Blanchard N, Gonzalez F, Schaeffer M, Joncker NT, Cheng T, Shastri AJ, et al. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum. Nat Immunol. 2008;9:937–44. https://doi.org/10.1038/ni.1629.
Article
CAS
Google Scholar
Brown CR, Hunter CA, Estes RG, Beckmann E, Forman J, David C, et al. Definitive indentification of a gene that confers resistance against Toxoplasma gondii cyst burden and encephalitis. Immunology. 1995;85:419–28.
CAS
Google Scholar
Cabral CM, Tuladhar S, Dietrich HK, Nguien E, Macdonald WR, Trivedi T, et al. Neurons are the primary target cell for the brain-tropic intracellular parasite Toxoplasma gondii. PLOS Pathog. 2016;12:e1005447. https://doi.org/10.1371/journal.ppat.1005447.
Article
CAS
Google Scholar
Cabungcal J, Steullet P, Kraftsik R, Cuenod M, Do KQ. Early-life insults impair parvalbumin interneurons via oxidative stress reversal by n-acetylcysteine. Biol Psychiatry. 2013;73:574–82. https://doi.org/10.1016/j.biopsych.2012.09.020.
Article
CAS
Google Scholar
Carruthers VB, Hakansson S, Giddings OK, Sibley LD. Toxoplasma gondii uses sulfated proteoglycans for substrate and host cell attachment. Infect Immun. 2000;68:4005–11. https://doi.org/10.1128/IAI.68.7.4005-4011.2000.
Article
CAS
Google Scholar
Cekanaviciute E, Dietrich HK, Axtell RB, Williams AM, Egusguiza R, Wai KM, et al. Astrocytic TGFβ signaling limits inflammation and reduces neuronal damage during CNS Toxoplasma infection. J Immunol. 2014;193:139–49. https://doi.org/10.4049/jimmunol.1303284.
Article
CAS
Google Scholar
Celio MR, Blumcke I. Perineuronal nets - a specialized form of extracellular matrix in the adult nervous system. Brain Res Rev. 1994;19:128–45. https://doi.org/10.1016/0165-0173(94)90006-x.
Article
CAS
Google Scholar
Cook TB, Brenner LA, Cloninger CR, et al. “Latent” infection with Toxoplasma gondii: association with trait aggression and impulsivity in healthy adults. J Psychiatri Res. 2015;60:87–94.
Article
Google Scholar
De Barros JLVM, Barbosa IG, Salem H, Rocha NP, Kummer A, Okusaga OO, et al. Is there any association between Toxoplasma gondii infection and bipolar disorder? A systematic review and meta-analysis. J Affect Disord. 2017;209:59–65. https://doi.org/10.1016/j.jad.2016.11.016.
Article
Google Scholar
De Luca C, Papa M. Looking inside the matrix: perineuronal nets in plasticity, maladaptive plasticity and neurological disorders. Neurochem Res. 2016;41:1507–15. https://doi.org/10.1007/s11064-016-1876-2.
Article
CAS
Google Scholar
De Medeiros Brito RM, Meurer YSR, Santos LS, Marcelino BMM, Andrade-Neto VF. Chronic Toxoplasma gondii infection contributes to decreasing of perineuronal nets surrounding neurons in the Corpus striatum of mice. Parasitol Res. 2020;119:1989–95. https://doi.org/10.1007/s00436-020-06674-8.
Article
Google Scholar
Dityatev A, Bruckner G, Dityateva G, Grosche J, Kleene R, Schachner M. Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev Neurobiol. 2007;67:570–88. https://doi.org/10.1002/dneu.20361.
Article
CAS
Google Scholar
Do KQ, Cuenod M, Hensch TK. Targeting oxidative stress and aberrant critical period plasticity in the developmental trajectory to schizophrenia. Schizophr Bull. 2015;41:835–46. https://doi.org/10.1093/schbul/sbv065.
