Gubler DJ. The economic burden of dengue. Am J Trop Med Hyg. 2012;86:743–4.
Article
Google Scholar
Halasa YA, Shepard DS, Zeng W. Economic cost of dengue in Puerto Rico. Am J Trop Med Hyg. 2012;86:745–52.
Article
Google Scholar
WHO. Dengue and severe dengue [Internet]. WHO. 2019. Available from: http://www.who.int/mediacentre/factsheets/fs117/en/
Sharp TM, Margolis HS, Hunsperger E, Tomashek KM, Muñoz-Jordán JL. Sequential episodes of dengue—Puerto Rico, 2005–2010. Am J Trop Med Hyg. 2014;91:235–9. https://doi.org/10.4269/ajtmh.13-0742.
Article
Google Scholar
Forshey BM, Reiner RC, Olkowski S, Morrison AC, Espinoza A, Long KC, et al. Incomplete protection against dengue virus type 2 re-infection in Peru. PLoS Negl Trop Dis. 2016;10:1–17.
Article
Google Scholar
Waggoner JJ, Balmaseda A, Gresh L, Sahoo MK, Montoya M, Wang C, et al. Homotypic dengue virus reinfections in nicaraguan children. J Infect Dis. 2016;214:986–93.
Article
Google Scholar
Liu-Helmersson J, Stenlund H, Wilder-Smith A, Rocklöv J. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS ONE. 2014;9:e89783.
Article
Google Scholar
Pascual M, Ahumada JA, Chaves LF, Rodó X, Bouma M. Malaria resurgence in the East African highlands: temperature trends revisited. Proc Nat Acad Sci. 2006;103:5829. https://doi.org/10.1073/pnas.0508929103.
Article
CAS
Google Scholar
Patz JA, Reisen WK. Immunology, climate change and vector-borne diseases. Trends Immunol. 2001;22:171–2.
Article
CAS
Google Scholar
Dye C. Vectorial capacity: must we measure all its components? Parasitol Today. 1986;2:203–9.
Article
CAS
Google Scholar
Ernst KC, Walker KR, Reyes-Castro P, Joy TK, Castro-Luque AL, Diaz-Caravantes RE, et al. Aedes aegypti (Diptera: Culicidae) longevity and differential emergence of dengue fever in two cities in Sonora, Mexico. J Med Entomol. 2016. https://doi.org/10.1093/jme/tjw141.
Article
Google Scholar
Walker KR, Williamson D, Carrière Y, Reyes-Castro PA, Haenchen S, Hayden MH, et al. Socioeconomic and human behavioral factors associated with Aedes aegypti (Diptera: Culicidae) immature habitat in Tucson, AZ. J Med Entomol. 2018;55:955–63. https://doi.org/10.1093/jme/tjy011/4841133.
Article
Google Scholar
Li R, Xu L, Bjørnstad ON, Liu K, Song T, Chen A, et al. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proc Natl Acad Sci USA. 2019;116:3624–9.
Article
CAS
Google Scholar
Ng KC, Chaves LF, Tsai KH, Chuang TW. Increased adult aedes aegypti and culex quinquefasciatus (Diptera: Culicidae) abundance in a dengue transmission hotspot, compared to a coldspot, within Kaohsiung city, Taiwan. Insects. 2018;9:1–16.
Article
Google Scholar
Merrill SA, Ramberg FB, Hagedorn HH. Phylogeography and population structure of Aedes aegypti in Arizona. Am J Trop Med Hyg. 2005;72:304–10.
Article
Google Scholar
Black WC IV, Bennett KE, Gorrochótegui-Escalante N, Barillas-Mury CV, Fernández-Salas I, Muñoz MDL, et al. Flavivirus susceptibility in Aedes aegypti. Arch Med Res. 2002;33:379–88.
Article
CAS
Google Scholar
Chan M, Johansson MA. The incubation periods of Dengue viruses. PLoS ONE. 2012;7:e50972.
Article
CAS
Google Scholar
Padmanabha H, Correa F, Rubio C, Baeza A, Osorio S, Mendez J, et al. Human social behavior and demography drive patterns of fine-scale dengue transmission in endemic areas of colombia. PLoS ONE. 2015;10:1–21.
