Christophers SR. Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. 1st ed. Cambridge: Cambridge University Press; 1960.
Google Scholar
Nelson ML. Aedes aegypti: biology and ecology. 1st ed. Washington, D.C.: Pan American Health Organization; 1986.
Google Scholar
Suaya JA, Shepard DS, Siqueira JB, Martelli CT, Lum LCS, Tan LH, et al. Cost of dengue cases in eight countries in the Americas and asia: a prospective study. Am J Trop Med Hyg. 2009;80:846–55.
Article
PubMed
Google Scholar
Chadee DD, Gilles JRL. The diel copulation periodicity of the mosquito, Aedes aegypti (L.) (Diptera: Culicidae) at indoor and outdoor sites in Trinidad, West Indies. Acta Trop. 2014;132:S91–5. https://doi.org/10.1016/j.actatropica.2013.06.022.
Article
PubMed
Google Scholar
Tsunoda T, Cuong TC, Dong TD, Yen NT, Le NH, Phong TV, et al. Winter refuge for Aedes aegypti and Ae. albopictus mosquitoes in Hanoi during winter. PLoS ONE. 2014;9:1–6.
Article
Google Scholar
Alphey L. Re-engineering the sterile insect technique. Insect biochemistry and molecular biology. Insect Biochem Mol Biol. 2002;32:1243–7.
Article
CAS
PubMed
Google Scholar
Lima EP, Henrique M, Paiva S, De AAP, Vanessa É, Mariano U, et al. Insecticide resistance in Aedes aegypti populations from Ceará, Brazil. Parasit Vectors. 2011;4:1–12.
Article
Google Scholar
Mazzarri MB, Georghiou GP. Characterization of resistance to organophosphate, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J Am Mosq Control Assoc. 1995;11:315–22.
CAS
PubMed
Google Scholar
Liu H, Cupp EW, Guo A, Liu N. Insecticide resistance in Alabama and Florida mosquito strains of Aedes albopictus. J Med Entomol. 2004;41:946–52.
Article
CAS
PubMed
Google Scholar
Estep AS, Sanscrainte ND, Waits CM, Bernard SJ, Lloyd M, Lucas KJ, et al. Quantification of permethrin resistance and kdr alleles in Florida strains of Aedes aegypti (L.) and Aedes albopictus (Skuse). PLoS Negl Trop Dis. 2018. https://doi.org/10.1371/journal.pntd.0006544.
Article
PubMed
PubMed Central
Google Scholar
Parker C, Ramirez D, Thomas C, Connelly CR. Baseline susceptibility status of florida populations of Aedes aegypti (Diptera: Culicidae) and Aedes albopictus. J Med Entomol. 2020;57:1550–9.
Article
CAS
PubMed
Google Scholar
Weaver SC, Forrester NL. Chikungunya: evolutionary history and recent epidemic spread. Antiviral Res. 2015;120:32–9. https://doi.org/10.1016/j.antiviral.2015.04.016.
Article
CAS
PubMed
Google Scholar
Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, De Lamballerie X. Chikungunya in the Americas. Lancet. 2014;383:514.
Article
PubMed
Google Scholar
Mayer SV, Tesh RB, Vasilakis N. The emergence of arthropod-borne viral diseases: a global prospective on dengue, chikungunya and zika fevers. Acta Trop. 2017;166:155–63. https://doi.org/10.1016/j.actatropica.2016.11.020.
Article
PubMed
Google Scholar
Klassen W. Introduction: development of the sterile insect technique for African malaria vectors. Malar J. 2009;8:I1. https://doi.org/10.1186/1475-2875-8-S2-I1.
Article
PubMed
PubMed Central
Google Scholar
Knipling, EF. Possibilities of insect control or eradication through use of sexually sterile males. J Econ Entomol. 1955;59:462. https://doi.org/10.1093/jee/48.4.459
Klassen W, Curtis CF. History of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile Insect Tech Princ Pract Area-Wide Integr Pest Manag. Dordrecht: Springer; 2005. p. 3–36.
Google Scholar
Bushland RC, Lindquist AW, Knipling EF. Eradication of screw-worms through release of sterilized males. Science. 1955;122:287–8.
Article
CAS
PubMed
Google Scholar
Knipling EF. Control of screw-worm fly by atomic radiation. Sci Mon. 1957;85:195–202.
Google Scholar
Wyss JH. Screwworm eradication in the Americas. Ann N Y Acad Sci. 2000;916:186–93.
Article
CAS
PubMed
Google Scholar
Skoda SR, Phillips PL, Welch JB. Screwworm (Diptera: Calliphoridae) in the United States: response to and elimination of the 2016–2017 outbreak in Florida. J Med Entomol. 2018;55:777–86.