Article
Google Scholar
Dwir D, Giangreco B, Xin L, Tenenbaum L, Cabungcal JH, Steullet P, Goupil A, Cleusix M, Jenni R, Chtarto A, Baumann PS, Klauser P, Conus P, Tirouvanziam R, Cuenod M, Do KQ. MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: a reverse translation study in schizophrenia patients. Mol Psychiatry. 2020;25(11):2889–904. https://doi.org/10.1038/s41380-019-0393-5.
El-Ansary A, Al-Ayadhi L. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J Neuroinflammation. 2014;11:189. https://doi.org/10.1186/s12974-014-0189-0.
Article
CAS
Google Scholar
Elsheikha HM, Zhu XQ. Toxoplasma gondii infection and schizophrenia: an inter-kingdom communication perspective. Curr Opin Infect Dis. 2016;29:311–8. https://doi.org/10.1097/QCO.0000000000000265.
Article
CAS
Google Scholar
Estato V, Stipursky J, Gomes, et al. The neurotropic parasite Toxoplasma gondii induces sustained neuroinflammation with microvascular dysfunction in infected mice. Am J Pathol. 2018;188:2674–87. https://doi.org/10.1016/j.ajpath.2018.07.007.
Article
CAS
Google Scholar
Flegr J, Kuba R. The relation of Toxoplasma infection and sexual attraction to fear, danger, pain, and submissiveness. Evol Psychol. 2016;14:1–10. https://doi.org/10.1177/1474704916659746.
Article
Google Scholar
Franklin KBJ, Paxinos G. The mouse brain in stereotaxic coordinates. New York: Elsevier Science Academic Press; 2007.
Google Scholar
Fux B, Rodrigues CV, Portela RW, Silva NM, Su C, Sibley D, et al. Role of cytokines and major histocompatibility complex restriction in mouse resistance to infection with a natural recombinant strain (type i–iii) of Toxoplasma gondii. Infect Immun. 2003;71:6392–401. https://doi.org/10.1128/IAI.71.11.6392-6401-2003.
Article
CAS
Google Scholar
Gatkowska J, Wieczorek M, Dziadek B, Dzitko K, Dlugonska H. Sex-dependent neurotransmitter level changes in brains of Toxoplasma gondii infected mice. Exp Parasitol. 2013;133:1–7. https://doi.org/10.1016/j.exppara.2012.10.005.
Article
CAS
Google Scholar
Gogolla N, Caroni P, Luthi A, Herry C. Perineuronal nets protect fear memories from erasure. Science. 2009;325:1258–61. https://doi.org/10.1126/science.1174146.
Article
CAS
Google Scholar
Guevara RB, Fox BA, Bzik DJ. Succinylated wheat germ agglutinin colocalizes with the Toxoplasma gondii cyst wall glycoprotein CST1. mSphere. 2020;5:e00031-20. https://doi.org/10.1128/mSphere.00031-20.
Article
CAS
Google Scholar
Hidano S, Randall LM, Dawson L, et al. STAT1 signaling in astrocytes is essential for control of infection in the central nervous system. mBio. 2016;7:e01881-16. https://doi.org/10.1128/mBio.01881-16.
Article
CAS
Google Scholar
Hwang YS, Shin JH, Yang JP, Jung BK, Lee SH, Shin EH. Characteristics of infection immunity regulated by Toxoplasma gondii to maintain chronic infection in the brain. Front Immunol. 2018;9:158. https://doi.org/10.3389/fimmu.2018.00158.
Article
CAS
Google Scholar
Iqbal J, Al-Awadhi M. Toxoplasmosis: role of cytokines in disease modulation and tissue pathology. Ann Clin Pathol. 2016;4:1090.
Google Scholar
Kumar A, Barret JP, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. Brain Behav Immun. 2016;58:291–309. https://doi.org/10.1016/j.bbi.2016.07.158.
