Dantas-Torres F, Otranto D. Species diversity and abundance of ticks in three habitats in southern Italy. Ticks Tick Borne Dis Elsevier GmbH. 2013;4:251–5.
Article
Google Scholar
Nakao R, Qiu Y, Igarashi M, Magona JW, Zhou L, Ito K, et al. High prevalence of spotted fever group rickettsiae in Amblyomma variegatum from Uganda and their identification using sizes of intergenic spacers. Ticks Tick Borne Dis Elsevier GmbH. 2013;4:506–12.
Article
Google Scholar
Socolovschi C, Matsumoto K, Marie J-L, Davoust B, Raoult D, Parola P. Identification of Rickettsiae, Uganda and Djibouti. Emerg Infect Dis. 2007;13:1508–9.
Article
Google Scholar
De La Fuente J, Estrada-Peña A, Venzal JM, Kocan KM, Sonenshine DE. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 2008;13:6938–46.
Article
Google Scholar
Ahmed J, Alp H, Aksin M, Seitzer U. Current status of ticks in Asia. Parasitol Res. 2007;101:159–62.
Article
Google Scholar
Nyangiwe N, Yawa M, Muchenje V. Driving forces for changes in geographic range of cattle ticks (Acari: Ixodidae) in Africa: a review. S Afr J Anim Sci. 2018;48:829–41.
Article
Google Scholar
Mekonnen S, de Castro J, Gebre S, Hussein I, Regassa A. Ticks, tick-borne diseases and their control in western ethiopia. Int J Trop Insect Sci. 1992;13:661–4.
Article
Google Scholar
Kaiser MN, Sutherst RW, Bourne AS. Relationship between ticks and zebu cattle in southern Uganda. Trop Anim Health Prod. 1982;14:63–74.
Article
CAS
Google Scholar
Kaiser MN, Sutherst RW, Bourne AS. Tick (Acarina: Ixodidae) infestations on zebu cattle in northern Uganda. Bull Entomol Res. 1991;81:257–62.
Article
Google Scholar
Okello-Onen J, Tukahirwa EM, Perry BD, Rowlands G, Nagda SM, Musisi G, et al. Population dynamics of ticks on indigenous cattle in a pastoral dry to semi-arid rangeland zone of Uganda. Exp Appl Acarol. 1999;23:79–88.
Article
CAS
Google Scholar
Vudriko P, Okwee-Acai J, Tayebwa DS, Byaruhanga J, Kakooza S, Wampande E, et al. Emergence of multi-acaricide resistant Rhipicephalus ticks and its implication on chemical tick control in Uganda. Parasit Vectors Parasites Vectors. 2016;1:1–13.
Google Scholar
Walker AR, Bouattour A, Camicas J-L, Estrada-Peña A, Horak IG, Latif AA, et al. Ticks of domestic animals in Africa a guide to identification of species. Edinburgh: Bioscience Report. 2003.
Cumming GS. Using habitat models to map diversity: pan-African species richness of ticks (Acari: Ixodida). J Biogeogr. 2000;27:425–40.
Article
Google Scholar
Hotez PJ, Kamath A. Neglected tropical diseases in Sub-Saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl Trop Dis. 2009;3:e412.
Article
Google Scholar
Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129:S3-14.
Article
Google Scholar
Hasle G, Horak IG, Grieve G, Leinaas HP, Clarke F. Ticks collected from birds in the northern provinces of South Africa, 2004–2006. Onderstepoort J Vet Res. 2009;76:167–75.
Article
CAS
Google Scholar
Horak IG, Golezardy H, Uys AC. Ticks associated with the three largest wild ruminant species in southern Africa. Onderstepoort J Vet Res. 2007;74:231–42.
Article
CAS
Google Scholar
Sylla M, Ndiaye M, Souris M, Gonzalez J-P. Ticks (Acari: Ixodida) of the genus Haemaphysalis Koch, 1844 in Senegal: a review of host associations, chorology, and identification. Acarologia Les Amis d’Acarologia. 2018;58:928–45.
Article
Google Scholar
Walker JB. A review of the Ixodid ticks (Acari, Ixodidae) occuring in southern Africa. Onderstepoort J Vet Res. 1991;58:81–105.
