Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11:1–20.
Article
Google Scholar
World Health Organization. World malaria report 2021. Geneva, Switzerland; 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021.
Dusfour I, Vontas J, David JP, Weetman D, Fonseca DM, Corbel V, et al. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Negl Trop Dis. 2019;13:e0007615.
Article
Google Scholar
Hancock PA, Hendriks CJM, Tangena JA, Gibson H, Hemingway J, Coleman M, et al. Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biol. 2020;18:e3000633.
Article
CAS
Google Scholar
World Health Organization. Manual for monitoring insecticide resistance in mosquito vectors and selecting appropriate interventions. Geneva, Switzerland; 2022. https://apps.who.int/iris/handle/10665/356964
World Health Organization. Framework for a national plan for monitoring and management of insecticide resistance in malaria vectors. Geneva, Switzerland; 2017. http://www.who.int/malaria/publications/atoz/9789241512138/en/.
Brogdon W, Chan A. Guideline for evaluating insecticide resistance in vectors using the CDC bottle bioassay (with inserts 1 (2012) and 2 (2014). CDC Atlanta: CDC Technical Report. 2010. http://www.cdc.gov/malaria/features/bioassay.html.
Blouquy L, Mottet C, Olivares J, Plantamp C, Siegwart M, Barrès B. How varying parameters impact insecticide resistance bioassay: An example on the worldwide invasive pest Drosophila suzukii. PLoS One. 2021;16:e0247756.
Article
CAS
Google Scholar
Grossman MK, Oliver SV, Brooke BD, Thomas MB. Use of alternative bioassays to explore the impact of pyrethroid resistance on LLIN efficacy. Parasit Vectors. 2020;13:179.
Article
CAS
Google Scholar
Namias A, Jobe NB, Paaijmans KP, Huijben S. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. Elife. 2021;10:e65655.
Article
CAS
Google Scholar
World Health Organization. Determining discriminating concentrations of insecticides for monitoring resistance in mosquitoes: report of a multi-centre laboratory study and WHO expert consultations. Geneve, Switzerland; 2022. https://www.who.int/publications/i/item/9789240045200. Accessed 07 Dec 2022.
Jensen BM, Althoff RA, Rydberg SE, Royster EN, Estep A, Huijben S. Topical application bioassay to quantify insecticide toxicity for mosquitoes and fruit flies. J Vis Exp. 2022;2022:e63391.
Google Scholar
Chang F, Dutta S, Becnel JJ, Estep AS, Mascal M. Synthesis of the insecticide prothrin and its analogues from biomass-derived 5-(chloromethyl)furfural. J Agric Food Chem. 2014;62:476–80.
Article
CAS
Google Scholar
Parsons GJI, Lees RS, Balaska S, Vontas J. A practical insecticide resistance monitoring bioassay for orally ingested dinotefuran in Anopheles malaria vectors. Insects. 2022;13:311.
Article
Google Scholar
World Health Organization. Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. Geneva, Switzerland; 2006. https://www.who.int/publications/i/item/WHO-CDS-NTD-WHOPES-GCDPP-2006.3. Accessed 07 Dec 2022.
Uragayala S, Verma V, Natarajan E, Velamuri PS, Kamaraju R. Adulticidal & larvicidal efficacy of three neonicotinoids against insecticide susceptible & resistant mosquito strains. Indian J Med Res. 2015;142:64–70.
Article
CAS
Google Scholar
Chan HH, Mustafa FFW, Zairi J. Assessing the susceptibility status of Aedes albopictus on Penang island using two different assays. Trop Biomed Trop Biomed. 2011;28:464–70.
CAS
Google Scholar
Waits CM, Fulcher A, Louton JE, Richardson AG, Becnel JJ, Xue R, et al. A comparative analysis of resistance testing methods in Aedes albopictus (Diptera: Culicidae) from St. Johns County. Florida Fla Entomol. 2017;100:571–7.
Article
CAS
Google Scholar
Estep AS, Sanscrainte ND, Waits CM, Bernard SJ, Lloyd AM, Lucas KJ, et al. Quantification of permethrin resistance and kdr alleles in Florida strains of Aedes aegypti (L.) and Aedes albopictus (Skuse). PLoS Negl Trop Dis. 2018;12:e0006544.