Article
PubMed
Google Scholar
Hendrichs J, Robinson AS, Cayol JP, Enkerlin W. Medfly areawide sterile insect technique programmes for prevention, suppression or eradication: the importance of mating behavior studies. Florida Entomol. 2002;85:1–13.
Article
Google Scholar
Enkerlin W, Gutiérrez-ruelas JM, Cortes AV, Roldan EC, Midgarden D, Lira E, et al. Area freedom in Mexico from Mediterranean fruit fly ( Diptera : Tephritidae ): a review of over 30 years of a successful containment program using an integrated area-wide SIT approach Area freedom in Mexico from Mediterranean fruit fly ( Diptera : Tephrit. Florida Entomol. 2015;98:665–81.
Article
Google Scholar
Dowell RV, Siddiqui IAIA, Meyer F, Spaugy ELL. Early results suggest sterile flies may protect S. California from medfly. Calif Agric. 1999;53:28–32.
Article
Google Scholar
Bellini R, Calvitti M, Medici A, Carrieri M, Celli G, Maini S. Use of the sterile insect technique against Aedes albopictus in Italy: first results of a pilot trial. In: Vreysen MJB, Robinson AS, Hendrichs J, editors. Area-Wide Control Insect Pests. Dordrecht: Springer; 2007. p. 505–15.
Chapter
Google Scholar
Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, et al. Sterile-insect methods for control of mosquito borne diseases an analysis. Vector-Borne Zoonotic Dis. 2010;10:295–311.
Article
PubMed
PubMed Central
Google Scholar
Olivia C, Maier MJMJ, Gilles J, Jacquet M, Lemperiere G, Quilici S, et al. Effects of irradiation, presence of females, and sugar supply on the longevity of sterile males Aedes albopictus (Skuse) under semi-field conditions on Reunion Island. Acta Trop. 2013;125:287–93.
Article
Google Scholar
Madakacherry O, Lees RS, Gilles JRL. Aedes albopictus (Skuse) males in laboratory and semi-field cages: release ratios and mating competitiveness. Acta Trop. 2014;132:S124–9. https://doi.org/10.1016/j.actatropica.2013.11.020.
Article
PubMed
Google Scholar
Klassen W. Area-wide integrated pest management and the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile insect tech princ pract area-wide integr pest manag. Dordrecht: Springer; 2005. p. 39–68.
Google Scholar
Hendrichs J, Vreysen MJB, Enkerlin WR, Cayol JP. Strategic options in using sterile insects for area-wide integrated pest management. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile Insect Tech Princ Pract Area-Wide Integr Pest Manag. Dordrecht: Springer; 2005. p. 563–600.
Google Scholar
Parker A, Mehta K. Sterile insect technique: a model for dose optimization for improved sterile insect quality. Florida Entomol. 2007;90:88–95.
Article
Google Scholar
Helinski MEH, Parker AG, Knols BGJ. Radiation biology of mosquitoes. Malar J. 2009;8:S6. https://doi.org/10.1186/1475-2875-8-S2-S6.
Article
PubMed
PubMed Central
Google Scholar
Bouyer J, Vreysen MJB. Yes, irradiated sterile male mosquitoes can be sexually competitive! Trends Parasitol. 2020;36:877–80. https://doi.org/10.1016/j.pt.2020.09.005.
Article
CAS
PubMed
Google Scholar
Vreysen MJB. Monitoring sterile and wild insects in area-wide integrated pest management programmes. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile Insect Tech Princ Pract Area-Wide Integr Pest Manag. Dordrecht: Springer; 2005. p. 325–61.
Google Scholar
Costantini D, Metcalfe NB, Monaghan P. Ecological processes in a hormetic framework. Ecol Lett. 2010;13:1435–47. https://doi.org/10.1111/j.1461-0248.2010.01531.x.
Article
PubMed
Google Scholar
Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, et al. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol. 2007;222:122–8.
Article
CAS
PubMed
Google Scholar
Calabrese EJ, Baldwin LA. The hormetic dose-response model is more common than the threshold model in toxicology. Toxicol Sci. 2003;71:246–50.
Article
CAS
PubMed
Google Scholar
Calabrese EJ. Hormetic mechanisms. Crit Rev Toxicol. 2013;43:580–606.
Article
CAS
PubMed
Google Scholar
Bayley M, Petersen PO, Knigge T, Kohler H-R, Holmstrup M. Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. J Insect Physiol. 2001;47:1197–204.
Article
CAS
PubMed
Google Scholar
Levis NA, Yi S, Lee RE. Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis : evidence for drought-induced rapid cold-hardening. J Exp Biol. 2012;215:3768–73.
