Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M, et al. Ecology of zoonoses: natural and unnatural histories. Lancet. 2012;380:1936–45. https://doi.org/10.1016/S0140-6736(12)61678-X.
Article
Google Scholar
Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JR, Dobson AP, et al. Epidemic dynamics at the human-animal interface. Science. 2009;326:1362–7. https://doi.org/10.1126/science.1177345.
Article
CAS
Google Scholar
Han BA, Schmidt JP, Bowden SE, Drake JM. Rodent reservoirs of future zoonotic diseases. Proc Natl Acad Sci USA. 2015;112:7039–44. https://doi.org/10.1073/pnas.1501598112.
Article
CAS
Google Scholar
Sohn WM, Na BK, Song HJ, Kim CM, Nam GJ. Intestinal helminthic infections in striped field mice, Apodemus agrarius, from two southern regions of Korea. Korean J Parasitol. 2014;52:419–23. https://doi.org/10.3347/kjp.2014.52.4.419.
Article
Google Scholar
Grace D, Mutua F, Ochungo P, Kruska R, Jones K, Brierley L, et al. Mapping of poverty and likely zoonoses hotspots. 2012. https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.pdf. Accessed 20 Dec 2022.
Bang MS, Kim CM, Park JW, Chung JK, Kim DM, Yun NR. Prevalence of orientia tsutsugamushi, anaplasma phagocytophilum and leptospira interrogans in striped field mice in gwangju Republic of Korea. PLoS ONE. 2019;14:e0215526. https://doi.org/10.1371/journal.pone.0215526.
Article
CAS
Google Scholar
Morse SS, Mazet JA, Woolhouse M, Parrish CR, Carroll D, Karesh WB, et al. Prediction and prevention of the next pandemic zoonosis. Lancet. 2012;380:1956–65. https://doi.org/10.1016/S0140-6736(12)61684-5.
Article
Google Scholar
Yong TS, Chung KH, Ree HI. Infection status of intestinal parasites of field rodents in Korea. Yonsei Rep Trop Med. 1991;22:55–9.
Google Scholar
Seo BS, Rim HJ, Yoon JJ, Koo BY, Hong NT. Studies on the parasitic helminths of korea: iii nematodes and cestodes of rodents. Kisaengchunghak Chapchi. 1968;6:123–31. https://doi.org/10.3347/kjp.1968.6.3.123.
Article
Google Scholar
Lee YI, Pyeon HJ, Seo M. Intestinal parasites among wild rodents in Northern Gangwon-do Korea. Korean J Parasitol. 2013;51:603–6. https://doi.org/10.3347/kjp.2013.51.5.603.
Article
Google Scholar
Ishida-Kuroki K, Takeshita N, Nitta Y, Chuma T, Maeda K, Shimoda H, et al. 16S rRNA gene amplicon sequence data from feces of five species of wild animals in Japan. Microbiol Resour Announc. 2020;9:00368–20. https://doi.org/10.1128/MRA.00368-20.
Article
Google Scholar
Ishida-Kuroki K, Takeshita N, Nitta Y, Chuma T, Maeda K, Shimoda H, et al. 16S rRNA gene amplicon sequence data from feces of wild deer (Cervus nippon) in Japan. Microbiol Resour Announc. 2020;9:e00346-20. https://doi.org/10.1128/MRA.00346-20.
Article
CAS
Google Scholar
Bodewes R, Ruiz-Gonzalez A, Schapendonk CM, van den Brand JM, Osterhaus AD, Smits SL. Viral metagenomic analysis of feces of wild small carnivores. Virol J. 2014;11:89. https://doi.org/10.1186/1743-422X-11-89.
Article
Google Scholar
Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16:410–22. https://doi.org/10.1038/s41579-018-0029-9.
Article
CAS
Google Scholar
Lewis E, Hudson JA, Cook N, Barnes JD, Haynes E. Next-generation sequencing as a screening tool for foodborne pathogens in fresh produce. J Microbiol Method. 2020;171:105840. https://doi.org/10.1016/j.mimet.2020.105840.