Article
CAS
Google Scholar
Li Y, Severance EG, Viscidi RP, Yolken RH, Xiao J. Persistent Toxoplasma infection of the brain induced neurodegeneration associated with activation of complement and microglia. Infect Immun. 2019;87:e00139-e219. https://doi.org/10.1128/IAI.00139-19.
Article
CAS
Google Scholar
Liu J, Huang S, Lu F. Galectin-3 and galectin-9 may differently regulate the expressions of microglial m1/m2 markers and t helper 1/th2 cytokines in the brains of genetically susceptible C57BL/6 and resistant BALB/c mice following peroral infection with Toxoplasma gondii. Front Immunol. 2018;9:1648. https://doi.org/10.3389/fimmu.2018.01648.
Article
CAS
Google Scholar
Mahmoud ME, Ihara F, Fereig RM, Nishimura M, Nishikawa Y. Induction of depression-related behaviors by reactivation of chronic Toxoplasma gondii infection in mice. Behav Brain Res. 2016;298:125–33. https://doi.org/10.1016/j.bbr.2015.11.005.
Meurer YSR, Brito RMM, Silva VP, Andrade JMA, Linhares SSG, Pereira-Junior A, et al. Toxoplasma gondii infection damages the perineuronal nets in a murine model. Mem Inst Oswaldo Cruz. 2020;115:e200007. https://doi.org/10.1590/0074-02760200007.
Article
CAS
Google Scholar
Morishita H, Cabungcal JH, Chen Y, Do KQ, Hensch TL. Prolonged period of cortical plasticity upon redox dysregulation in fast-spiking interneurons. Biol Psychiatry. 2015;78:396–402. https://doi.org/10.1016/j.biopsych.2014.12.026.
Article
CAS
Google Scholar
Nakamura M, Nakano K, Morita S, Nakashima T, Oohira A, Miyata S. Expression of chondroitin sulfate proteoglycans in barrel field of mouse and rat somatosensory cortex. Brain Res. 2009;1252:117–29. https://doi.org/10.1016/j.brainres.2008.11.022.
Article
CAS
Google Scholar
Pantazopoulos H, Markota M, Jaquet F, Ghosh D, Wallin A, Santos A, et al. Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry. 2015;5:e496. https://doi.org/10.1038/tp.2014.128.
Article
CAS
Google Scholar
Parlog A, Harsan LA, Zagrebelsky M, Weller M, Elverfeldt DV, Mawrin C, et al. Chronic murine toxoplasmosis is defined by subtle changes in neuronal connectivity. Dis Model Mech. 2014;7:459–69. https://doi.org/10.1242/dmm.014183.
Article
CAS
Google Scholar
Parlog A, Schlüter D, Dunay IR. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol. 2015;37:159–70. https://doi.org/10.1111/pim.12157.
Article
CAS
Google Scholar
Prandovszky E, Gaskell E, Martin H, Dubey JP, Webster JP, McConkey GA. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS ONE. 2011;6:e23866. https://doi.org/10.1371/journal.pone.0023866.
Article
CAS
Google Scholar
Resende MG, Fux B, Caetano BC, et al. The role of MHC haplotypes H2d/H2b in mouse resistance/susceptibility to cyst formation is influenced by the lineage of infective Toxoplasma gondii strain. An Acad Bras Cienc. 2008;80:85–99. https://doi.org/10.1590/S0001-37652008000100005.
Article
CAS
Google Scholar
Sa Q, Ochiai E, Tiwari A, et al. Cutting edge: IFN-γ produced by brain-resident cells is crucial to control cerebral infection with Toxoplasma gondii. J Immunol. 2015;195:796–800. https://doi.org/10.4049/jimmunol.1500814.
Article
CAS
Google Scholar
Schlüter D, Barragan A. Advances and challenges in understanding cerebral toxoplasmosis. Front Immunol. 2019;10:242. https://doi.org/10.3389/fimmu.2019.00242.