CAS
Google Scholar
Yessinou RE, Cazan CD, Bonnet SI, Farougou S, Mihalca AD. Geographical distribution of hard ticks (Acari:Ixodidae) and tick-host associations in Benin, Burkina-Faso. Ivory-Coast and Togo Acta Trop. 2022;232:106510.
Article
CAS
Google Scholar
Aeschlimann A. Biologie et écologie des tiques (Ixodoidea) de Côte d’Ivoire. Acta Trop. 1967;24:281–405.
CAS
Google Scholar
Bequaert J. Ticks collected by the American Museum Congo expedition 1909–1915, with notes on the parasites and predacious enemies of these arthropods. New York: Am Museum Nat Hist; 1930.
Google Scholar
Hoogstraal H, Theiler G. Ticks (Ixodoidea, Ixodidae) parasitizing lower primates in Africa, Zanzibar, and Madagascar. J Parasitol. 1959;45:217–22.
Article
CAS
Google Scholar
George HF, Nuttall FRS. Notes on ticks IV relating to the genus Ixodes and including a description of three new species and two new varieties. Parasitology. 1916;8:294–337.
Article
Google Scholar
Morel PC. Tiques d’animaux sauvages en Haute-Volta. Rev Elev Med Vet Pays Trop. 1978;31:69–78.
Article
CAS
Google Scholar
Theiler G. Ticks in the South African zoological survey. Onderstepoort J Vet Res Anim Ind. 1947;21:253–300.
CAS
Google Scholar
Theiler G, Salisbury LE. Ticks in the South African zoological survey collection—Part IX The Amblyomma marmoreum group. Onderstepoort J Vet Res. 28. 1959.
Humle T, Maisels F, Oates JF, Plumptre AJ, Williamson EA. Pan troglodytes, chimpanzee (errata version published in 2018). IUCN Red List Threat Species. 2016. https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T15933A17964454.en
IUCN. The IUCN Red List of Threatened Species. Version 2022–1. 2022. https://www.iucnredlist.org.
Aronsen GP, Robbins RG. An instance of tick feeding to repletion inside a human nostril. Bull Peabody Museum Nat Hist. 2008;49:245–8.
Article
Google Scholar
Hamer SA, Bernard AB, Donovan RM, Hartel JA, Wrangham RW, Otali E, et al. Coincident tick infestations in the nostrils of wild chimpanzees and a human in Uganda. Am J Trop Med Hyg. 2013;89:924–7.
Article
Google Scholar
Walton GA. A tick infesting the nostrils of man. Nature. 1960;188:1131–2.
Article
CAS
Google Scholar
Kawanaka K. Age differences in social interactions of young males in a chimpanzee unit-group at the Mahale Mountains National Park. Tanzania Primates. 1989;30:285–305.
Article
Google Scholar
Shutt K, MacLarnon A, Heistermann M, Semple S. Grooming in Barbary macaques: better to give than to receive? Biol Lett. 2007;3:231–3.
Article
Google Scholar
Lehmann J, Korstjens AH, Dunbar RIM. Group size, grooming and social cohesion in primates. Anim Behav. 2007;74:1617–29.
Article
Google Scholar
Akinyi MY, Tung J, Jeneby M, Patel NB, Altmann J, Alberts SC. Role of grooming in reducing tick load in wild baboons (Papio cynocephalus). Anim Behav Elsevier Ltd. 2013;85:559–68.
Article
Google Scholar
Tanaka I, Takefushi H. Elimination of external parasites (lice) is the primary function of grooming in free-ranging Japanese macaques. Anthropol Sci. 1993;101:187–93.
Article
Google Scholar
Koyama N, Aimi M, Kawamoto Y, Hirai H, Go Y, Ichino S, et al. Body mass of wild ring-tailed lemurs in Berenty reserve, Madagascar, with reference to tick infestation: a preliminary analysis. Primates. 2008;49:9–15.
Article
Google Scholar
Brain C, Bohrmann R. Tick infestation of baboons (Papio ursinus) in the Namib desert. J Wildl Dis. 1992;28:188–91.
Article
CAS
Google Scholar
Süss J, Klaus C, Gerstengarbe F, Werner PC. What makes ticks tick? Climate change, ticks, and tick-borne diseases. Int Soc Travel Med. 2008;15:39–45.
