.
Article
Google Scholar
Le S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25:1–18. https://doi.org/10.18637/jss.v025.i01.
Article
Google Scholar
Bai Y, Dong JJ, Guan DL, Xie JY, Xu SQ. Geographic variation in wing size and shape of the grasshopper Trilophidia annulata (Orthoptera: Oedipodidae): morphological trait variations follow an ecogeographical rule. Sci Rep. 2016;6:1–15. https://doi.org/10.1038/srep32680.
Article
CAS
Google Scholar
Noireau F, Flores R, Vargas F. Trapping sylvatic Triatominae (Reduviidae) in hollow trees. Trans R Soc Trop Med Hyg. 1999;93:13–4. https://doi.org/10.1016/s0035-9203(99)90161-x.
Article
CAS
Google Scholar
Hill JK, Thomas CD, Blakeley DS. Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia. 1999;121:165–70. https://doi.org/10.1007/s004420050918.
Article
CAS
Google Scholar
Hughes CL, Dytham C, Hill JK. Modelling and analysing evolution of dispersal in populations at expanding range boundaries. Ecol Entomol. 2007;32:437–45. https://doi.org/10.1111/j.1365-2311.2007.00890.x.
Article
Google Scholar
Norberg U, Leimar O. Spatial and temporal variation in flight morphology in the butterfly Melitaea cinxia (Lepidoptera: Nymphalidae). Biol J Lin Soc. 2002;77:445–53. https://doi.org/10.1046/j.1095-8312.2002.00115.x.
Article
Google Scholar
Sekar S. A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J Anim Ecol. 2012;81:174–84. https://doi.org/10.1111/j.1365-2656.2011.01909.x.
Article
Google Scholar
Gutierrez D, Rosa M. Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera: Carabidae) in relation to dispersal ability. J Biogeogr. 1997;24:903–14. https://doi.org/10.1046/j.1365-2699.1997.00144.x.
Article
Google Scholar
Dujardin JP, Costa J, Bustamante D, Jaramillo N, Catalá SS. Deciphering morphology in Triatominae: the evolutionary signals. Acta Trop. 2009;110:101–11. https://doi.org/10.1016/j.actatropica.2008.09.026.
Article
CAS
Google Scholar
O’Higgins P, Cobb SN, Fitton LC, Gröning F, Phillips R, Liu J, et al. Combining geometric morphometrics and functional simulation: an emerging toolkit for virtual functional analyses. J Anat. 2011;218:3–15. https://doi.org/10.1111/j.1469-7580.2010.01301.x.
Article
Google Scholar
Taylor CP. Contribution of compound eyes and ocelli to steering of locusts in flight: I. behavioural analysis. J Exp Biol. 1981;93:1–18. https://doi.org/10.1242/jeb.93.1.1.
Moser JC, Reeve JD, Bento JMS, Della Lucia TM, Cameron RS, Heck NM. Eye size and behaviour of day-and night-flying leaf cutting ant alates. J Zool. 2004;264:69–75. https://doi.org/10.1017/S0952836904005527.
Article
Google Scholar
Taylor GK, Krapp HG. Sensory systems and flight stability: what do insects measure and why? Insect Physiol. 2007;34:231–316. https://doi.org/10.1016/S0065-2806(07)34005-8.
Suarez-Tovar CM, Sarmiento C. Beyond the wing planform: morphological differentiation between migratory and nonmigratory dragonfly species. J Evol Biol. 2016;29:690–703. https://doi.org/10.1111/jeb.12830.
Article
CAS
Google Scholar
Klingenberg CP. Developmental constraints, modules and evolvability. In: Hallgrímsson B, Hall BK, editors. Variation: a central concept in biology. Amsterdam: Academic Press; 2005. p. 219–47.
Ghalambor CK, McKay JK, Carroll SP, Reznick DN. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol. 2007;21:394–407. https://doi.org/10.1111/j.1365-2435.2007.01283.x.
Article
Google Scholar
Schmid M, Guillaume F. The role of phenotypic plasticity on population differentiation. Heredity. 2017;119:214–25. https://doi.org/10.1038/hdy.2017.36.
Article
CAS
Google Scholar
Schäfer MA, Berger D, Rohner PT, Kjaersgaard A, Bauerfeind SS, Guillaume F, et al. Geographic clines in wing morphology relate to colonization history in new world but not old world populations of yellow dung flies. Evolution. 2018;72:1629–44. https://doi.org/10.1111/evo.13517.
Article
Google Scholar
Santos M, Brites D, Laayouni H. Thermal evolution of pre-adult life history traits, geometric size and shape, and developmental stability in Drosophila subobscura. J Evol Biol. 2006;19:2006–21. https://doi.org/10.1111/j.1420-9101.2006.01139.x.
Article
CAS
Google Scholar
Schofield CJ, Apt W, Sagua H, Panzera F, Dujardin JP. Alary polymorphism in Triatoma spinolai and its possible relationship with demographic strategy. Med Vet Entomol. 1998;12:30–8. https://doi.org/10.1046/j.1365-2915.1998.00074.x.
Article
CAS
Google Scholar
Roff DA. The evolution of wing dimorphism in insects. Evolution. 1986;40:1009–20. https://doi.org/10.1111/j.1558-5646.1986.tb00568.x.
Article
Google Scholar
Carcavallo RU, Curto de Casas SI, Sherlock IA, Galíndez Girón I, Jurberg J, Galvão C, et al. Geographical distribution and alti-latitudinal dispesion. In: Lent H, Carcavallo RU, Galíndez Girón I, Jurberg J, editors. Atlas of Chagas disease vectors in the Americas. Rio de Janeiro: Fiocruz Editorial; 1999. p. 747–92.