Article
CAS
Google Scholar
Lavrinienko A, Hämäläinen A, Hindström R, Tukalenko E, Boratyński Z, Kivisaari K, et al. Comparable response of wild rodent gut microbiome to anthropogenic habitat contamination. Mol Ecol. 2021;30:3485–99. https://doi.org/10.1111/mec.159451.
Article
CAS
Google Scholar
Beaumelle C, Redman EM, de Rijke J, Wit J, Benabed S, Debias F, et al. Metabarcoding in two isolated populations of wild roe deer (Capreolus capreolus) reveals variation in gastrointestinal nematode community composition between regions and among age classes. Parasit Vectors. 2021;14:594. https://doi.org/10.1186/s13071-021-05087-5.
Article
CAS
Google Scholar
Aivelo T, Medlar A, Löytynoja A, Laakkonen J, Jernvall J. Metabarcoding gastrointestinal nematodes in sympatric endemic and nonendemic species in Ranomafana National Park, Madagascar. Int J Primatol. 2018;39:49–64. https://doi.org/10.1007/s10764-017-0010-x.
Article
Google Scholar
Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140295. https://doi.org/10.1098/rstb.2014.0295.
Article
Google Scholar
Llinás-Caballero K, Caraballo L. Helminths and bacterial microbiota: the interactions of two of humans’ “old friends.” Int J Mol Sci. 2022;23:13358. https://doi.org/10.3390/ijms232113358.
Article
CAS
Google Scholar
Shears RK, Grencis RK. Whipworm secretions and their roles in host-parasite interactions. Parasit Vectors. 2022;15:348. https://doi.org/10.1186/s13071-022-05483-5.
Article
CAS
Google Scholar
Wang Y, Li X, Chen X, Kulyar MF, Duan K, Li H, et al. Gut fungal microbiome responses to natural cryptosporidium infection in horses. Front Microbiol. 2022;13:877280. https://doi.org/10.3389/fmicb.2022.877280.
Article
Google Scholar
Castañeda S, Paniz-Mondolfi A, Ramírez JD. Detangling the crosstalk between Ascaris, Trichuris and gut microbiota: what´s next? Front Cell Infect Microbiol. 2022;12:852900. https://doi.org/10.3389/fcimb.2022.852900.
Article
Google Scholar
Hayes KS, Bancroft AJ, Goldrick M, Portsmouth C, Roberts IS, Grencis RK. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science. 2010;328:1391–4. https://doi.org/10.1126/science.1187703.
Article
CAS
Google Scholar
White EC, Houlden A, Bancroft AJ, Hayes KS, Goldrick M, Grencis RK, et al. Manipulation of host and parasite microbiotas: Survival strategies during chronic nematode infection. Sci Adv. 2018;4:7399. https://doi.org/10.1126/sciadv.aap7399.
Article
CAS
Google Scholar
Jin X, Liu Y, Wang J, Wang X, Tang B, Liu M, et al. β-Glucan-triggered Akkermansia muciniphila expansion facilitates the expulsion of intestinal helminth via TLR2 in mice. Carbohydr Polym. 2022;275:118719. https://doi.org/10.1016/j.carbpol.2021.118719.
Article
CAS
Google Scholar
Knutie SA. Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species. J Appl Ecol. 2020;57:536–47.
Article
CAS
Google Scholar
de Winter II, Umanets A, Gort G, Nieuwland WH, van Hooft P, Heitkönig IMA, et al. Effects of seasonality and previous logging on faecal helminth-microbiota associations in wild lemurs. Sci Rep. 2020;10:16818. https://doi.org/10.1038/s41598-020-73827-1.
Article
CAS
Google Scholar
Kim JY, Choi JH, Nam SH, Fyumagwa R, Yong TS. Parasites and blood-meal hosts of the tsetse fly in Tanzania: a metagenomics study. Parasit Vectors. 2022;15:224. https://doi.org/10.1186/s13071-022-05344-1.