Article
Google Scholar
Fruth B, Tagg N, Stewart FA. Sleep and nesting behavior in primates: a review. Am J Phys Anthropol. 2018;166:499–509.
Article
Google Scholar
Randolph SE, Green RM, Hoodless AN, Peacey MF. An empirical quantitative framework for the seasonal dynamics of the tick Ixodes ricinus. Int J Parasitol. 2002;32:979–89.
Article
Google Scholar
Medlock JM, Hansford KM, Bormane A, Derdáková M, Estrada-peña A, George J, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors. 2013;6:1–11.
Article
Google Scholar
Estrada-Peña A. Climate, niche, ticks, and models: what they are and how we should interpret them. Parasitol Res. 2008;103:87–95.
Article
Google Scholar
Tack W, Madder M, Baeten L, De Frenne P, Verheyen K. The abundance of Ixodes ricinus ticks depends on tree species composition and shrub cover. Parasitology. 2012;139:1273–81.
Article
CAS
Google Scholar
Hubálek Z, Halouzka J, Juricová Z. Host-seeking activity of ixodid ticks in relation to weather variables. J Vector Ecol. 2003;28:159–65.
Google Scholar
Chapman CA, Lambert JE. Habitat alteration and the conservation of African primates case study of Kibale National Park. Uganda Am J Primatol. 2000;50:169–85.
Article
CAS
Google Scholar
Treves A, Mwima P, Plumptre AJ, Isoke S. Camera-trapping forest-woodland wildlife of western Uganda reveals how gregariousness biases estimates of relative abundance and distribution. Biol Conserv Elsevier Ltd. 2010;143:521–8.
Article
Google Scholar
Chapman CA, Wrangham RW, Chapman LJ, Kennard DK, Zanne AE. Fruit and flower phenology at two sites in Kibale National Park, Uganda. J Trop Ecol MNHN Museum National d’Histoire Naturelle. 1999;15:189–211.
Google Scholar
Bortolamiol S, Cohen M, Potts K, Pennec F, Rwaburindore P, Kasenene JM, et al. Suitable habitats for endangered frugivorous mammals: small-scale comparison, regeneration forest and chimpanzee density in Kibale National Park. Uganda PLoS One. 2014;9:e102177.
Article
Google Scholar
Bortolamiol S, Krief S, Jiguet F, Palibrk M, Protase R, Kasenene J, Seguya A, Cohen M. Spatial analysis of natural and anthropogenic factors influencing chimpanzee repartition in Sebitoli (Kibale National Park, Uganda). Int Cartogr Conf. 2013.
Cibot M, Bortolamiol S, Seguya A, Krief S. Chimpanzees facing a dangerous situation: a high-traffic asphalted road in the Sebitoli area of Kibale National Park. Uganda Am J Primatol. 2015;77:890–900.
Article
Google Scholar
Matthysse JG, Colbo MH. The ixodid ticks of Uganda, together with species pertinent to Uganda because of their present known distribution. Entomologi Soc Am. 1987.
Hoogstraal H, El Kammah KM. Notes on African Haemaphysalis ticks. XH. (Kaiseriana) aciculifer Warburton and H (K) rugosa Santos Dias, the African representatives of the Spinigera subgroup (Ixodoidea: Ixodidae). J Parasitol. 1972;58:960–78.
Article
CAS
Google Scholar
Horak IG, Heyne H, Williams R, Gallivan GJ, Spickett AM, Bezuidenhout JD, Estrada-Peña A. The genus Haemaphysalis Koch, 1844. In The Ixodid Ticks (Acari: Ixodidae) of Southern Africa (pp. 141-200). Springer, Cham; 2018
Binetruy F, Dupraz M, Buysse M, Duron O. Surface sterilization methods impact measures of internal microbial diversity in ticks parasites and vectors. BioMed Central. 2019;12:1–10. https://doi.org/10.1186/s13071-019-3517-5.
Article
Google Scholar
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, et al. Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 2003;31:3497–500.
Article
CAS
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7 molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
Article
CAS
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
Article
CAS
Google Scholar
Dobson AJ, Barnett AG. An introduction to generalized linear models. London: Chapman and Hall/CRC; 2018.
Google Scholar
Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol. 2010;1:103–13.