Article
Google Scholar
CDC. CDC bottle bioassay [Internet]. Available from: https://www.cdc.gov/parasites/education_training/lab/bottlebioassay.html. Accessed 15 Aug 2022.
Messenger LA, Shililu J, Irish SR, Anshebo GY, Tesfaye AG, Ye-Ebiyo Y, et al. Insecticide resistance in Anopheles arabiensis from Ethiopia (2012–2016): a nationwide study for insecticide resistance monitoring. Malar J. 2017;16:469.
Article
Google Scholar
Pwalia R, Joannides J, Iddrisu A, Addae C, Acquah-Baidoo D, Obuobi D, et al. High insecticide resistance intensity of Anopheles gambiae (s.l.) and low efficacy of pyrethroid LLINs in Accra Ghana. Parasit Vectors. 2019;12:299.
Article
Google Scholar
Owusu HF, Jančáryová D, Malone D, Müller P. Comparability between insecticide resistance bioassays for mosquito vectors: time to review current methodology? Parasit Vectors. 2015;8:357.
Article
Google Scholar
Owuor KO, Machani MG, Mukabana WR, Munga SO, Yan G, Ochomo E, et al. Insecticide resistance status of indoor and outdoor resting malaria vectors in a highland and lowland site in Western Kenya. PLoS One. 2021;16:e0240771.
Article
CAS
Google Scholar
Vatandoost H, Abai MR, Akbari M, Raeisi A, Yousefi H, Sheikhi S, et al. Comparison of CDC bottle bioassay with WHO standard method for assessment susceptibility level of malaria vector, Anopheles stephensi to three imagicides. J Arthropod Borne Dis. 2019;13:17–26.
Google Scholar
Rakotoson JD, Fornadel CM, Belemvire A, Norris LC, George K, Caranci A, et al. Insecticide resistance status of three malaria vectors, Anopheles gambiae (s.l.), An. funestus and An mascarensis, from the south, central and east coasts of Madagascar. Parasit Vectors. 2017;10:396.
Article
Google Scholar
Kpanou CD, Sagbohan HW, Sovi A, Osse R, Padonou GG, Salako A, et al. Assessing insecticide susceptibility and resistance intensity of Anopheles gambiae s.l. populations from some districts of Benin Republic West Africa. J Med Entomol. 2022;59:949–56.
Article
CAS
Google Scholar
Sovi A, Keita C, Sinaba Y, Dicko A, Traore I, Cisse MBM, et al. Anopheles gambiae (s.l.) exhibit high intensity pyrethroid resistance throughout Southern and Central Mali (2016–2018): PBO or next generation LLINs may provide greater control. Parasit Vectors. 2020;13:239.
Article
CAS
Google Scholar
Lissenden N, Kont M, Essandoh J, Ismail H, Churcher T, Lambert B, et al. Review and meta-analysis of the evidence for choosing between specific pyrethroids for programmatic purposes. Insects. 2021;12:826.
Article
Google Scholar
Boubidi SC, Roiz D, Rossignol M, Chandre F, Benoit R, Raselli M, et al. Efficacy of ULV and thermal aerosols of deltamethrin for control of Aedes albopictus in Nice France. Parasit Vectors. 2016;9:597.
Article
Google Scholar
Bagi J, Grisales N, Corkill R, Morgan JC, N’Falé S, Brogdon WG, et al. When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malar J. 2015;14:210.
Article
Google Scholar
McAllister JC, Scott M. CONUS manual for evaluating insecticide resistance in mosquitoes using the CDC bottle bioassay kit. 2020. https://www.cdc.gov/zika/pdfs/CONUS-508.pdf. Accessed on 31 Jan 2022.
Robertson JL, Jones MM, Olguin E, Alberts B. Bioassays with arthropods. 3rd ed. Boca Raton: CRC Press, Taylor & Francis Group; 2017.
Book
Google Scholar
Vera-Maloof FZ, Saavedra-Rodriguez K, Penilla-Navarro RP, Rodriguez-Ramirez AD, Dzul F, Manrique-Saide P, et al. Loss of pyrethroid resistance in newly established laboratory colonies of Aedes aegypti. PLoS Negl Trop Dis. 2020;14:e0007753.
Article
Google Scholar
Stenhouse SA, Plernsub S, Yanola J, Lumjuan N, Dantrakool A, Choochote W, et al. Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand. Parasit Vectors. 2013;6:253.