Article
Google Scholar
Kamiya T, Greischar MA, Wadhawan K, Gilbert B, Paaijmans K, Mideo N. Temperature-dependent variation in the extrinsic incubation period elevates the risk of vector-borne disease emergence. Epidemics. 2020;30:100382. https://doi.org/10.1016/j.epidem.2019.100382.
Article
Google Scholar
Brady OJ, Golding N, Pigott DM, Kraemer MUG, Messina JP Jr, RCR, et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites Vectors. 2014;7:1–17.
Article
Google Scholar
Araújo MDS, Gil LHS, de Almeida Silva EA. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions. Malar J. 2012;11:2611.
Article
Google Scholar
Evans MV, Shiau JC, Solano N, Brindley MA, Drake JM, Murdock CC. Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasites Vectors. 2018;11:1–13.
Article
Google Scholar
Bara J, Rapti Z, Cáceres CE, Muturi EJ. Effect of larval competition on extrinsic incubation period and vectorial capacity of Aedes albopictus for dengue virus. PLoS ONE. 2015;10:1–18.
Article
Google Scholar
Scott TW, Amerasinghe P. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med. 2000;37:89–101. https://doi.org/10.1603/0022-2585-37.1.89.
Article
CAS
Google Scholar
Hatle JD, Paterson CS, Jawaid I, Lentz C, Wells SM, Fronstin RB. Protein accumulation underlying lifespan extension via ovariectomy in grasshoppers is consistent with the disposable soma hypothesis but is not due to dietary restriction. Exp Gerontol. 2008;43:900–8.
Article
CAS
Google Scholar
Riehle MA, Brown MR. Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochem Mol Biol. 1999;29:855–60.
Article
CAS
Google Scholar
Riehle MA, Brown MR. Insulin receptor expression during development and a reproductive cycle in the ovary of the mosquito Aedes aegypti. Cell Tissue Res. 2002;308:409–20.
Article
CAS
Google Scholar
Arik AJ, Rasgon JL, Quicke KM, Riehle MA. Manipulating insulin signaling to enhance mosquito reproduction. BMC Physiol. 2009;9:15.
Article
Google Scholar
Arik AJ, Hun LV, Quicke K, Piatt M, Ziegler R, Scaraf PY, et al. Increased Akt signaling in the mosquito fat body increases adult survivorship. FASEB J. 2016;29:1404–13.
Article
Google Scholar
Clifton M, Noriega FG. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J Insect Physiol. 2012;58:1007–19.
Article
CAS
Google Scholar
Noriega FG. Nutritional regulation of JH synthesis: a mechanism to control reproductive maturation in mosquitoes? Insect Biochem Mol Biol. 2004;34:687–93.
Article
CAS
Google Scholar
Davidowitz G. Endocrine proxies can simplify endocrine complexity to enable evolutionary prediction. Integr Comp Biol. 2016;56:198–206. https://doi.org/10.1093/icb/icw021.
Article
CAS
Google Scholar
Zeller M, Koella JC. Effects of food variability on growth and reproduction of Aedes aegypti. Ecol Evol. 2016. https://doi.org/10.1002/ece3.1888.
Article
Google Scholar
Huxley PJ, Murray KA, Pawar S, Cator LJ. Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti. Commun Biol Nat Res. 2022;5:1–11.
Google Scholar
Huxley PJ, Murray KA, Pawar S, Cator LJ. The effect of resource limitation on the temperature dependence of mosquito population fitness. Proc R Soc B Biol Sci. 2021;288:20203217.
Article
Google Scholar
Forster J. Exploring the mechanism of how ectotherms change size with changing temperature. 2012;209.
Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL. Effects of body size and temperature on population growth. Am Nat. 2004;163:429.
Article
Google Scholar
Norry FM, Loeschcke V. Temperature-induced shifts in associations of longevity with body size in Drosophila Melanogaster. Evolution (N Y). 2002;56:299.
Google Scholar
Briegel H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol. 1990;36:165–72.
Article
Google Scholar
Mogi M, Miyagi I, Syafruddin AK. Inter- and intraspecific variation in resistance to desiccation by adult Aedes (Stegomyia) spp. (Diptera: Culicidae) from Indonesia. J Med Entomol. 1996;33:53–7.