Article
CAS
Google Scholar
Kim JY, Yi MH, Mahdi AAS, Yong TS. iSeq 100 for metagenomic pathogen screening in ticks. Parasit Vectors. 2021;14:346. https://doi.org/10.1186/s13071-021-04852-w.
Article
CAS
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. https://doi.org/10.1093/bioinformatics/bts199.
Article
Google Scholar
Albakri NN, Bouqellah NA, Shabana II. A metagenomic survey of lamb’s pre- and post-weaning fecal microbiomes. J Taibah Univ Sci. 2020;14:1233–42. https://doi.org/10.1080/16583655.2020.1816000.
Article
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200. https://doi.org/10.1093/bioinformatics/btr381.
Article
CAS
Google Scholar
Kim JY, Choi JH, Nam SH, Fyumagwa R, Yong TS. Parasites and blood-meal hosts of the tsetse fly in Tanzania: a metagenomics study. Parasit Vectors. 2022;15:224. https://doi.org/10.1186/s13071-022-05344-1.
Article
CAS
Google Scholar
Kim JY, Yi MH, Hwang Y, Lee JY, Lee IY, Yong D, et al. 16S rRNA profiling of the Dermatophagoides farinae core microbiome: enterococcus and bartonella. Clin Exp Allergy. 2018;48:607–10. https://doi.org/10.1111/cea.13104.
Article
CAS
Google Scholar
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7. https://doi.org/10.1099/ijsem.0.001755.
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
Google Scholar
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinf. 2012;13:31. https://doi.org/10.1186/1471-2105-13-31.
Article
CAS
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: opensource, platform-independent, community supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41. https://doi.org/10.1128/AEM.01541-09.
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
Google Scholar
Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci. 1988;4:11–7. https://doi.org/10.1093/bioinformatics/4.1.11.
Article
CAS
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1. https://doi.org/10.1093/bioinformatics/btq461.
Article
CAS
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2. https://doi.org/10.1093/bioinformatics/bts565.
Article
CAS
Google Scholar
Heck KL, van Belle G, Simberloff D. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology. 1975;56:1459–61. https://doi.org/10.2307/1934716.
Article
Google Scholar
Shannon CE. A mathematical theory of communication. Bell Sys Techn J. 1948;27:623–56. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.
Article
Google Scholar
Gower JC. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966;53:325–38. https://doi.org/10.1093/biomet/53.3-4.325.
Article
Google Scholar
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x.
Article
Google Scholar
Anderson MJ, Ellingsen KE, McArdle BH. Multivariate dispersion as a measure of beta diversity. Ecol Lett. 2006;9:683–93. https://doi.org/10.1111/j.1461-0248.2006.00926.x.
Article
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:60. https://doi.org/10.1186/gb-2011-12-6-r60.
Article
Google Scholar
Schmid DW, Fackelmann G, Wasimuddin RJ, Ratovonamana YR, Montero BK, et al. A framework for testing the impact of co-infections on host gut microbiomes. Anim Microbiome. 2022;4:48.. https://doi.org/10.1186/s42523-022-00198-5.
Bird BH, Mazet JAK. Detection of emerging zoonotic pathogens: an integrated one health approach. Annu Rev Anim Biosci. 2018;6:121–39. https://doi.org/10.1146/annurev-animal-030117-014628.
Article
CAS
Google Scholar
Lee JH, Gong S, Park YC, Kim HJ, Choi IW, Lee YH. Infections of intestinal helminth at two species of field mice, Apodemus agrarius and A Peninsulae, in Gangwondo and Chungcheongnam-do Korea. Korean J Parasitol. 2018;56:301–4. https://doi.org/10.3347/kjp.2018.56.3.301.
Article
Google Scholar
Meerburg BG, Singleton GR, Kijlstra A. Rodent-borne diseases and their risks for public health. Crit Rev Microbiol. 2009;35:221–70. https://doi.org/10.1080/10408410902989837.
Article
Google Scholar
Maurice CF, Knowles SC, Ladau J, Pollard KS, Fenton A, Pedersen AB, et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 2015;9:2423–34. https://doi.org/10.1038/ismej.2015.53.