Article
Google Scholar
Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, et al. Package car. Vienna: R Foundation for Statistical Computing; 2012.
Google Scholar
Forstmeier W, Schielzeth H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol. 2011;65:47–55.
Article
Google Scholar
Barr DJ, Levy R, Scheepers C, Tily HJ. Random effects structure for confirmatory hypothesis testing: keep it maximal. J Mem Lang. 2013;68:255–78.
Article
Google Scholar
Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125:279–84.
Article
CAS
Google Scholar
Quinn GP, Keough MJ. Experimental design and data analysis for biologists. Cambridge university press; 2002.
Team RC. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.
Google Scholar
King’oriObanda EMV, Nyamota R, Remesar S, Chiyo PI, Soriguer R, et al. Population genetic structure of the elephant tick Amblyomma tholloni from different elephant populations in Kenya. Amsterdam: Elsevier; 2022.
Google Scholar
McGinley-Smith DE, Tsao SS. Dermatoses from ticks. J Am Acad Dermatol. 2003;49:363–92.
Article
Google Scholar
Bussiéras J, Chermette R. Entomologie vétérinaire (Abrégé de parasitologie vétérinaire, fascicule IV). Service de Parasitologie de l'ENVA: 163p; 1991.
Ogden NH, Ben Beard C, Ginsberg HS, Tsao JI. Possible effects of climate change on Ixodid ticks and the pathogens they transmit: predictions and observations. J Med Entomol. 2021;58:1536–45.
Article
Google Scholar
Requena-García F, Cabrero-Sañudo F, Olmeda-García S, González J, Valcárcel F. Influence of environmental temperature and humidity on questing ticks in central Spain. Exp Appl Acarol. 2017;71:277–90.
Article
Google Scholar
Barandika JF, Olmeda SA, Casado-Nistal MA, Hurtado A, Juste RA, Valcárcel F, et al. Differences in questing tick species distribution between Atlantic and continental climate regions in Spain. J Med Entomol. 2011;48:13–9.
Article
CAS
Google Scholar
Ginsberg HS, Ewing CP. Comparison of flagging, walking, trapping, and collecting from hosts as sampling methods for Northern deer ticks, Ixodes dammini, and lone-star ticks. Amblyomma americanum Exp Appl Acarol. 1989;7:313–22.
CAS
Google Scholar
Terassini FA, Barbieri FS, Albuquerque S, Szabó MPJ, Camargo LMA, Labruna MB. Comparison of two methods for collecting free-living ticks in the Amazonian forest. Ticks Tick Borne Dis Elsevier GmbH. 2010;1:194–6.
Article
Google Scholar
Vial L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distriblftion. Parasite. 2009;16:191–202.
Article
CAS
Google Scholar
Lacroux C, Pouydebat E, Rossignol M, Durand S, Aleeje A, Asalu E, et al. Repellent activity against Anopheles gambiae of the leaves of nesting trees in the Sebitoli chimpanzee community of Kibale National Park Uganda. BioMed Central Malar J. 2022. https://doi.org/10.1186/s12936-022-04291-7.
Article
Google Scholar
Keita AK, Socolovschi C, Ahuka-Mundeke S, Ratmanov P, Butel C, Ayouba A, et al. Molecular evidence for the presence of Rickettsia felis in the feces of wild-living African apes. PLoS ONE. 2013;8:1–7.
Article
Google Scholar
Nakayima J, Hayashida K, Nakao R, Ishii A, Ogawa H, Nakamura I, et al. Detection and characterization of zoonotic pathogens of free-ranging non-human primates from Zambia. Parasit Vectors. 2014;7:490.
Article
Google Scholar
Binetruy F, Buysse M, Barosi R, Duron O. Novel Rickettsia genotypes in ticks in French Guiana South America. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-59488-0.
Article
Google Scholar
Labruna MB, Walker DH. Rickettsia felis and changing paradigms about pathogenic Rickettsiae. Emerg Infect Dis. 2014;20:1768.
Article
CAS
Google Scholar
Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SGE. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet. 2007;23:511–20.
Article
CAS
Google Scholar
Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell Infect Microbiol. 2017;7:1–14.