Article
CAS
Google Scholar
Davidowitz G. Population and environmental effects on the size-fecundity relationship in a common grasshopper across an aridity gradient. J Orthoptera Res. 2008;17:265–71. https://doi.org/10.1665/1082-6467-17.2.265.
Article
Google Scholar
Joy TK, Arik AJ, Corby-Harris V, Johnson AA, Riehle MA. The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti. Exp Gerontol. 2010;45:685–90.
Article
Google Scholar
Helinski MEH, Harrington LC. Male mating history and body size influence female fecundity and longevity of the dengue vector Aedes aegypti. J Med Entomol. 2011;48:202–11.
Article
Google Scholar
Barreaux AMG, Stone CM, Barreaux P, Koella JC. The relationship between size and longevity of the malaria vector Anopheles gambiae (ss) depends on the larval environment. Parasites Vectors. 2018;11:1–9.
Article
Google Scholar
Gibbs A. Physiological mechanisms of evolved desiccation resistance in Drosophila Melanogaster. J Exp Biol. 1997;200:1821.
Article
CAS
Google Scholar
Gibbs AG, Fukuzato F, Matzkin LM. Evolution of water conservation mechanisms in Drosophila. J Exp Biol. 2003;206:1183–92.
Article
Google Scholar
Fouet C, Gray E, Besansky NJ, Costantini C. Adaptation to aridity in the malaria mosquito Anopheles gambiae: chromosomal inversion polymorphism and body size influence resistance to desiccation. PLoS ONE. 2012;7:e34841.
Article
CAS
Google Scholar
Hercus MJ, Hoffmann AA. Desiccation resistance in interspecific drosophila crosses: genetic interactions and trait correlations. Genetics. 1999;151:1493–502.
Article
CAS
Google Scholar
Schmidt CA, Comeau G, Monaghan AJ, Williamson DJ, Ernst KC. Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis. Parasit Vectors. 2018;11:267.
Article
Google Scholar
Reiskind MH, Lounibos LP. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med Vet Entomol. 2009;23:62–8.
Article
CAS
Google Scholar
Peter Marian M, Christopher MS, Selvaraj AM, Pandian TJ. Studies on predation of the mosquito Culex fatigans by Rana tigrina tadpoles. Hydrobiologia. 1983;106:59–63.
Article
Google Scholar
Gonsalves L, Bicknell B, Law B, Webb C, Monamy V. Mosquito consumption by insectivorous bats: does size matter? PLoS ONE. 2013;8:1–11.
Article
Google Scholar
Maciel-De-Freitas R, Codeço CT, Lourenço-De-Oliveira R. Body size-associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Med Vet Entomol. 2007;21:284–92.
Article
CAS
Google Scholar
Joy TK, Gutierrez EHJ, Ernst K, Walker KR, Carriere Y, Torabi M, et al. Aging field collected Aedes aegypti to determine their capacity for dengue transmission in the southwestern United States. PLoS ONE. 2012;7:1–8.
Article
Google Scholar
Cook PE, Hugo LE, Iturbe-Ormaetxe I, Williams CR, Chenoweth SF, Ritchie SA, et al. The use of transcriptional profiles to predict adult mosquito age under field conditions. Proc Natl Acad Sci USA. 2006;103:18060–5.
Article
CAS
Google Scholar
Scott TW, Morrison A, Lorenz L. Longitudinal studies of Aedes aegypti (Diptera: Culicidae ) in Thailand and Puerto Rico: population dynamics. J Med. 2000;37:77–88. https://doi.org/10.1603/0022-2585-37.1.77.
Article
CAS
Google Scholar
Krockel U, Rose A, Eiras AEGM. New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. J Am Mosq Control Assoc. 2006;22:437–43.
Article
Google Scholar
Maciel-de-Freitas R, Eiras ÁE, Lourenço-de-Oliveira R. Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem Inst Oswaldo Cruz. 2006;101:321–5.
Article
Google Scholar
Williams CR, Long SA, Russell RC, Ritchie SA. Field efficacy of the BG-sentinel compared with CDC backpack aspirators and CO2-baited EVS traps for collection of adult Aedes aegypti in Cairns, Queensland, Australia. J Am Mosq Control Assoc. 2006;22:296–300.