PubMed
Google Scholar
Boardman L, Sørensen JG, Terblanche JS. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta. J Insect Physiol. 2015;82:75–84. https://doi.org/10.1016/j.jinsphys.2015.09.001.
Article
CAS
PubMed
Google Scholar
Teets NM, Elnitsky MA, Benoit JB, Lopez-Martinez G, Denlinger DL, Lee RE. Rapid cold-hardening in larvae of the Antarctic midge Belgica antarctica: cellular cold-sensing and a role for calcium. Am J Physiol Integr Comp Physiol. 2008;294:R1938–46.
Article
CAS
Google Scholar
Chidawanyika F, Terblanche JS. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): Implications for pest control and the sterile insect release programme. Evol Appl. 2011;4:534–44.
Article
PubMed
Google Scholar
Nestel D, Nemny-Lavy E, Islam SM, Wornoayporn V, Caceres C. Effects of pre-irradiation conditioning of Medfly pupae (Diptera : Tephritidae ): Hypoxia and quality of sterile males. Florida Entomol. 2007;90:80–7.
Article
Google Scholar
López-Martínez G, Hahn DA. Short-term anoxic conditioning hormesis boosts antioxidant defenses, lowers oxidative damage following irradiation and enhances male sexual performance in the Caribbean fruit fly, Anastrepha suspensa. J Exp Biol. 2012;215:2150–61. https://doi.org/10.1242/jeb.065631.
Article
CAS
PubMed
Google Scholar
López-Martínez G, Carpenter JE, Hight SD, Hahn DA. Low-oxygen atmospheric treatment improves the performance of irradiation-sterilized male cactus moths used in SIT. J Econ Entomol. 2014;107:185–97. https://doi.org/10.1603/EC13370.
Article
PubMed
Google Scholar
Schwarz AJ, Zambada A, Orozco DHS, Zavala JL, Calkins CO. Mass production of the Mediterranean fruit fly at Metapa, Mexico. Florida Entomol. 1985;68:467–77.
Article
Google Scholar
Fisher K. Irradiation effects in air and in nitrogen on Mediterranean fruit fly (Diptera: Tephritidae) Pupae in Western Australia. J Econ Entomol. 1997;90:1609–14.
Article
Google Scholar
Shelly TE, Edu J, Nishimoto J. Chilling and flight ability and mating competitiveness of sterile males of the Mediterranean fruit fly. J Appl Entomol. 2013;137:11–8.
Article
Google Scholar
Peng TX, Moya A, Ayala FJ. Irradition-resistance conferred by superoxide dismutase: possible adaptive role of a natural polymorphism in Drosophila melanogaster. Proc Natl Acad Sci USA. 1986;83:684–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Datkhile KD, Mukhopadhyaya R, Dongre TK, Nath BB. Increased level of superoxide dismutase (SOD) activity in larvae of Chironomus ramosus (Diptera: Chironomidae) subjected to ionizing radiation. Comp Biochem Physiol - C Toxicol Pharmacol. 2009;149:500–6. https://doi.org/10.1016/j.cbpc.2008.11.003.
Article
CAS
PubMed
Google Scholar
Hermes-Lima M, Storey JM, Storey KB. Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comp Biochem Physiol - B Biochem Mol Biol. 1998;120:437–48.
Article
CAS
PubMed
Google Scholar
López-Martínez G, Hahn DA. Early life hormetic treatments decrease irradiation-induced oxidative damage, increase longevity, and enhance sexual performance during old age in the Caribbean fruit fly. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0088128.
Article
PubMed
PubMed Central
Google Scholar
Mutika GN, Parker AG. Induced sterility of Glossina pallidipes Austen males after irradiation in a nitrogen atmosphere. Entomol Sci. 2006;9:47–53.
Article
Google Scholar
El-Gazzar LM, Dame DA, Smittle BJ. Fertility and competitiveness of Culex quinquefasciatus males irradiated in nitrogen. J Econ Entomol. 1983;76:821–3.
Article
CAS
PubMed
Google Scholar
Hallinan E, Rai KS. Radiation sterilization of Aedes aegypti in nitrogen and implications for sterile male technique. Nature. 1973;244:368–9.
Article
CAS
PubMed
Google Scholar
Yamada H, Maiga H, Bimbile-Somda NS, Carvalho DO, Mamai W, Kraupa C, et al. The role of oxygen depletion and subsequent radioprotective effects during irradiation of mosquito pupae in water. Parasit Vectors. 2020;13:1–10. https://doi.org/10.1186/s13071-020-04069-3.
Article
CAS
Google Scholar
Fried M. Determination of sterile-insect competitiveness. J Econ Entomol. 1971;64:869–72.