Article
CAS
Google Scholar
Wasimuddin, Čížková D, Bryja J, Albrechtová J, Hauffe HC, Piálek J. High prevalence and species diversity of Helicobacter spp detected in wild house mice. Appl Environ Microbiol. 2012;78:8158-60. https://doi.org/10.1128/AEM.01989-12.
Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell. 2017;171:1015–28. https://doi.org/10.1016/j.cell.2017.09.016.
Article
CAS
Google Scholar
O’Rourke JL, Grehan M, Lee A. Non-pylori Helicobacter species in humans. Gut. 2001;49:601–6. https://doi.org/10.1136/gut.49.5.601.
Article
CAS
Google Scholar
Davis JT, Foltz E, Blakemore WS. A pathogen of increasing clinical importance. JAMA. 1970;214:12.
Article
Google Scholar
Tanaka R, Hino A, Tsai IJ, Palomares-Rius JE, Yoshida A, Ogura Y, et al. Assessment of helminth biodiversity in wild rats using 18S rDNA based metagenomics. PLoS ONE. 2014;9:e110769. https://doi.org/10.1371/journal.pone.0110769.
Article
CAS
Google Scholar
Helmy YA, Spierling NG, Schmidt S, Rosenfeld UM, Reil D, Imholt C, et al. Occurrence and distribution of Giardia species in wild rodents in Germany. Parasit Vectors. 2018;11:213. https://doi.org/10.1186/s13071-018-2802-z.
Article
CAS
Google Scholar
Perles L, Roque ALR, D’Andrea PS, Lemos ERS, Santos AF, Morales AC, et al. Genetic diversity of Hepatozoon spp. in rodents from Brazil. Sci Rep. 2019;9:10122. https://doi.org/10.1038/s41598-019-46662-2.
Article
CAS
Google Scholar
Brar SK, Singla N, Singla LD. Comparative comprehensive analysis on natural infections of Hymenolepis Diminuta and Hymenolepis Nana in commensal rodents. Helminthologia. 2021;58:248–62. https://doi.org/10.2478/helm-2021-0027.
Article
CAS
Google Scholar
Behnke JM, Eira C, Rogan M, Gilbert FS, Torres J, Miquel J, et al. Helminth species richness in wild wood mice, Apodemus sylvaticus, is enhanced by the presence of the intestinal nematode Heligmosomoides polygyrus. Parasitology. 2009;136:793–804. https://doi.org/10.1017/S0031182009006039.
Article
CAS
Google Scholar
Chaisiri K, Siribat P, Ribas A, Morand S. Potentially zoonotic helminthiases of murid rodents from the Indo-Chinese peninsula: impact of habitat and the risk of human infection. Vector Borne Zoonotic Dis. 2015;15:73–85. https://doi.org/10.1089/vbz.2014.1619.
Article
Google Scholar
Feltus DC, Giddings CW, Schneck BL, Monson T, Warshauer D, McEvoy JM. Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin. J Clin Microbiol. 2006;44:4303–8. https://doi.org/10.1128/JCM.01067-06.
Article
CAS
Google Scholar
Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufele RL, et al. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis. 2005;41:34–53. https://doi.org/10.1086/432579.
Article
Google Scholar
Ibrahim AS, Spellberg B, Avanessian V, Fu Y, Edwards JE Jr. Rhizopus oryzae adheres to, is phagocytosed by, and damages endothelial cells in vitro. Infect Immun. 2005;73:778–83. https://doi.org/10.1128/IAI.73.2.778-783.2005.
Article
CAS
Google Scholar
Wang WY, Luo HB, Hu JQ, Hong HH. Pulmonary cladosporium infection coexisting with subcutaneous corynespora cassiicola infection in a patient: a case report. World J Clin Cases. 2022;10:3490–5. https://doi.org/10.12998/wjcc.v10.i11.3490.
Article
Google Scholar
de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes MDS, Filho AKDB, do Nascimento FRF, et al. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.01351.