Article
Google Scholar
Ball TS, Ritchie SR. Evaluation of BG-sentinel trap trapping efficacy for Aedes aegypti (Diptera: Culicidae) in a visually competitive environment. J Med Entomol. 2010;47:657–63.
Article
Google Scholar
Salazar FV, Achee NL, Grieco JP, Prabaripai A, Ojo TA, Eisen L, et al. Effect of Aedes aegypti exposure to spatial repellent chemicals on BG-Sentinel TM trap catches. Parasit Vectors. 2013;6:145.
Article
CAS
Google Scholar
Detinova TS. Age grouping methods in diptera of medical importance: with special reference to some vectors of malaria. World Heal Organ Monogr Ser. 1962;48:456.
Google Scholar
Tyndale-Biscoe M. Age-grading methods in adult insects: a review. Bull Entomol Res. 1984;74:341.
Article
Google Scholar
Nasci RS. The size of emerging and host-seeking Aedes Aegypti and the relation of size to blood-feeding success in the field. J Am Mosq Control Assoc. 1986;2:61–2.
CAS
Google Scholar
Nasci RS. Influence of larval and adult nutrition on biting persistence in Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1991;28:522–6.
Article
CAS
Google Scholar
Davis EE. Development of lactic acid-receptor sensitivity and host-seeking behaviour in newly emerged female Aedes aegypti mosquitoes. J Insect Physiol Pergamon. 1984;30:211–5.
Article
CAS
Google Scholar
Joy T, Chen M, Arnbrister J, Williamson D, Li S, Nair S, et al. Assessing Near-Infrared Spectroscopy (NIRS) for Evaluation of Aedes aegypti Population Age Structure. Insects MDPI. 2022;13:360.
Article
Google Scholar
Van Handel E, Day FJ. Correlation between wing length and protein content of mosquitoes. J Am Mosq Control. 1989;5:180–2.
Google Scholar
Jeffrey Gutiérrez EH, Walker KR, Ernst KC, Riehle MA, Davidowitz G. Size as a proxy for survival in Aedes aegypti (Diptera: Culicidae) Mosquitoes. J Med Entomol. 2020;57:1–11.
Article
Google Scholar
Morales Vargas RE, Ya-Umphan P, Phumala-Morales N, Komalamisra N, Dujardin J-P. Climate associated size and shape changes in Aedes aegypti (Diptera: Culicidae) populations from Thailand. Infect Genet Evol. 2010;10:580–5.
Article
Google Scholar
The R Foundation. R: The R Project for Statistical Computing [Internet]. 2019. Available from: https://www.r-project.org/
SAS Institute. JMP Statistical Software from SAS [Internet]. 2019. Available from: https://www.jmp.com/en_us/home.html
McDonald RP, Ho M-HR. Principles and practice in reporting structural equation analyses. Psychol Methods. 2002;7:64–82. https://doi.org/10.1037/1082-989X.7.1.64.
Article
Google Scholar
Ball TS, Ritchie SR. Sampling biases of the BG-sentinel trap with respect to physiology, age, and body size of adult Aedes aegypti (Diptera: Culicidae). J Med Entomol. 2010;47:649–56. https://doi.org/10.1603/ME09218.
Article
Google Scholar
Murdock CC, Evans MV, McClanahan TD, Miazgowicz KL, Tesla B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl Trop Dis. 2017;11:e50005640.
Article
Google Scholar
Desena ML, Edman JD, Clark JM, Symington SB, Scott TW. Aedes aegypti (Diptera: Culicidae) age determination by cuticular hydrocarbon analysis of female legs. J Med Entomol. 1999;36:824–30.
Article
CAS
Google Scholar
Wu D, Lehane MJ. Pteridine fluorescence for age determination of Anopheles mosquitoes. Med Vet Entomol. 1999;13:48–52.
Article
CAS
Google Scholar
Alto BW, Bettinardi DJ, Ortiz S. Interspecific larval competition differentially impacts adult survival in dengue vectors. J Med Entomol. 2015;52:163–70. https://doi.org/10.1093/jme/tju062.
Article
Google Scholar
Mourya DT, Yadav P, Mishra AC. Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. Am J Trop Med Hyg. 2004;70:346–50.
Article
CAS
Google Scholar