Article
Google Scholar
Du Y, Nomura Y, Zhorov BS, Dong K. Sodium channel mutations and pyrethroid resistance in Aedes aegypti. Insects. 2016;7:60.
Article
Google Scholar
Centers for Disease Control and Prevention. Guideline for Evaluating Insecticide resistance in vectors using the CDC bottle bioassay. https://www.cdc.gov/malaria/resources/pdf/fsp/ir_manual/ir_cdc_bioassay_en.pdf. Accessed 5 May 2017.
Abbott WS. A method of computing the effectiveness of an insecticide. J Am Mosq Control Assoc. 1987;3:302–3.
CAS
Google Scholar
R Core Team. R: a language and environment for statistical computing [Internet]. R Foundation for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2022. https://www.r-project.org/. Accessed 07 Dec 2022.
Karunarathne P, Pocquet N, Labbé P, Milesi P. BioRssay: an R package for analyses of bioassays and probit graphs. Parasit Vectors. 2022;15:35.
Article
Google Scholar
Commo F, Bot BM. nplr: N-parameter logistic regression. R package version 0.1–7. https://CRAN.R-project.org/package=nplr. Accessed on 19 Jul 2022.
Lyon RL. Structure and toxicity of insecticide deposits for control of bark beetles. Tech Bull. 1965;1343:1–54.
Google Scholar
Barlow F, Hadaway AB. Some factors affecting the availability of contact insecticides. Bull Entomol Res. 1952;43:91–100.
Article
CAS
Google Scholar
Bruce WN. Characteristics of residual insecticides toxic to the house fly. Bull Ill Nat Hist Survey. 1949;25:1.
Article
Google Scholar
Vickers LG. Comparison of some DDT formulations. Rep Ent Soc Ont. 1946;77:19–20.
Google Scholar
Hadaway AB, Barlow F. Some aspects of the effect of the solvent on the toxicity of solution of insecticide. Ann Appl Biol. 1952;46:133–48.
Article
Google Scholar
Mensch J, di Battista C, de Majo MS, Campos RE, Fischer S. Increased size and energy reserves in diapausing eggs of temperate Aedes aegypti populations. J Insect Physiol. 2021;131:104232.
Article
CAS
Google Scholar
Foley DH, Wilkerson RC, Kim HC, Klein TA, Kim MS, Li C, et al. Wing size and parity as markers of cohort demography for potential Anopheles (Culicidae: Diptera) malaria vectors in the Republic of Korea. J Vector Ecol J Vector Ecol. 2020;45:366–79.
Article
Google Scholar
Agyekum TP, Botwe PK, Arko-Mensah J, Issah I, Acquah AA, Hogarh JN, et al. A systematic review of the effects of temperature on Anopheles mosquito development and survival: implications for malaria control in a future warmer climate. Int J Environ Res Public Health. 2021;18:7255.
Article
CAS
Google Scholar
Jass A, Yerushalmi GY, Davis HE, Donini A, MacMillan HA. An impressive capacity for cold tolerance plasticity protects against ionoregulatory collapse in the disease vector Aedes aegypti. J Exp Biol. 2019;222:jeb214056.
Article
Google Scholar
Ngufor C, Govoetchan R, Fongnikin A, Vigninou E, Syme T, Akogbeto M, et al. Efficacy of broflanilide (VECTRON T500), a new meta-diamide insecticide, for indoor residual spraying against pyrethroid-resistant malaria vectors. Sci Rep. 2021;11:7976.
Article
CAS
Google Scholar
Lees RS, Ambrose P, Williams J, Morgan J, Praulins G, Ingham VA, et al. Tenebenal: a meta-diamide with potential for use as a novel mode of action insecticide for public health. Malar J. 2020;19:398.
Article
CAS
Google Scholar
Oxborough RM, Seyoum A, Yihdego Y, Chabi J, Wat’senga F, Agossa FR, et al. Determination of the discriminating concentration of chlorfenapyr (pyrrole) and Anopheles gambiae sensu lato susceptibility testing in preparation for distribution of Interceptor® G2 insecticide-treated nets. Malar J. 2021;20:316.
Article
CAS
Google Scholar
Balmert NJ, Rund SSC, Ghazi JP, Zhou P, Duffield GE. Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. J Insect Physiol. 2014;64:30–9.
Article
CAS
Google Scholar