Article
Google Scholar
Kaeuffer C, Baldacini M, Ruge T, Ruch Y, Zhu YJ, De Cian M, et al. Fungal infections caused by Kazachstania spp., Strasbourg, France, 2007–2020. Emerg Infect Dis. 2022;28:29–34. https://doi.org/10.3201/eid2801.211543.
Article
CAS
Google Scholar
Riley WA. A Mouse Oxyurid, Syphacia obvelata, as a parasite of man. J Parasitol. 1919;6:89–93.
Article
Google Scholar
Mohtasebi S, Teimouri A, Mobedi I, Mohtasebi A, Abbasian H, Abbaszadeh Afshar MJ. Intestinal helminthic parasites of rodents in the central region of Iran: first report of a capillariid nematode from Dryomys nitedula. BMC Res Notes. 2020;13:461. https://doi.org/10.1186/s13104-020-05304-x.
Article
CAS
Google Scholar
Fu JR, Liu QZ. Evaluation and entomopathogenicity of gut bacteria associated with dauer juveniles of Oscheius chongmingensis (Nematoda: Rhabditidae). Microbiologyopen. 2019;8:e00823. https://doi.org/10.1002/mbo3.823.
Article
CAS
Google Scholar
Oro V, Krnjajic S, Tabakovic M, Stanojevic JS, Ilic-Stojanovic S. Nematicidal activity of essential oils on a psychrophilic Panagrolaimus sp (Nematoda: Panagrolaimidae). Plants. 2020;9:1588. https://doi.org/10.3390/plants9111588.
Article
CAS
Google Scholar
Catalano S, Nadler SA, Fall CB, Marsh KJ, Léger E, Sène M, et al. Plagiorchis sp. in small mammals of Senegal and the potential emergence of a zoonotic trematodiasis. Int J Parasitol Parasites Wildl. 2019;8:164–70. https://doi.org/10.1016/j.ijppaw.2019.02.003.
Article
Google Scholar
Hong SJ, Woo HC, Chai J. A human case of Plagiorchis muris (Tanabe, 1922: Digenea) infection in the Republic of Korea: freshwater fish as a possible source of infection. J Parasitol. 1996;82:647–9. https://doi.org/10.2307/3283795.
Article
CAS
Google Scholar
Chai JY, Park JH, Guk SM, Kim JL, Kim HJ, Kim WH, et al. Plagiorchis muris infection in Apodemus agrarius from northern Gyeonggi-do (Province) near the demilitarized zone. Korean J Parasitol. 2007;45:153–6. https://doi.org/10.3347/kjp.2007.45.2.153.
Article
Google Scholar
Boyce K, Hide G, Craig PS, Reynolds C, Hussain M, Bodell AJ, et al. A molecular and ecological analysis of the trematode Plagiorchis elegans in the wood mouse Apodemus sylvaticus from a peraquatic ecosystem in the UK. J Helminthol. 2014;88:310–20. https://doi.org/10.1017/S0022149X13000199.
Article
CAS
Google Scholar
Su C, Su L, Li Y, Long SR, Chang J, Zhang W, et al. Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis. Mucosal Immunol. 2018;11:144–57. https://doi.org/10.1038/mi.2017.20.
Article
CAS
Google Scholar
Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity. 2015;43:998–1010. https://doi.org/10.1016/j.immuni.2015.09.012.
Article
CAS
Google Scholar
Kim JY, Kim EM, Yi MH, Lee J, Lee S, Hwang Y, et al. Chinese liver fluke Clonorchis sinensis infection changes the gut microbiome and increases probiotic Lactobacillus in mice. Parasitol Res. 2019;118:693–9. https://doi.org/10.1007/s00436-018-6179-x.
Article
Google Scholar
Kim JY, Kim EM, Yi MH, Lee J, Lee S, Hwang Y, et al. Intestinal fluke Metagonimus yokogawai infection increases probiotic Lactobacillus in mouse cecum. Exp Parasitol. 2018;193:45–50. https://doi.org/10.1016/j.exppara.2018.08.002.
Article
Google Scholar