Article
Google Scholar
Kurtti TJ, Felsheim RF, Burkhardt NY, Oliver JD, Heu CC, Munderloh UG. Rickettsia buchneri sp Nov a rickettsial endosymbiont of the blacklegged tick Ixodes scapularis. Int J Syst Evol Microbiol. 2015;65:965–70.
Article
CAS
Google Scholar
Novakova M, Costa FB, Krause F, Literak I, Labruna MB. Rickettsia vini n sp (Rickettsiaceae) infecting the tick Ixodes arboricola (Acari: Ixodidae). Parasites Vectors Parasites Vectors. 2016;9:1–8. https://doi.org/10.1186/s13071-016-1742-8.
Article
CAS
Google Scholar
Lopez-Velez R, Palomar AM, Oteo JA, Norman FF, Pérez-Molina JA, Portillo A. Novel Candidatus Rickettsia species detected in nostril tick from human, gabon, 2014. Emerg Infect Dis. 2015;21:325–7.
Article
CAS
Google Scholar
Kočíková B, Majláth I, Víchová B, Maliničová L, Pristaš P, Connors VA, et al. Candidatus cryptoplasma associated with green lizards and ixodes ricinus ticks, Slovakia, 2004–2011. Emerg Infect Dis. 2018;24:2348–51.
Article
Google Scholar
Masika SJ, Muchemi GM, Okumu TA, Mutura S, Zimmerman D, Kamau J. Molecular evidence of Anaplasma phagocytophilum in olive baboons and vervet monkeys in Kenya. BMC Vet Res BioMed Central. 2021;17:385.
Article
CAS
Google Scholar
King’ori EM, Obanda V, Chiyo PI, Soriguer RC, Morrondo P, Angelone S. Molecular identification of Ehrlichia, Anaplasma, Babesia and Theileria in African elephants and their ticks. PLoS ONE. 2019;14:16.
Article
Google Scholar
Larsen PA, Hayes CE, Williams CV, Junge RE, Razafindramanana J, Mass V, et al. Blood transcriptomes reveal novel parasitic zoonoses circulating in Madagascar’s lemurs. Biol Lett. 2016;12:20150829.
Article
Google Scholar
Mafra C, Barcelos RM, Mantovani C, Carrizo J, Soares AC, Moreira HNS, et al. Ocorrence of Ehrlichia canis in free-living primates of the genus Callithrix. Rev Bras Parasitol Vet. 2015;24:78–81.
Article
Google Scholar
Yabsley MJ, Norton TM, Powell MR, Davidson WR. Molecular and serologic evidence of tick-borne ehrlichiae in three species of lemurs from St Catherines Island, Georgia, USA. J Zoo Wildl Med. 2004;35:503–9.
Article
Google Scholar
Williams CV, Van Steenhouse JL, Bradley JM, Hancock SI, Hegarty BC, Breitschwerdt EB. Naturally occurring Ehrlichia chaffeensis infection in two prosimian primate species: ring-tailed lemurs (Lemur catta) and ruffed lemurs (Varecia variegata). Emerg Infect Dis. 2002;8:1497–500.
Article
Google Scholar
Baviskar BS, Gawande PJ, Jayraw AK, Maske DK, Raut SS. A note on occurrence of Ehrlichia infection in a Langur (Semnopithecus sp) from Nagpur Maharashtra India. J Threat Taxa. 2009;1:444–444.
Article
Google Scholar
Garnham PCC, Bray RS. The susceptibility of the higher primates to Piroplasms. J Protozool. 1959;6:352–5.
Article
Google Scholar
Couturier C, Bortolamiol S, Ortmann S, Okimat JP, Asalu E, Krief S. All-you-can-eat: influence of proximity to maize gardens on the wild diet and the forest activities of the Sebitoli chimpanzee community in Kibale National Park. Animals. 2022;12:1–22.
Article
Google Scholar
Liu W, Li Y, Learn GH, Rudicell RS, Robertson JD, Keele BF, et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature Nature Publ Group. 2010;467:420–5.
CAS
Google Scholar
Cibot M, Guillot J, Lafosse S, Bon C, Seguya A, Krief S. Nodular worm infections in wild non-human primates and humans living in the Sebitoli area (Kibale National Park, Uganda): do high spatial proximity favor zoonotic transmission? PLoS Negl Trop Dis. 2015;9:1–17.
Article
Google Scholar