Article
Google Scholar
Yamada H, Maiga H, Juarez J, De Oliveira CD, Mamai W, Ali A, et al. Identification of critical factors that significantly affect the dose-response in mosquitoes irradiated as pupae. Parasit Vectors. 2019;12:435. https://doi.org/10.1186/s13071-019-3698-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Culbert NJ, Balestrino F, Dor A, Herranz GS, Yamada H, Wallner T, et al. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci Rep. 2018;8:1–9.
Article
CAS
Google Scholar
Carpenter JE, Blomefield T, Vreysen MJB. A flight cylinder bioassay as a simple, effective quality control test for Cydia pomonella. J Appl Entomol. 2012;136:711–20.
Article
Google Scholar
Rull J, Diaz-Fleischer F, Arredondo J. Irradiation of Anastrepha obliqua (Diptera: tephritidae) revisited: optimizing sterility induction. J Econ Entomol. 2007;100:1153–9.
Article
PubMed
Google Scholar
Robinson AS. Genetic basis of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile insect Tech Princ Pract area-wide Integr pest Manag. 1st ed. Dordrecht: Springer; 2005. p. 95–114.
Google Scholar
Helinski MEH, Knols BGJ. Mating competitiveness of male Anopheles arabiensis mosquitoes irradiated with a partially or fully sterilizing dose in small and large laboratory cages. J Med Entomol. 2008;45:698–705.
Article
CAS
PubMed
Google Scholar
Bellini R, Medici A, Puggioli A, Balestrino F, Carrieri M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J Med Entomol. 2013;50:317–25.
Article
CAS
PubMed
Google Scholar
Bakri A, Mehta K, Lance DR. Sterilizing insects with ionizing radiation. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile Insect Tech Princ Pract Area- Wide Integr Pest Manag. 1st ed. Dordrecht: Springer; 2005. p. 233–68.
Google Scholar
Kingsolver JG, Nagle A. Evolutionary divergence in thermal sensitivity and diapause of field and laboratory populations of Manduca sexta. Physiol Biochem Zool. 2007;80:473–9.
Article
PubMed
Google Scholar
López-Martínez G, Carpenter JE, Hight SD, Hahn DA. Low-oxygen hormetic conditioning improves field performance of sterile insects by inducing beneficial plasticity. Evol Appl. 2021;14:566–76.
Article
PubMed
Google Scholar
Vreysen MJB, Robinson AS, Hendrichs J. Area-wide control of insect pests: From research to field implementation. 2007. Springer Dordrecht. https://doi.org/10.1007/978-1-4020-6059-5.
Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, Donnelly CA, et al. Field performance of engineered male mosquitoes. Nat Biotechnol. 2011;29:1034–7. https://doi.org/10.1038/nbt.2019.
Article
CAS
PubMed
Google Scholar
Le Goff G, Damiens D, Ruttee AH, Payet L, Lebon C, Dehecq JS, et al. Field evaluation of seasonal trends in relative population sizes and dispersal pattern of Aedes albopictus males in support of the design of a sterile male release strategy. Parasit Vectors. 2019;12:1–10.
Google Scholar
Paithankar JG, Deeksha K, Patil RK. Gamma radiation tolerance in different life stages of the fruit fly Drosophila melanogaster. Int J Radiat Biol. 2017;93:440–8.
Article
CAS
PubMed
Google Scholar
Bloem S, Carpenter JE, Hofmeyr JH. Radiation biology and inherited sterility in false codling moth (Lepidoptera: Tortricidae). J Econ Entomol. 2003;96:1724–31.
Article
PubMed
Google Scholar
Abdel-Malek AA, Tantawy AO, Wakid AM. Studies on the eradication of Anopheles pharoensis Theobald by the sterile-male technique using cobalt-60. I. Biological effects of gamma radiation on the different developmental stages. J Econ Entomol. 1966;59:672–8.
Article
CAS
PubMed
Google Scholar
Smittle BJ, Patterson RS. Container for irradiation and mass transport of adult mosquitoes. Mosq News. 1974;34:406–8.
Google Scholar
Du W, Hu C, Yu C, Tong J, Qiu J, Zhang S, et al. Comparison between pupal and adult X-ray radiation, designed for the sterile insect technique for Aedes albopictus control. Acta Trop. 2019;199:105110. https://doi.org/10.1016/j.actatropica.2019.105110.
Article
PubMed
Google Scholar
Andreasen MH, Curtis CF. Optimal life stage for radiation sterilization of Anopheles males and their fitness for release. Med Vet Entomol. 2005;19:238–44.
Article
CAS
PubMed
Google Scholar