Article
CAS
Google Scholar
Silva NM, Manzan RM, Carneiro WP, Milanezi CM, Silva JS, Ferro EAV, et al. Toxoplasma gondii: the severity of toxoplasmic encephalitis in C57BL/6 mice is associated with increased ALCAM and VCAM-1 expression in the central nervous system and higher blood–brain barrier permeability. Exp Parasitol. 2010;126:167–77. https://doi.org/10.1016/j.exppara.2010.04.019.
Article
CAS
Google Scholar
Stich O, Andres TA, Gross CM, Gerber SI, Rauer S, Langosch JM. An observational study of inflammation in the central nervous system in patients with bipolar disorder. Bipolar Dis. 2015;17:291–302. https://doi.org/10.1111/bdi.12244.
Article
CAS
Google Scholar
Torres L, Robinson SA, Kim DG, Yan A, Cleland TA, Bynoe MS. Toxoplasma gondii alters NMDAR signaling and induces signs of Alzheimer’s disease in wild-type, C57BL/6 mice. J Neuroinflammation. 2018;15:57. https://doi.org/10.1186/s12974-018-1086-8.
Article
CAS
Google Scholar
Ueno H, Fujii K, Suemitsu S, et al. Expression of aggrecan components in perineuronal nets in the mouse cerebral cortex. IBRO Rep. 2018;4:22–37. https://doi.org/10.1016/j.neubiorev.2018.11.012.
Article
Google Scholar
Valentin-Torres A, Savarin C, Hinton DR, Phares TW, Bermann CC, Stohlman SA. Sustained TNF production by central nervous system infiltrating macrophages promotes progressive autoimmune encephalomyelitis. J Neuroinflammation. 2016;13:1–14. https://doi.org/10.1186/s12974-016-0513-y.
Article
CAS
Google Scholar
Wang D, Fawcett J. The perineuronal net and the control of CNS plasticity. Cell Tissue Res. 2012;349:147–60. https://doi.org/10.1007/s00441-012-1375-y.
Article
Google Scholar
Wang X, Wang H, Yang H, Li J, Cai Q, Shapiro IM, et al. Tumor necrosis factor-α- and interleukin-1β-dependent matrix metalloproteinase-3 expression in nucleus pulposus cells requires cooperative signaling via syndecan 4 and mitogen-activated protein kinase-NF-κB axis: Implications in inflammatory disc disease. Am J Pathol. 2014;184:2560–72. https://doi.org/10.1016/j.ajpath.2014.06.006.
Article
CAS
Google Scholar
Watanabe PS, Trevizan AR, SilvaFilho SE, et al. Immunocompetent host develops mild intestinal inflammation in acute infection with Toxoplasma gondii. PLOS One. 2018;13:e0190155. https://doi.org/10.1371/journal.pone.0190155.
Article
CAS
Google Scholar
Watson GF, Davis PH. Systematic review and meta-analysis of variation in Toxoplasma gondii cyst burden in the murine model. Exp Parasitol. 2019;196:55–62. https://doi.org/10.1016/j.exppara.2018.12.003.
Article
Google Scholar
Yao JK, Leonard S, Reddy R. Altered glutathione redox state in schizophrenia. Dis Markers. 2006;22:83–93. https://doi.org/10.1155/2006/248387.
Article
CAS
Google Scholar
Zare-Bidaki M, Assar S, Hakimi H, Abdollahi SH, Nosratabadi R, Kennedy D, et al. Cytokine TGF-β in Toxoplasmosis: Friend or foe? Cytokine. 2016;86:29–35. https://doi.org/10.1016/j.cyto.2016.07.002.
Article
CAS
Google Scholar
Zhang YW, Halonen SK, Ma YF, Wittner M, Weiss LM. Initial characterization of CST1, a Toxoplasma gondii cyst wall glycoprotein. Infect Immun. 2001;69:501–7. https://doi.org/10.1128/IAI.69.1.501-507.2001.
Article
CAS
Google Scholar